Effects of Two Amphiphilic Diesters of L-Ascorbic Acid on the Oxidative Stability of Rabbit Meatballs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of L-Ascorbyl Derivatives
2.1.1. General
2.1.2. Synthesis of 2-O,3-O-dibenzyl-L-ascorbic Acid 1
2.1.3. Synthesis of (S)-1-((R)-3,4-bis(benzyloxy)-5-oxo-2,5-dihydrofuran-2-yl)ethane-1,2-diyl dimyristate 2a
2.1.4. Synthesis of (S)-1-((R)-3,4-bis(benzyloxy)-5-oxo-2,5-dihydrofuran-2-yl)ethane-1,2-diyl distearate 2b
2.1.5. Synthesis of (S)-1-((R)-3,4-dihydroxy-5-oxo-2,5-dihydrofuran-2-yl)ethane-1,2-diyl dimyristate DA
2.1.6. Synthesis of (S)-1-((R)-3,4-dihydroxy-5-oxo-2,5-dihydrofuran-2-yl)ethane-1,2-diyl distearate DB
2.2. Determination of the in vitro Chain-Breaking Antioxidant Activity of Synthesised Compounds
2.3. Meatball Preparation and Storage Trial
2.4. Physical and Chemical Characterization, Statistics
3. Results and Discussion
3.1. Synthesis and in vitro Antioxidant Activity of L-Ascorbyl Diesters
3.2. Physical Characterization, Fatty Acid Profile and Lipid Oxidation of Meatballs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalle Zotte, A. Rabbit farming for meat purposes. Anim. Front. 2014, 4, 62–67. [Google Scholar] [CrossRef] [Green Version]
- IndexBox. World—Rabbit or Hare Meat—Market Analysis, Forecast, Size, Trends and Insights Update: COVID-19 Impact. 2022. Available online: https://www.indexbox.io/store/world-rabbit-or-hare-meat-market-report-analysis-and-forecast-to-2020/ (accessed on 25 October 2021).
- Escribá-Pérez, C.; Baviera-Puig, A.; Montero-Vicente, L.; Buitrago-Vera, J. Children’s consumption of rabbit meat. World Rabbit Sci. 2019, 27, 113–122. [Google Scholar] [CrossRef]
- Szendrő, K.; Szabó-Szentgróti, E.; Szigeti, O. Consumers’ attitude to consumption of rabbit meat in eight countries depending on the production method and its purchase form. Foods 2020, 9, 654. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; He, Z.; Gan, X.; Li, H. Interrelationship among ferrous myoglobin, lipid and protein oxidations in rabbit meat during refrigerated and superchilled storage. Meat Sci. 2018, 146, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tu, J.; Zhou, H.; Lu, A.; Xu, B. A comprehensive insight into the effects of microbial spoilage, myoglobin autoxidation, lipid oxidation, and protein oxidation on the discoloration of rabbit meat during retail display. Meat Sci. 2021, 172, 108359. [Google Scholar] [CrossRef] [PubMed]
- Abdelmaguid, N.M. Improving the quality and shelf-life of raw rabbit meat during refrigeration storage using olive/mulberry leaves extracts dipping. Pak. J. Biol. Sci. 2020, 23, 1122–1130. [Google Scholar]
- Al Jumayi, H.A.; Allam, A.Y.; El-Beltagy, A.E.D.; Algarni, E.H.; Mahmoud, S.F.; El Halim Kandil, A.A. Bioactive compound, antioxidant, and radical scavenging activity of some plant aqueous extracts for enhancing shelf life of cold-stored rabbit meat. Antioxidants 2022, 11, 1056. [Google Scholar] [CrossRef]
