Development and Validation of an HPLC-FLD Method for the Determination of Pyridoxine and Melatonin in Chocolate Formulations—Digestion Simulation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Solutions
2.1.1. Standard Solutions
2.1.2. Stimulated Digestion Fluids
2.2. Instrumentation and Chromatographic Conditions
2.3. Formulation
2.4. Sample Pretreatment
2.5. In Vitro Digestion Method
3. Results and Discussion
3.1. HPLC Method Optimization
3.2. HPLC Method Validation
3.2.1. Specificity
3.2.2. Linearity, Limit of Detection (LOD), and Limit of Quantitation (LOQ)
3.2.3. Precision
3.2.4. Accuracy
3.2.5. Robustness
3.3. Sample Extraction Procedure
3.4. Short-Term Stability Test
3.5. In Vitro Analysis of Digestion for Chocolate-Based Drug Formulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Irwin, M.R. Why Sleep Is Important for Health: A Psychoneuroimmunology Perspective. Annu. Rev. Psychol. 2015, 66, 143–172. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Quantity and Quality of Sleep and Incidence of Type 2 Diabetes. Diabetes Care 2010, 33, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mei, H.; Jiang, Y.-R.; Sun, W.-Q.; Song, Y.-J.; Liu, S.-J.; Jiang, F. Relationship between Duration of Sleep and Hypertension in Adults: A Meta-Analysis. J. Clin. Sleep Med. 2015, 11, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Karaman, S.; Karaman, T.; Dogru, S.; Onder, Y.; Citil, R.; Bulut, Y.E.; Tapar, H.; Sahin, A.; Arici, S.; Kaya, Z.; et al. Prevalence of Sleep Disturbance in Chronic Pain. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2475–2481. [Google Scholar] [PubMed]
- Cappuccio, F.P.; Taggart, F.M.; Kandala, N.-B.; Currie, A.; Peile, E.; Stranges, S.; Miller, M.A. Meta-Analysis of Short Sleep Duration and Obesity in Children and Adults. Sleep. 2008, 31, 619–626. [Google Scholar] [CrossRef]
- Kohyama, J. Which Is More Important for Health: Sleep Quantity or Sleep Quality? Children 2021, 8, 542. [Google Scholar] [CrossRef] [PubMed]
- Haynes, P.L.; Parthasarathy, S.; Kersh, B.; Bootzin, R.R. Examination of Insomnia and Insomnia Treatment in Psychiatric Inpatients. Int. J. Ment. Health Nurs. 2011, 20, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Arroll, B.; Fernando, A.; Falloon, K.; Goodyear-Smith, F.; Samaranayake, C.; Warman, G. Prevalence of Causes of Insomnia in Primary Care: A Cross-Sectional Study. Br. J. Gen. Pract. 2012, 62, e99–e103. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M.; Rahim, M.; Hall, C. The Prevalence and Management of Poor Sleep Quality in a Secondary Care Mental Health Population. J. Clin. Sleep Med. 2015, 11, 111–116. [Google Scholar] [CrossRef]
- Freeman, D.; Sheaves, B.; Waite, F.; Harvey, A.G.; Harrison, P.J. Sleep Disturbance and Psychiatric Disorders. Lancet Psychiatry 2020, 7, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Adventure-Heart, D.J.; Madden, N.A.; Delfabbro, P. Effects of Vitamin B6 (Pyridoxine) and a B Complex Preparation on Dreaming and Sleep. Percept. Mot. Ski. 2018, 125, 451–462. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Wahlqvist, M.L.; Lee, M.-S. Sleep Quality in the Survival of Elderly Taiwanese: Roles for Dietary Diversity and Pyridoxine in Men and Women. J. Am. Coll. Nutr. 2013, 32, 417–427. [Google Scholar] [CrossRef]
- Lemoine, P.; Bablon, J.-C.; Da Silva, C. A Combination of Melatonin, Vitamin B6 and Medicinal Plants in the Treatment of Mild-to-Moderate Insomnia: A Prospective Pilot Study. Complement. Ther. Med. 2019, 45, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr. Neuropharmacol. 2017, 15, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Chen, F.; Li, W.A.; Geng, X.; Li, C.; Meng, X.; Feng, Y.; Liu, W.; Yu, F. A Review of Sleep Disorders and Melatonin. Neurol. Res. 2017, 39, 559–565. [Google Scholar] [CrossRef]
