Dynamic Magnetic Control of Lanthanide Metal–Organic Framework Crystals and Their Polarized Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation
2.3. Characterization
2.4. Magnetic Alignment Experiments
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Bisso, P.W.; Srinivas, R.L.; Kim, J.J.; Swiston, A.J.; Doyle, P.S. Universal process-inert encoding architecture for polymer microparticles. Nat. Mater. 2014, 13, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Deng, R.; Tian, J.; Zong, Y.; Jin, D.; Liu, X. Multicolor Barcoding in a Single Upconversion Crystal. J. Am. Chem. Soc. 2014, 136, 4893–4896. [Google Scholar] [CrossRef] [PubMed]
- Guillou, O.; Daiguebonne, C.; Calvez, G.; Bernot, K. A Long Journey in Lanthanide Chemistry: From Fundamental Crystallogenesis Studies to Commercial Anticounterfeiting Taggants. Acc. Chem. Res. 2016, 49, 844–856. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, C.; He, J.; Cao, Y.; Fang, X.; Chi, X.; Yi, J.; Wu, J.; Guo, Q.; Masoomi, H.; et al. Precisely Encoded Barcodes through the Structure-Fluorescence Combinational Strategy: A Flexible, Robust, and Versatile Multiplexed Biodetection Platform with Ultrahigh Encoding Capacities. Small 2021, 17, 2100315. [Google Scholar] [CrossRef]
- Shikha, S.; Salafi, T.; Cheng, J.; Zhang, Y. Versatile design and synthesis of nano-barcodes. Chem. Soc. Rev. 2017, 46, 7054–7093. [Google Scholar] [CrossRef]
- Zhang, H.; Hua, D.; Huang, C.; Samal, S.K.; Xiong, R.; Sauvage, F.; Braeckmans, K.; Remaut, K.; De Smedt, S.C. Materials and Technologies to Combat Counterfeiting of Pharmaceuticals: Current and Future Problem Tackling. Adv. Mater. 2020, 32, 1905486. [Google Scholar] [CrossRef]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal–Organic Frameworks. Chem. Rev. 2012, 112, 1126–1162. [Google Scholar] [CrossRef]
- Rocha, J.; Carlos, L.D.; Paz, F.A.A.; Ananias, D. Luminescent multifunctional lanthanides-based metal–organic frameworks. Chem. Soc. Rev. 2011, 40, 926–940. [Google Scholar] [CrossRef]
- Pei, K.; Wu, J.; Zhao, M.; Feng, X.; Li, Y.; Ma, Y.; Li, H.; Zhai, T. Polarized Emission of Lanthanide Metal–Organic Framework (Ln-MOF) Crystals for High-Capacity Photonic Barcodes. Adv. Opt. Mater. 2022, 10, 2102143. [Google Scholar] [CrossRef]
- Xiao, F.; Zhang, J.; Gan, J.; Tang, Y.; Cui, Y.; Yu, Y.; Qian, G. Controlled dye release from a metal–organic framework: A new luminescent sensor for water. RSC Adv. 2020, 10, 2722–2726. [Google Scholar] [CrossRef]
- Yang, X.; Lin, X.; Zhao, Y.; Zhao, Y.S.; Yan, D. Lanthanide Metal–Organic Framework Microrods: Colored Optical Waveguides and Chiral Polarized Emission. Angew. Chem. Int. Ed. 2017, 56, 7853–7857. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Zuo, S.; Huang, C.; Tan, Z.; Lu, F.; Liang, Y.; Mo, X.; Lin, T.; Cao, S.; Qiu, J.; et al. Tunable Excitation Polarized Upconversion Luminescence and Reconfigurable Double Anti-Counterfeiting from Er3+ Doped Single Nanorods. Adv. Opt. Mater. 2023, 11, 2301126. [Google Scholar] [CrossRef]