- Cullere, M.; Tasoniero, G.; Secci, G.; Parisi, G.; Smit, P.; Hoffman, L.C.; Dalle Zotte, A. Effect of the incorporation of a fermented rooibos (Aspalathus linearis) extract in the manufacturing of rabbit meat patties on their physical, chemical, and sensory quality during refrigerated storage. LWT 2019, 108, 31–38. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Celia, C.; Cullere, M.; Szendrő, Z.; Kovács, M.; Gerencsér, Z.; Matics, Z. Effect of an in-vivo and/or in-meat application of a liquorice (Glycyrrhiza glabra L.) extract on fattening rabbits live performance, carcass traits and meat quality. Anim. Feed Sci. Technol. 2020, 260, 114333. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Zhang, D.; Chen, X.; Li, H. Effect of pepper (Zanthoxylum bungeanum Maxim.) essential oil on quality changes in rabbit meat patty during chilled storage. J. Food Sci. Technol. 2022, 59, 179–191. [Google Scholar] [CrossRef]
- Mancini, S.; Preziuso, G.; Dal Bosco, A.; Roscini, V.; Szendrő, Z.; Fratini, F.; Paci, G. Effect of turmeric powder (Curcuma longa L.) and ascorbic acid on physical characteristics and oxidative status of fresh and stored rabbit burgers. Meat Sci. 2015, 110, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Preziuso, G.; Paci, G. Effect of turmeric powder (Curcuma longa L.) and ascorbic acid on antioxidant capacity and oxidative status in rabbit burgers after cooking. World Rabbit Sci. 2016, 24, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Morshdy, A.M.; Al Ashkar, A.T.; Mahmoud, A.F.A. Improving the quality and shelf life of rabbit meat during chilled storage using lemongrass and black seed oils. J. Anim. Health Prod. 2021, 9, 56–61. [Google Scholar] [CrossRef]
- Zhang, P.; Omaye, S.T. Antioxidant and prooxidant roles for β-carotene, α-tocopherol and ascorbic acid in human lung cells. Toxicol. Vitr. 2001, 15, 13–24. [Google Scholar] [CrossRef]
- Cenci-Goga, B.T.; Karama, M.; Hadjichralambous, C.; Sechi, P.; Grispoldi, L. Is EU regulation on the use of antioxidants in meat preparation and in meat products still cutting edge? Eur. Food Res. Technol. 2020, 246, 661–668. [Google Scholar] [CrossRef]
- Perini, I.; Ambrosi, M.; Tanini, D.; Ninham, B.W.; Capperucci, A.; Lo Nostro, P. Ascorbyl-6-O-oleate: A bioconjugate antioxidant lipid. ChemistrySelect 2020, 5, 1938–1944. [Google Scholar] [CrossRef] [Green Version]
- Tempestini, E.; Bucci, M.; Mastromartino, V.; Gori, M.; Tanini, D.; Ambrosi, M.; Fratini, E.; Capperucci, A.; Lo Nostro, P. Organogels from double-chained Vitamin C amphiphilic derivatives. ChemPhysChem 2017, 18, 1400–1406. [Google Scholar] [CrossRef]
- Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Jose, M.; Galtier, F.P.; Gott, D.; Gundert-Remy, U.; Lambré, C.; Leblanc, J.-C.; et al. Scientific Opinion on the re-evaluation of ascorbyl palmitate (E 304(i)) and ascorbyl stearate (E 304(ii)) as food additives. EFSA J. 2015, 13, 4289. [Google Scholar]