- Saracino, M.A.; Mercolini, L.; Musenga, A.; Bugamelli, F.; Raggi, M.A. Comparison of Analytical Methods for the Quality Control of a New Formulation Containing Soy Extract and Melatonin. J. Sep. Sci. 2008, 31, 1851–1859. [Google Scholar] [CrossRef] [PubMed]
- Cheaburu-Yilmaz, C.N.; Atmaca, K.; Yilmaz, O.; Orhan, H. Development, Characterization, and Evaluation of Potential Systemic Toxicity of a Novel Oral Melatonin Formulation. Pharmaceutics 2024, 16, 871. [Google Scholar] [CrossRef]
- Filali, S.; Bergamelli, C.; Lamine Tall, M.; Salmon, D.; Laleye, D.; Dhelens, C.; Diouf, E.; Pivot, C.; Pirot, F. Formulation, Stability Testing, and Analytical Characterization of Melatonin-Based Preparation for Clinical Trial. J. Pharm. Anal. 2017, 7, 237–243. [Google Scholar] [CrossRef]
- Fourtillan, J.B.; Brisson, A.M.; Gobin, P.; Ingrand, I.; Decourt, J.P.; Girault, J. Bioavailability of Melatonin in Humans after Day-Time Administration of D7 Melatonin. Biopharm. Drug Dispos. 2000, 21, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.T.T.; Tran, P.H.L.; Lee, B.-J. New Findings on Melatonin Absorption and Alterations by Pharmaceutical Excipients Using the Ussing Chamber Technique with Mounted Rat Gastrointestinal Segments. Int. J. Pharm. 2009, 378, 9–16. [Google Scholar] [CrossRef]
- Abosamak, N.R.; Gupta, V. Vitamin B6 (Pyridoxine); StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static In Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Hur, S.J.; Lim, B.O.; Decker, E.A.; McClements, D.J. In Vitro Human Digestion Models for Food Applications. Food Chem. 2011, 125, 1–12. [Google Scholar] [CrossRef]
- Sensoy, I. A Review on the Food Digestion in the Digestive Tract and the Used in Vitro Models. Curr. Res. Food Sci. 2021, 4, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Schachter, M.; Rubin, S.P. Topics in Drug Therapy. In Clinical Pharmacology; Elsevier: Amsterdam, The Netherlands, 2012; pp. 5–28. [Google Scholar] [CrossRef]
- Ismail Iid, I.; Kumar, S.; Shukla, S.; Kumar, V.; Sharma, R. Putative Antidiabetic Herbal Food Ingredients: Nutra/Functional Properties, Bioavailability and Effect on Metabolic Pathways. Trends Food Sci. Technol. 2020, 97, 317–340. [Google Scholar] [CrossRef]
- Ajami, M.; Seyfi, M.; Hosseini, F.A.P.; Naseri, P.; Velayati, A.; Mahmoudnia, F.; Zahedirad, M.; Hajifaraji, M. Effects of Stevia on Glycemic and Lipid Profile of Type 2 Diabetic Patients: A Randomized Controlled Trial. Avicenna J. Phytomed. 2020, 10, 118–127. [Google Scholar] [PubMed]
- Stępień, A.; Tkaczewska, J.; Nowak, N.; Grzebieniarz, W.; Goik, U.; Żmudziński, D.; Jamróz, E. Sugar-Free, Vegan, Furcellaran Gummy Jellies with Plant-Based Triple-Layer Films. Materials 2023, 16, 6443. [Google Scholar] [CrossRef]
- Barford, V. The Rise of the Part-Time Vegans. AMASS 2017, 21, 48. [Google Scholar]
- Hamase, K.; Tomita, T.; Kiyomizu, A.; Zaitsu, K. Determination of Pineal Melatonin by Precolumn Derivatization Reversed-Phase High-Performance Liquid Chromatography and Its Application to the Study of Circadian Rhythm in Rats and Mice. Anal. Biochem. 2000, 279, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Viegas, O.; Esteves, C.; Rocha, J.; Melo, A.; Ferreira, I.M.P.L.V.O. Simultaneous Determination of Melatonin and Trans-Resveratrol in Wine by Dispersive Liquid–Liquid Microextraction Followed by HPLC-FLD. Food Chem. 2021, 339, 128091. [Google Scholar] [CrossRef] [PubMed]
- Talwar, D.; Quasim, T.; McMillan, D.C.; Kinsella, J.; Williamson, C.; O’Reilly, D.S.J. Optimisation and Validation of a Sensitive High-Performance Liquid Chromatography Assay for Routine Measurement of Pyridoxal 5-Phosphate in Human Plasma and Red Cells Using Pre-Column Semicarbazide Derivatisation. J. Chromatogr. B 2003, 792, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Zempleni, J.; Kübler, W. The Utilization of Intravenously Infused Pyridoxine in Humans. Clin. Chim. Acta 1994, 229, 27–36. [Google Scholar] [CrossRef]