- Mirica, K.A.; Shevkoplyas, S.S.; Phillips, S.T.; Gupta, M.; Whitesides, G.M. Measuring Densities of Solids and Liquids Using Magnetic Levitation: Fundamentals. J. Am. Chem. Soc. 2009, 131, 10049–10058. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.C.; Nemiroski, A.; Mirica, K.A.; Mace, C.R.; Hennek, J.W.; Kumar, A.A.; Whitesides, G.M. Magnetic Levitation in Chemistry, Materials Science, and Biochemistry. Angew. Chem. Int. Ed. 2020, 59, 17810–17855. [Google Scholar] [CrossRef] [PubMed]
- Nemiroski, A.; Soh, S.; Kwok, S.W.; Yu, H.D.; Whitesides, G.M. Tilted Magnetic Levitation Enables Measurement of the Complete Range of Densities of Materials with Low Magnetic Permeability. J. Am. Chem. Soc. 2016, 138, 1252–1257. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Whitesides, G.M. “Axial” Magnetic Levitation Using Ring Magnets Enables Simple Density-Based Analysis, Separation, and Manipulation. Anal. Chem. 2018, 90, 12239–12245. [Google Scholar] [CrossRef]
- Hennek, J.W.; Nemiroski, A.; Subramaniam, A.B.; Bwambok, D.K.; Yang, D.; Harburg, D.V.; Tricard, S.; Ellerbee, A.K.; Whitesides, G.M. Using Magnetic Levitation for Non-Destructive Quality Control of Plastic Parts. Adv. Mater. 2015, 27, 1587–1592. [Google Scholar] [CrossRef]
- Yin, B.; Jia, H.; Wang, H.; Chen, R.; Xu, L.; Zhao, Y.S.; Zhang, C.; Yao, J. Magnetic-Field-Driven Reconfigurable Microsphere Arrays for Laser Display Pixels. ACS Nano 2023, 17, 1187–1195. [Google Scholar] [CrossRef]
- Yin, B.; Jia, H.; Chen, R.; Chang, Q.; Feng, J.; Gao, H.; Wu, Y.; Jiang, L.; Zhang, C. Magnetic Domain Confined Printing of Programmable Organic Microcrystal Assemblies for Information Encryption. Adv. Mater. 2022, 34, 2108279. [Google Scholar] [CrossRef]
- Bharti, B.; Fameau, A.-L.; Rubinstein, M.; Velev, O.D. Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks. Nat. Mater. 2015, 14, 1104–1109. [Google Scholar] [CrossRef]
- Demirörs, A.F.; Pillai, P.P.; Kowalczyk, B.; Grzybowski, B.A. Colloidal assembly directed by virtual magnetic moulds. Nature 2013, 503, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lau, G.C.; Yuan, H.; Aggarwal, A.; Dominguez, V.L.; Liu, S.; Sai, H.; Palmer, L.C.; Sather, N.A.; Pearson, T.J.; et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci. Robot. 2020, 5, eabb9822. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Yin, B.; Chen, J.; Zou, Y.; Wang, H.; Zhang, Y.; Ma, T.; Shi, Q.; Yao, J.; Bai, S.; et al. A Paramagnetic Compass Based on Lanthanide Metal-Organic Framework. Angew. Chem. Int. Ed. 2023, 62, e202309073. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Chen, L.; Yang, D.; Zou, Y.; Wang, H.; Yin, B.; Bai, S.; Zhang, C.; Yao, J. Magnetic Switching of Second-Harmonic Generation from Single Cerium-Based Coordination Polymer Microcrystals. J. Phys. Chem. Lett. 2024, 15, 6728–6735. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhu, G.; Li, Z.; Sun, F.; Yang, Z.; Qiu, S. A lanthanide metal–organic framework with high thermal stability and available Lewis-acid metal sites. Chem. Commun. 2006, 14, 3172–3174. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, Y.; Wang, S.; Su, S.; Zhou, L.; Zhang, H. Combining Coordination Modulation with Acid–Base Adjustment for the Control over Size of Metal–Organic Frameworks. Chem. Mater. 2012, 24, 444–450. [Google Scholar] [CrossRef]