- Tanini, D.; Gori, M.; Bicocchi, F.; Ambrosi, M.; Lo Nostro, P.; Capperucci, A. Synthesis and spectroscopic characterization of double chained and sulfurated derivatives of L-ascorbic acid. Arkivoc 2017, 2017 (ii), 407–420. [Google Scholar] [CrossRef] [Green Version]
- Andersen, F.A. Final report on the safety assessment of ascorbyl palmitate, ascorbyl dipalmitate, ascorbyl stearate, erythrobic acid, and sodium erythorbate. Int. J. Toxicol. 1999, 18, 1–26. [Google Scholar]
- Zhuang, D.; Nie, J.U.N.; Yang, J. Poly(ascorbyl acrylate)s: Synthesis and evaluation of their redox polymerization ability in the presence of hydrogen peroxide. J. Polym. Sci. 2011, 49, 1999–2007. [Google Scholar] [CrossRef]
- Goupy, P.; Dufour, C.; Loonis, M.; Dangles, O. Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical. J. Agric. Food Chem. 2003, 51, 615–622. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Zhang, D.; Li, H.; Wang, Z. Using oxidation kinetic models to predict the quality indices of rabbit meat under different storage temperatures. Meat Sci. 2020, 162, 108042. [Google Scholar] [CrossRef]
- CIE (Commission Internationale de l’Éclairage). Colorimetry, 3rd ed.; Bureau Central de la CIE: Vienna, Austria, 2004. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W. A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J. Lipid Res. 1982, 23, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Xiong, Y.L.; Decker, E.A. Inhibition of protein and lipid oxidation in beef heart surimi-like material by antioxidants and combinations of pH, NaCl, and buffer type in the washing media. J. Agric. Food Chem. 1996, 44, 119–125. [Google Scholar] [CrossRef]
- Vyncke, W. Direct determination of the thiobarbituric acid value in trichloracetic acid extracts of fish as a measure of oxidative rancidity. Fette Seifen Anstrichm. 1970, 72, 1084–1087. [Google Scholar] [CrossRef]
- SAS. SAS/STAT Software; Release 9.1; SAS Institute, Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Tanini, D.; Lupori, B.; Malevolti, G.; Ambrosi, M.; Lo Nostro, P.; Capperucci, A. Direct biocatalysed synthesis of first sulfur-, selenium- and tellurium- containing L-ascorbyl hybrid derivatives with radical trapping and GPx-like properties. Chem. Commun. 2019, 55, 5705–5708. [Google Scholar] [CrossRef] [Green Version]
- Tanini, D.; D’Esopo, V.; Tatini, D.; Ambrosi, M.; Lo Nostro, P.; Capperucci, A. Selenated and sulfurated analogues of triacyl glycerols: Selective synthesis and structural characterization. Chem. Eur. J. 2020, 26, 2719–2725. [Google Scholar] [CrossRef]
- He, Z.; Li, X.; Yang, H.; Wu, P.; Wang, S.; Cao, D.; Guo, X.; Xu, Z.; Gao, J.; Zhang, W.; et al. Effects of oral Vitamin C supplementation on liver health and associated parameters in patients with non-alcoholic fatty liver disease: A randomized clinical trial. Front. Nutr. 2021, 8, 745609. [Google Scholar] [CrossRef]
