Phytochemistry, Anti-Tyrosinase, and Anti-Diabetes Studies of Extracts and Chemical Constituents of Dicerothamnus rhinocerotis Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Equipment and Chemical Reagents
2.3. Extraction and Fractionation of the Plant Material
2.4. Anti-Tyrosinase Inhibition Assay
2.5. Alpha-Glucosidase Inhibition Assay
2.6. Alpha-Amylase Inhibition Assay
3. Results and Discussion
3.1. Structural Elucidation of the Isolated Compounds
3.2. Tyrosinase Inhibitory Activities of Fractions and Isolated Compounds
3.3. Alpha-Glucosidase Assay
3.4. Alpha-Amylase Inhibition Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, P. Angiosperm Phylogeny Website. 2001. Available online: http://www.mobot.org/MOBOT/research/APweb/ (accessed on 12 April 2024).
- Jeffrey, C. Compositae: Introduction with key to tribes. Fam. Genera Vasc. Plants 2007, 8, 61–87. [Google Scholar]
- WFO 2024: Asteraceae Giseke. Published on the Internet. Available online: http://www.worldfloraonline.org/taxon/wfo-7000000146 (accessed on 25 June 2024).
- Chiari, M.E.; Joray, M.B.; Ruiz, G.; Palacios, S.M.; Carpinella, M.C. Tyrosinase inhibitory activity of native plants from central Argentina: Isolation of an active principle from Lithrea molleoides. Food Chem. 2010, 120, 10–14. [Google Scholar] [CrossRef]
- Aghraz, A.; Gonçalves, S.; Rodríguez-Solana, R.; Ait Dra, L.; Di Stefano, V.; Dugo, G.; Cicero, N.; Larhsini, M.; Markouk, M.; Romano, A. Antioxidant activity and enzymes’ inhibitory properties of several extracts from two Moroccan Asteraceae species. S. Afr. J. Bot. 2018, 118, 58–64. [Google Scholar] [CrossRef]
- Pool, E.; Klaasen, A.; Shoko, Y. The environmental toxicity of Dicerothamnus rhinocerotis and Galenia africana. Afr. J. Biotechnol. 2009, 8, 4465–4468. [Google Scholar]
- Proksch, P.; Proksch, M.; Rundel, P.; Rodriguez, E. Ecological significance of the chemistry of the leaf resin of Elytropappus rhinocerotis. Biochem. Syst. Ecol. 1982, 10, 49–53. [Google Scholar] [CrossRef]
- Levyns, M. A revision of Elytropappus Cass. S. Afr. J. Bot. 1935, 1, 89–103. [Google Scholar]
- Mitchell-Watt, J.; Breyer-Brandwijk, M. The Medical and Poisonous Plants of Southern and Eastern Africa, 2nd ed.; Livingston: London, UK, 1962; p. 226. [Google Scholar]
- Davids, D.; Gibson, D.; Johnson, Q. Ethnobotanical survey of medicinal plants used to manage high blood pressure and type 2 diabetes mellitus in Bitterfontein, Western Cape Province, South Africa. J. Ethnopharmacol. 2016, 194, 755–766. [Google Scholar] [CrossRef]
- Bremer, K. Asteraceae, Cladistic and Classification; Timber Press, Inc.: Portland, OR, USA, 1994; pp. 435–458. [Google Scholar]
- Wadkar, K.; Magdum, C.; Patil, S.; Naikwade, N. Antidiabetic potential and Indian medicinal plants. J. Herb. Med. Toxicol. 2008, 2, 45–50. [Google Scholar]