- Donnay, J.D.H.; Harker, D. A new law of crystal morphology extending the law of Bravais. Am. Mineral. 1937, 22, 446–467. [Google Scholar]
- Zhuang, Y.; Chen, D.; Chen, W.; Zhang, W.; Su, X.; Deng, R.; An, Z.; Chen, H.; Xie, R.-J. X-Ray-charged bright persistent luminescence in NaYF4:Ln3+@NaYF4 nanoparticles for multidimensional optical information storage. Light Sci. Appl. 2021, 10, 132. [Google Scholar] [CrossRef]
- Chen, C.; Zhuang, Y.; Li, X.; Lin, F.; Peng, D.; Tu, D.; Xie, A.; Xie, R.-J. Achieving Remote Stress and Temperature Dual-Modal Imaging by Double-Lanthanide-Activated Mechanoluminescent Materials. Adv. Funct. Mater. 2021, 31, 2101567. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, W.; Li, X.; Li, Z.; Lu, S.; Shang, X.; Tan, C.; Hu, P.; Chen, Z.; Chen, X. AIEgen-sensitized lanthanide nanocrystals as luminescent probes for intracellular Fe3+ monitoring. Talanta 2023, 262, 124729. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, P.; Zheng, W.; Song, X.; Shang, X.; Zhang, W.; Yang, D.; Yi, X.; Chen, X. Lanthanide-Doped KMgF3 Upconversion Nanoparticles for Photon Avalanche Luminescence with Giant Nonlinearities. Nano Lett. 2023, 23, 8576–8584. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, K.; Ren, Y.; Wan, S.; Yang, C.; Li, J.; Wang, F.; Chen, C.; Su, J.; Chen, D.; et al. Highly Plasticized Lanthanide Luminescence for Information Storage and Encryption Applications. Adv. Sci. 2022, 9, 2105108. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, L.; Chen, Y.; Liu, Y. Lanthanide Luminescence Supramolecular Switch Based on Photoreactive Ammonium Molybdate. ACS Appl. Mater. Interfaces 2021, 13, 59126–59131. [Google Scholar] [CrossRef] [PubMed]
- Mugiraneza, S.; Hallas, A.M. Tutorial: A beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law. Commun. Phys. 2022, 5, 95. [Google Scholar] [CrossRef]
- Mansuripur, M. Classical Optics and Its Applications; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Jones, T.B. Electromechanics of Particles; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Shi, S.; Sun, L.-D.; Xue, Y.-X.; Dong, H.; Wu, K.; Guo, S.-C.; Wu, B.-T.; Yan, C.-H. Scalable Direct Writing of Lanthanide-Doped KMnF3 Perovskite Nanowires into Aligned Arrays with Polarized Up-Conversion Emission. Nano Lett. 2018, 18, 2964–2969. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Zhang, W.; Schneider, J.; Rogach, A.L.; Chigrinov, V.G.; Kwok, H.-S. Photoaligned Nanorod Enhancement Films with Polarized Emission for Liquid-Crystal-Display Applications. Adv. Mater. 2017, 29, 1701091. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, S.; Xu, B.; Zhang, T.; Chen, S.; Zhang, W.; Sun, X.; Wang, Z.; Wang, X.; Meng, X.; et al. Laterally Engineering Lanthanide-MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angew. Chem. Int. Ed. 2021, 60, 24519. [Google Scholar] [CrossRef]
- Yang, S.; Feng, X.; Xu, B.; Lin, R.; Xu, Y.; Chen, S.; Wang, Z.; Wang, X.; Meng, X.; Gao, Z. Directional Self-Assembly of Facet-Aligned Organic Hierarchical Super-Heterostructures for Spatially Resolved Photonic Barcodes. ACS Nano 2023, 17, 6341–6349. [Google Scholar] [CrossRef]