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-derived natural antioxidants in meat and meat products. Antioxidants 2020, 9, 1215. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, J.; Pérez-Alvarez, J.A.; Aranda-Catalá, V. Effect of mincing degree on colour properties in pork meat. Color Res. Appl. 2000, 25, 376–380. [Google Scholar] [CrossRef]
- Pipek, P.; Staruch, L.; Izumimoto, M. Stabilization of minced meat colour by carbon monoxide. Czech J. Food Sci. 2008, 26, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Dal Bosco, A.; Castellini, C.; Bianchi, L.; Mugnai, C. Effect of dietary α-linolenic acid and vitamin E on the fatty acid composition, storage stability and sensory traits of rabbit meat. Meat Sci. 2004, 66, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Daszkiewicz, T.; Gugołek, A.; Kubiak, D.; Kerbaum, K.; Burczyk, E. The fatty acid profile of meat from New Zealand white rabbits raised under intensive and extensive production systems. Animals 2021, 11, 3126. [Google Scholar] [CrossRef]
- Reitznerová, A.; Šuleková, M.; Nagy, J.; Marcinčák, S.; Semjon, B.; Čertík, M.; Klempová, T. Lipid peroxidation process in meat and meat products: A comparison study of malondialdehyde determination between modified 2-thiobarbituric acid spectrophotometric method and reverse-phase high-performance liquid chromatography. Molecules 2017, 22, 1988. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Holman, B.W.; Ponnampalam, E.N.; Kerr, M.G.; Bailes, K.L.; Kilgannon, A.K.; Hopkins, D.L. Understanding beef flavour and overall liking traits using two different methods for determination of thiobarbituric acid reactive substance (TBARS). Meat Sci. 2019, 149, 114–119. [Google Scholar] [CrossRef]
- Swastike, W.; Suryanto, E.; Rusman; Hanim, C.; Jamhari; Erwanto, Y.; Jumeri. The quality properties, thiobarbituric acid (TBA) values and microstructure of chicken sausage with local red beetroot powder. Food Res. 2021, 5, 113–119. [Google Scholar] [CrossRef]
- Soladoye, O.P.; Juárez, M.L.; Aalhus, J.L.; Shand, P.; Estévez, M. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Compr. Rev. Food Sci. Food Saf. 2015, 14, 106–122. [Google Scholar] [CrossRef]
- Utrera, M.; Estévez, M. Oxidative damage to poultry, pork, and beef during frozen storage through the analysis of novel protein oxidation markers. J. Agric. Food Chem. 2013, 61, 7987–7993. [Google Scholar] [CrossRef]
- Kaźmierczak-Barańska, J.; Boguszewska, K.; Adamus-Grabicka, A.; Karwowski, B.T. Two faces of vitamin C-antioxidative and pro-oxidative agent. Nutrients 2020, 12, 1501. [Google Scholar] [CrossRef] [PubMed]
- Timoshnikov, V.A.; Kobzeva, T.V.; Polyakov, N.E.; Kontoghiorghes, G.J. Redox interactions of vitamin C and iron: Inhibition of the pro-oxidant activity by deferiprone. Int. J. Mol. Sci. 2020, 21, 3967. [Google Scholar] [CrossRef] [PubMed]
Compound | CH (4) a | CH (5) a | CHaHb (6) a |
---|---|---|---|