- Baena-Díez, J.; Peñafiel, J.; Subirana, I.; Ramos, R.; Elosua, R.; Marín-Ibañez, A.; Guembe, M.; Rigo, F.; Tormo-Díaz, J.; Moreno-Iribas, C.; et al. Risk of cause—Specific death in individuals with diabetes: A competing risks analysis. Diabetes Care 2016, 39, 1987–1995. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation (IDF). Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- Kengne, A.P.; Echouffo-Tcheugui, J.B.; Sobngwi, E. New insights on diabetes mellitus and obesity in Africa-part 1: Prevalence, pathogenesis and comorbidities. Heart 2013, 99, 979–983. [Google Scholar] [CrossRef] [PubMed]
- Peer, N.; Kengne, A.; Motala, A.; Mbanya, J. Diabetes in the Africa Region: An update. Diabetes Res. Clin. Pract. 2014, 103, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Bertram, M.; Jaswal, A.; Van Wyk, V. The Non-Fatal Disease Burden Caused by Type 2 Diabetes in South Africa. Glob. Health Action 2013, 6, 19244. [Google Scholar] [CrossRef] [PubMed]
- Shouip, H. Diabetes mellitus: Signs and symptoms. Open J. Nurs. 2014, 10, 1–9. [Google Scholar]
- America Diabetes Association. Pharmacologic Approaches to Glycemic Treatment. Diabetes Care 2017, 40, S64–S74. [Google Scholar] [CrossRef] [PubMed]
- Keskin, A.; Bilge, U. Mental disorders frequency alternative and complementary medicine usage among patients with hypertension and type 2 diabetes mellitus. Niger. J. Clin. Pract. 2014, 17, 717–722. [Google Scholar] [PubMed]
- Bhalerao, M.; Bolshete, P.; Swar, B.; Bangera, T.; Kolhe, V.; Tambe, M.; Wade, M.; Bhowate, S.; Sonje, U.; Gogtay, N.; et al. Use of and satisfaction with complementary and alternative medicine in four chronic diseases: A cross-sectional study from India. Natl. Med. J. India 2013, 26, 75–78. [Google Scholar] [PubMed]
- Zolghadri, S.; Bahrami, A.; Khan, M.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.; Sathisha, U.; Dharmesh, S.; Rao, A.; Singh, S. Interaction of sesamol (3, 4-methylenedioxyphenol) with tyrosinase and its effect on melanin synthesis. Biochimie 2011, 93, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Chang, T. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef]
- Chai, W.; Wei, M.; Wang, R.; Deng, R.; Zou, Z.; Peng, Y. Avocado Proanthocyanidins as a Source of Tyrosinase Inhibitors: Structure Characterization, Inhibitory Activity, and Mechanism. J. Agric. Food. Chem. 2015, 63, 7381–7387. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Natural products in cosmetics. Nat. Prod. Bioprospect. 2022, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Germishuizen, G.; Meyer, N. Plants of Southern Africa: An annotated Checklist; National Botanical Institute: Pretoria, South Africa, 2003; Volume 14, p. 186. [Google Scholar]
- Dekker, T.; Fourie, T.; Matthee, E.; Snyckers, F.; Van der Schyf, C.; Boeyens, J.; Denner, L. Studies of South African medicinal plants: Pt. 7. Rhinocerotinoic acid: A labdane diterpene with anti-inflammatory properties from Elytropappus rhinocerotis. S. Afr. J. Chem. 1988, 41, 33–35. [Google Scholar]
- Mshengu, B.; Gakuba, E.; Van Heerden, F. Chemical constituents from Elytropappus rhinocerotis (Lf) Less. Biochem. Syst. Ecol. 2017, 75, 18–20. [Google Scholar] [CrossRef]
- Hulley, I.; Van Vuuren, S.; Sadgrove, N.; Van Wyk, B. Antimicrobial activity of Elytropappus rhinocerotis (Asteraceae) against micro-organisms associated with foot odour and skin ailments. J. Ethnopharmacol. 2019, 228, 92–98. [Google Scholar] [CrossRef]