- Zhuo, M.; He, G.-P.; Wang, X.; Liao, L. Organic superstructure microwires with hierarchical spatial organisation. Nat. Commun. 2021, 12, 2252. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, C.-F.; Mao, X.-R.; Wu, Y.; Yang, J.; Xu, L.; Zhuo, M.; Lin, H.; Zhuo, S.; Wang, X.-D. Oriented Self-Assembly of Hierarchical Branch Organic Crystals for Asymmetric Photonics. J. Am. Chem. Soc. 2023, 145, 9285–9291. [Google Scholar] [CrossRef]
- Cucinotta, G.; Perfetti, M.; Luzon, J.; Etienne, M.; Car, P.-E.; Caneschi, A.; Calvez, G.; Bernot, K.; Sessoli, R. Magnetic Anisotropy in a Dysprosium/DOTA Single-Molecule Magnet: Beyond Simple Magneto-Structural Correlations. Angew. Chem. Int. Ed. 2012, 51, 1606–1610. [Google Scholar] [CrossRef] [PubMed]
- Briganti, M.; Lucaccini, E.; Chelazzi, L.; Ciattini, S.; Sorace, L.; Sessoli, R.; Totti, F.; Perfetti, M. Magnetic Anisotropy Trends along a Full 4f-Series: The fn+7 Effect. J. Am. Chem. Soc. 2021, 143, 8108–8115. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Fan, Q.; Wu, W.; Liang, T.; Liu, Y.; Yu, H.; Yin, Y. Magnetically Tunable One-Dimensional Plasmonic Photonic Crystals. Nano Lett. 2023, 23, 1981–1988. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, J.; Lee, H.J.; Kim, H.; Nam, K.T.; Kim, D.H. Block Copolymer Enabled Synthesis and Assembly of Chiral Metal Oxide Nanoparticle. ACS Nano 2023, 17, 7611–7623. [Google Scholar] [CrossRef] [PubMed]
Name | Eu-MOF |
---|---|
Empirical formula | C21H9EuN3O12 |
Formula weight | 647.27 |
Temperature (K) | 170.00 (10) |
Crystal system | orthorhombic |
Space group | Pbcn |
Cell lengths (Å) | a = 16.9059 (6) |
b = 10.6492 (4) | |
c = 18.4816 (9) | |
Cell angles (°) | α = 90 |
β = 90 | |
γ = 90 | |
Volume (Å3) | 3327.3 (2) |
Z | 4 |
ρcalc (g/cm3) | 1.292 |
μ/mm−1 | 1.935 |
F (000) | 1260.0 |
Rint | 0.0303 |
Rsigma | 0.0330 |
Goodness-of-fit on F2 | 1.087 |
R1 [I >= 2σ (I)] | 0.0498 |
wR2 [I >= 2σ (I)] | 0.0759 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, B.; Jia, H.; Chen, L.; Zhang, S.; Zhang, Y.; Yin, B.; Bai, S.; Zhang, C. Dynamic Magnetic Control of Lanthanide Metal–Organic Framework Crystals and Their Polarized Emissions. Chemistry 2024, 6, 1415-1426. https://doi.org/10.3390/chemistry6060084
Shi B, Jia H, Chen L, Zhang S, Zhang Y, Yin B, Bai S, Zhang C. Dynamic Magnetic Control of Lanthanide Metal–Organic Framework Crystals and Their Polarized Emissions. Chemistry. 2024; 6(6):1415-1426. https://doi.org/10.3390/chemistry6060084
Chicago/Turabian StyleShi, Bojun, Hao Jia, Lingfang Chen, Shuchun Zhang, Yu Zhang, Baipeng Yin, Shuming Bai, and Chuang Zhang. 2024. "Dynamic Magnetic Control of Lanthanide Metal–Organic Framework Crystals and Their Polarized Emissions" Chemistry 6, no. 6: 1415-1426. https://doi.org/10.3390/chemistry6060084
APA StyleShi, B., Jia, H., Chen, L., Zhang, S., Zhang, Y., Yin, B., Bai, S., & Zhang, C. (2024). Dynamic Magnetic Control of Lanthanide Metal–Organic Framework Crystals and Their Polarized Emissions. Chemistry, 6(6), 1415-1426. https://doi.org/10.3390/chemistry6060084