4.53 (d, J = 2.8 Hz) | 3.89–3.92 (m) | 3.75 (dd, J = 5.6, 8.0 Hz); 3.80 (1H, dd, J = 5.2, 8.0 Hz) | |
2a: 4.80 (bs) | 2a: 5.35–5.40 (m) | 2a: 4.23 (dd, J = 7.2, 11.6 Hz); 4.32 (dd, J = 5.4, 11.6 Hz) | |
2b: 4.80 (d, J = 1.9 Hz) | 2b: 5.35–5.40 (m) | 2b: 4.23 (dd, J = 7.8, 10.9 Hz); 4.33 (dd, J = 5.6, 10.9 Hz) | |
A: 4.90 (d, J = 2.8 Hz) | A: 5.40–5.45 (m) | A: 4.30 (dd, J = 7.2, 11.4 Hz); 4.42 (dd, J = 4.6, 11.4 Hz) | |
B: 4.89 (d, J = 3.2 Hz) | B: 5.38–5.64 (m) | B: 4.30 (dd, J = 7.2, 11.4 Hz); 4.42 (dd, J = 4.6, 11.4 Hz) |
Treatment, T | Storage, S | T | S | T × S | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | DA | DB | 0 | 20 | 40 | 80 | ||||
pH | 6.07 ± 0.01 | 6.07 ± 0.01 | 6.04 ± 0.01 | 6.00 c ± 0.01 | 6.03 b ± 0.01 | 6.09 a ± 0.02 | 6.12 a ± 0.01 | 0.056 | 0.006 | 0.487 |
L* | 48.99 ± 0.44 | 47.94 ± 0.50 | 49.03 ± 0.50 | 50.99 a ± 0.35 | 46.79 b ± 0.61 | 47.74 b ± 0.60 | 47.76 b ± 0.61 | 0.280 | <0.0001 | 0.085 |
a* | 15.25 ± 0.30 | 14.91 ± 0.34 | 14.94 ± 0.34 | 17.24 a ± 0.24 | 16.01 ab ± 0.40 | 15.71 b ± 0.40 | 11.17 c ± 0.41 | 0.999 | <0.0001 | 0.607 |
b* | 5.83 ± 0.17 | 5.84 ± 0.20 | 5.98 ± 0.21 | 6.07 a ± 0.14 | 5.04 b ± 0.24 | 5.85 ab ± 0.24 | 6.57 a ± 0.24 | 0.881 | 0.0002 | 0.028 |
Weight loss | 2.15 ± 0.13 | 2.46 ± 0.15 | 2.59 ± 0.15 | - | 1.83 b ± 0.14 | 2.59 a ± 0.14 | 2.76 a ± 0.14 | 0.076 | 0.0003 | 0.020 |
C | DA | DB | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 20 | 40 | 80 | 0 | 20 | 40 | 80 | 0 | 20 | 40 | 80 | |
b* | 6.07 ± 0.24 ab | 4.81 ± 0.38 b | 5.62 ± 0.40 ab | 6.83 ± 0.39 a | 6.07 ± 0.24 ab | 5.73 ± 0.43 ab | 4.97 ± 0.44 ab | 6.59 ± 0.42 ab | 6.07 ± 0.24 ab | 4.58 ± 0.38 b | 6.98 ± 0.44 a | 6.29 ± 0.43 ab |
Weight loss | - | 1.85 ± 0.22 b | 1.78 ± 0.22 b | 2.81 ± 0.22 ab | - | 1.60 ± 0.25 b | 3.09 ± 0.22 a | 2.64 ± 0.21 ab | - | 2.02 ± 0.21 ab | 2.91 ± 0.22 ab | 2.84 ± 0.25 ab |
Treatment, T | Storage, S | T | S | T × S | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | DA | DB | 0 | 20 | 40 | 80 | ||||
Total lipids | 3.96 ± 0.36 | 3.39 ± 0.40 | 4.41 ± 0.41 | 2.69 ± 0.35 | 4.21 ± 0.48 | 4.52 ± 0.47 | 4.27 ± 0.49 | 0.218 | 0.183 | 0.913 |
C14:0 | 1.96 b ± 0.17 | 2.82 a ± 0.19 | 1.92 b ± 0.18 | 1.98 ± 0.18 | 2.66 ± 0.22 | 2.17 ± 0.22 | 2.11 ± 0.22 | 0.008 | 0.203 | 0.115 |
C15:0 | 0.52 ± 0.01 | 0.51 ± 0.01 | 0.51 ± 0.01 | 0.52 a ± 0.01 | 0.49 b ± 0.01 | 0.49 b ± 0.01 | 0.54 a ± 0.01 | 0.655 | <0.0001 | 0.065 |
C16:0 | 24.65 ± 0.22 | 24.37 ± 0.25 | 24.68 ± 0.23 | 24.12 ± 0.23 | 24.43 ± 0.29 | 24.80 ± 0.28 | 24.91 ± 0.28 | 0.615 | 0.144 | 0.239 |
C16:1n-9 | 0.38 ± 0.01 | 0.38 ± 0.01 | 0.38 ± 0.01 | 0.39 a ± 0.01 | 0.37 b ± 0.01 | 0.37 b ± 0.01 | 0.39 a ± 0.01 | 0.948 | 0.004 | 0.420 |
C16:1n-7 | 0.91 ± 0.03 | 0.96 ± 0.03 | 0.96 ± 0.03 | 1.01 ± 0.03 | 0.89 ± 0.04 | 0.92 ± 0.03 | 0.94 ± 0.04 | 0.479 | 0.086 | 0.563 |
C17:0 | 0.83 ± 0.01 | 0.81 ± 0.01 | 0.82 ± 0.01 | 0.84 ab ± 0.01 | 0.79 b ± 0.01 | 0.80 b ± 0.01 | 0.85 a ± 0.01 | 0.441 | 0.001 | 0.499 |