- Yalo, M.; Makhaba, M.; Hussein, A.A.; Sharma, R.; Koki, M.; Nako, N.; Mabusela, W.T. Characterization of Four New Compounds from Protea cynaroides Leaves and Their Tyrosinase Inhibitory Potential. Plants 2022, 11, 1751. [Google Scholar] [CrossRef]
- Yamaki, K.; Mori, Y. Evaluation of a-glucosidase inhibitory activity in colored foods: A trial using slope factors of regression curves. J. Jpn. Soc. Food. Sci. 2006, 53, 229–231. [Google Scholar] [CrossRef]
- Miyazawa, M.; Hisama, M. Antimutagenic activity of flavonoids from Chrysanthemum morifolium. Biosci. Biotechnol. Biochem. 2003, 67, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Kalpoutzakis, E.; Aligiannis, N.; Skaltsounis, A.L.; Mitakou, S. cis-Clerodane type diterpenes from Cistus monspeliensis. J. Nat. Prod. 2003, 66, 316–319. [Google Scholar] [CrossRef]
- Sofrenić, I.; Anđelković, B.; Gođevac, D.; Ivanović, S.; Simić, K.; Ljujić, J.; Tešević, V.; Milosavljević, S. Metabolomics as a Potential Chemotaxonomical Tool: Application on the Selected Euphorbia Species Growing Wild in Serbia. Plants 2023, 12, 262. [Google Scholar] [CrossRef]
- Raya-Gonzalez, D.; Pamatz-Bolanos, T.; Rio-Torres, R.; Martinez-Munoz, R.; Ron-Echeverria, O.; Martinez-Pacheco, M. D-(+)-pinitol, a component of the heartwood of Enterolobium cyclocarpum (Jacq.) Griseb. Z. Naturforschung C 2008, 63, 922–924. [Google Scholar] [CrossRef] [PubMed]
- Mariappan, G.; Sundaraganesan, N.; Manoharan, S. The spectroscopic properties of anticancer drug Apigenin investigated by using DFT calculations, FT-IR, FT-Raman and NMR analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 95, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Flamini, G.; Antognoli, E.; Morelli, I. Two flavonoids and other compounds from the aerial parts of Centaurea bracteata from Italy. Phytochemistry 2001, 57, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, J. Comparative evaluation of phenolic phytochemicals from perilla seeds of diverse species and screening for their tyrosinase inhibitory and antioxidant properties. S. Afr. J. Bot 2019, 123, 341–350. [Google Scholar] [CrossRef]
- Shimmyo, Y.; Kihara, T.; Akaike, A.; Niidome, T.; Sugimoto, H. Flavonols and flavones as BACE-1 inhibitors: Structure–activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim. Biophys. Acta 2008, 1780, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.; Han, J.; Kim, J.; Hwang, J. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol. Pharm. Bull. 2004, 27, 1976–1978. [Google Scholar] [CrossRef] [PubMed]
- Cespedes, C.; Balbontin, C.; Avila, J.; Dominguez, M.; Alarcon, J.; Paz, C.; Burgos, V.; Ortiz, L.; Penaloza-Castro, I.; Seigler, D.; et al. Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves. Food. Chem. Toxicol. 2017, 109, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.; Xiaoqing, C. Structures required of flavonoids for inhibiting digestive enzymes. Anti-Cancer Agents Med. Chem. 2012, 12, 929–939. [Google Scholar]
- Narayanan, C.; Joshi, D.; Mujumdar, A.; Dhekne, V. Pinitol—A new anti-diabetic compound from the leaves of Bougainvillea spectabilis. Curr. Sci. 1987, 56, 139–141. [Google Scholar]
- Abo-Elghiet, F.; Ahmed, A.; Aly, H.; Younis, E.; Rabeh, M.; Alshehri, S.; Alshahrani, K.S.; Mohamed, S. D-Pinitol Content and Antioxidant and Antidiabetic Activities of Five Bougainvillea spectabilis Willd. Cultivars. Pharmaceuticals 2023, 16, 1008. [Google Scholar] [CrossRef]
- Le Nguyen, T.T.; Pham, T.T.; Hansen, P.E.; Nguyen, P.K. In vitro α-glucosidase inhibitory activity of compounds isolated from mangrove Lumnitzera littorea leaves. Sci. Tech. Dev. J. 2019, 106–113. [Google Scholar] [CrossRef]
- Ivorra, M.; D’ocon, M.; Paya, M.; Villar, A. Antihyperglycemic and insulin-releasing effects of beta-sitosterol 3-beta-D-glucoside and its aglycone, beta-sitosterol. Int. Pharmacodyn. Ther. 1988, 296, 224–231. [Google Scholar]
Extracts/Compounds | % Inhibition | IC50 | |
---|---|---|---|
(µg/mL) | µM | ||
DRC (Crude) | 43.41 | 42.2 | |
DRH (Hexane) | 36.26 | 200.1 | |
DRD (DCM) | 40.36 | 35.1 | |
DRE (EtOAc) | 67.87 | 11.6 | |
DRB (BuOH) | 44.04 | 13.7 | |
DRM (crude MeOH) | 50.11 | 57 ± 2.48 | |
1 | nd | - | 1011 |
2 | 12.72 | - | 1552 |
3 | 30.42 | - | 583.3 |
4 | 30.24 | - | 995.6 |
5 | 67.51 | - | 14.58 |
6 | 37.24 | - | 273 |
Kojic acid | 100 | - | 17.26 |
Extracts/Compounds | % Inhibition | Alpha-Glucosidase IC50 (µg/mL) ± SD | % Inhibition | Alpha-Amylase IC50 (µg/mL) ± SD |
---|---|---|---|---|
DRC (Crude) | nd | - | nd | - |
DRH (Hexane) | 6.13 | - | nd | - |
DRD (DCM) | 41.49 | 201.8 ± 2.12 | nd | - |
DRE (EtOAc) | 44.45 | 199.8 ± 2.57 | 3.44 | - |
DRB (BuOH) | 9.33 | - | nd | - |
DRM (crude MeOH) | 53.50 | 198.4 ± 2.48 | 5.59 | - |
1 | 13.88 | - | nd | - |
2 | 3.74 | - | nd | - |
3 | nd | - | nd | - |
4 | 7.05 | - | 0.67 | - |
5 | 94.17 | 83.0 ± 2.16 | 7.04 | - |
6 | 3.86 | - | 28.56 | - |
Acarbose | 63.94 | 130.2 ± 1.84 | 88.86 | 20.25 ± 1.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watti, O.I.; Yalo, M.; Sharma, R.; Makhaba, M.; Hussein, A.A.; Mabusela, W.T. Phytochemistry, Anti-Tyrosinase, and Anti-Diabetes Studies of Extracts and Chemical Constituents of Dicerothamnus rhinocerotis Leaves. Chemistry 2024, 6, 546-554. https://doi.org/10.3390/chemistry6040032
Watti OI, Yalo M, Sharma R, Makhaba M, Hussein AA, Mabusela WT. Phytochemistry, Anti-Tyrosinase, and Anti-Diabetes Studies of Extracts and Chemical Constituents of Dicerothamnus rhinocerotis Leaves. Chemistry. 2024; 6(4):546-554. https://doi.org/10.3390/chemistry6040032
Chicago/Turabian StyleWatti, Olusola Ifedolapo, Masande Yalo, Rajan Sharma, Masixole Makhaba, Ahmed A. Hussein, and Wilfred T. Mabusela. 2024. "Phytochemistry, Anti-Tyrosinase, and Anti-Diabetes Studies of Extracts and Chemical Constituents of Dicerothamnus rhinocerotis Leaves" Chemistry 6, no. 4: 546-554. https://doi.org/10.3390/chemistry6040032
APA StyleWatti, O. I., Yalo, M., Sharma, R., Makhaba, M., Hussein, A. A., & Mabusela, W. T. (2024). Phytochemistry, Anti-Tyrosinase, and Anti-Diabetes Studies of Extracts and Chemical Constituents of Dicerothamnus rhinocerotis Leaves. Chemistry, 6(4), 546-554. https://doi.org/10.3390/chemistry6040032