C18:0 | 7.35 b ± 0.15 | 7.18 b ± 0.16 | 7.76 a ± 0.16 | 7.36 ± 0.16 | 7.25 ± 0.19 | 7.39 ± 0.19 | 7.70 ± 0.19 | 0.049 | 0.388 | 0.654 |
C18:1n-9 | 24.78 ± 0.21 | 24.57 ± 0.23 | 24.83 ± 0.24 | 24.13 b ± 0.22 | 25.20 a ± 0.27 | 25.14 a ± 0.27 | 24.44 ab ± 0.27 | 0.713 | 0.009 | 0.980 |
C18:1n-7 | 1.06 ± 0.04 | 1.05 ± 0.04 | 0.96 ± 0.04 | 1.10 ± 0.04 | 1.02 ± 0.04 | 0.93 ± 0.05 | 1.05 ± 0.05 | 0.178 | 0.068 | 0.148 |
C18:2n-6 | 29.74 ± 0.20 | 29.42 ± 0.22 | 29.48 ± 0.23 | 29.38 ± 0.22 | 29.95 ± 0.22 | 29.80 ± 0.27 | 29.04 ± 0.26 | 0.536 | 0.081 | 0.365 |
C18:3n-3 | 2.57 ± 0.04 | 2.50 ± 0.04 | 2.56 ± 0.04 | 2.50 ± 0.05 | 2.63 ± 0.05 | 2.57 ± 0.05 | 2.49 ± 0.05 | 0.519 | 0.279 | 0.711 |
C20:3n-6 | 0.30 ± 0.02 | 0.31 ± 0.02 | 0.29 ± 0.02 | 0.39 a ± 0.02 | 0.23 b ± 0.03 | 0.26 b ± 0.03 | 0.33 ab ± 0.03 | 0.793 | 0.001 | 0.927 |
C20:4n-6 | 2.72 ± 0.22 | 2.81 ± 0.24 | 2.62 ± 0.22 | 3.69 a ± 0.23 | 2.07 b ± 0.28 | 2.30 b ± 0.29 | 2.81 ab ± 0.28 | 0.850 | 0.000 | 0.928 |
C22:4n-6 | 0.43 ± 0.03 | 0.45 ± 0.03 | 0.43 ± 0.03 | 0.55 a ± 0.03 | 0.37 b ± 0.04 | 0.38 b ± 0.04 | 0.45 ab ± 0.04 | 0.806 | 0.001 | 0.916 |
C22:5n-3 | 0.27 ± 0.02 | 0.27 ± 0.02 | 0.25 ± 0.02 | 0.35 a ± 0.01 | 0.20 b ± 0.01 | 0.23 b ± 0.01 | 0.27 ab ± 0.02 | 0.801 | 0.000 | 0.951 |
SFA | 35.93 ± 0.28 | 36.32 ± 0.31 | 36.30 ± 0.32 | 35.47 ± 0.20 | 36.21 ± 0.36 | 36.25 ± 0.37 | 36.80 ± 0.36 | 0.573 | 0.056 | 0.037 |
MUFA | 27.45 ± 0.21 | 27.31 ± 0.23 | 27.47 ± 0.23 | 26.98 ± 0.22 | 27.81 ± 0.27 | 27.67 ± 0.27 | 27.17 ± 0.27 | 0.861 | 0.079 | 0.976 |
n-6 PUFA | 33.65 ± 0.25 | 33.47 ± 0.27 | 33.28 ± 0.28 | 34.54 a ± 0.27 | 33.03 b ± 0.33 | 33.17 b ± 0.32 | 33.12 b ± 0.32 | 0.619 | 0.002 | 0.104 |
n-3 PUFA | 2.94 ± 0.03 | 2.87 ± 0.04 | 2.92 ± 0.03 | 2.97 ± 0.03 | 2.91 ± 0.04 | 2.89 ± 0.04 | 2.87 ± 0.04 | 0.543 | 0.201 | 0.252 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Secci, G.; Capperucci, A.; de Medeiros, A.C.L.; Pellicciari, L.; Tanini, D.; Parisi, G. Effects of Two Amphiphilic Diesters of L-Ascorbic Acid on the Oxidative Stability of Rabbit Meatballs. Chemistry 2023, 5, 778-788. https://doi.org/10.3390/chemistry5020055
Secci G, Capperucci A, de Medeiros ACL, Pellicciari L, Tanini D, Parisi G. Effects of Two Amphiphilic Diesters of L-Ascorbic Acid on the Oxidative Stability of Rabbit Meatballs. Chemistry. 2023; 5(2):778-788. https://doi.org/10.3390/chemistry5020055
Chicago/Turabian StyleSecci, Giulia, Antonella Capperucci, Adja Cristina Lira de Medeiros, Luca Pellicciari, Damiano Tanini, and Giuliana Parisi. 2023. "Effects of Two Amphiphilic Diesters of L-Ascorbic Acid on the Oxidative Stability of Rabbit Meatballs" Chemistry 5, no. 2: 778-788. https://doi.org/10.3390/chemistry5020055
APA StyleSecci, G., Capperucci, A., de Medeiros, A. C. L., Pellicciari, L., Tanini, D., & Parisi, G. (2023). Effects of Two Amphiphilic Diesters of L-Ascorbic Acid on the Oxidative Stability of Rabbit Meatballs. Chemistry, 5(2), 778-788. https://doi.org/10.3390/chemistry5020055