- Mohammed, S.H.; Karatepe, M. The New Melatonin Derivative: Synthesis, Characterization, Biological Properties, and Serum Determination by HPLC–UV. Appl. Nanosci. 2023, 13, 2611–2623. [Google Scholar] [CrossRef]
- Rossmann, J.; Christ, S.; Richter, S.; Friedrich Garbade, S.; Friedrich Hoffmann, G.; Opladen, T.; Günther Okun, J. Validated UPLC-MS/MS Method for the Analysis of Vitamin B6 Pyridoxal 5′-Phosphate, Pyridoxal, Pyridoxine, Pyridoxamine, and Pyridoxic Acid in Human Cerebrospinal Fluid. J. Chromatogr. B 2022, 1212, 123503. [Google Scholar] [CrossRef] [PubMed]
- Nùñez-Vergara, L.J.; Squella, J.A.; Sturm, J.C.; Baez, H.; Camargo, C. Simultaneous Determination of Melatonin and Pyridoxine in Tablets by Gas Chromatography-Mass Spectrometry. J. Pharm. Biomed. Anal. 2001, 26, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Sorouraddin, M.-H.; Rashidi, M.-R.; Ghorbani-Kalhor, E.; Asadpour-Zeynali, K. Simultaneous Spectrofluorimetric and Spectrophotometric Determination of Melatonin and Pyridoxine in Pharmaceutical Preparations by Multivariate Calibration Methods. Il Farm. 2005, 60, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Uslu, B.; Özkan, S.A.; Aboul-Enein, H.Y. Spectrophotometric determination of melatonin and pyridoxine HCL in binary mixture using first derivative of the ratio spectra method. Anal. Lett. 2002, 35, 2305–2317. [Google Scholar] [CrossRef]
- Alpar, N.; Pınar, P.T.; Yardım, Y.; Şentürk, Z. Voltammetric Method for the Simultaneous Determination of Melatonin and Pyridoxine in Dietary Supplements Using a Cathodically Pretreated Boron-doped Diamond Electrode. Electroanalysis 2017, 29, 1691–1699. [Google Scholar] [CrossRef]
- Santander, P.; Nuñez-Vergara, L.J.; Sturm, J.C.; Squella, J.A. Voltammetric determination of melatonin and pyridoxine (Vitamin B6) in tablets. Boletín Soc. Chil. Química 2001, 46, 1691–1699. [Google Scholar] [CrossRef]
- Abdine, H.H.; Gazy, A.A.; Abdel-Hay, M.H. Simultaneous Determination of Melatonin–Pyridoxine Combination in Tablets by Zero-Crossing Derivative Spectrophotometry and Spectrofluorimetry. J. Pharm. Biomed. Anal. 1998, 17, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Darwish, H.; Attia, M.; Abdelhameed, A.; Alanazi, A.; Bakheit, A. Comparative ANNs with Different Input Layers and GA-PLS Study for Simultaneous Spectrofluorimetric Determination of Melatonin and Pyridoxine HCl in the Presence of Melatonin’s Main Impurity. Molecules 2013, 18, 974–996. [Google Scholar] [CrossRef] [PubMed]
- Kuchekar, B.; Thakkar, S.V.; Chothe, P.; Shinde, D. Spectrophotometric Estimation of Melatonin & Pyridoxine Hydrochloride in Combined Dosages Forms. Indian J. Pharm. Sci. 2002, 64, 158–160. [Google Scholar]
- Surmeian, M.; Aboul-Enein, H.Y. Simultaneous Analysis of Pyridoxine and Melatonin in Tablet Formulation by Derivative Ultraviolet Spectroscopy. Anal. Lett. 1998, 31, 1731–1741. [Google Scholar] [CrossRef]
- Chen, G.; Ding, X.; Cao, Z.; Ye, J. Determination of Melatonin and Pyridoxine in Pharmaceutical Preparations for Health-Caring Purposes by Capillary Electrophoresis with Electrochemical Detection. Anal. Chim. Acta 2000, 408, 249–256. [Google Scholar] [CrossRef]
- Uslu, B.; Demircigil, B.T.; Ozkan, S.A.; Sentürk, Z.; Aboul-Enein, H.Y. Simultaneous Determination of Melatonin and Pyridoxine in Tablet Formulations by Differential Pulse Voltammetry. Pharmazie 2001, 56, 938–942. [Google Scholar] [PubMed]
- Pranil, T.; Moongngarm, A.; Loypimai, P. Influence of PH, Temperature, and Light on the Stability of Melatonin in Aqueous Solutions and Fruit Juices. Heliyon 2020, 6, e03648. [Google Scholar] [CrossRef]
- ICH. ICH Q2(R2) Guideline on Validation of Analytical Procedures; ICH: Geneva, Switzerland, 2023. [Google Scholar]
- Lister, A.S. 7 Validation of HPLC Methods in Pharmaceutical Analysis. Sep. Sci. Technol. 2005, 6, 191–217. [Google Scholar] [CrossRef]
- Synaridou, M.S.; Morichovitou, A.K.; Markopoulou, C.K. Innovative Pediatric Formulations: Ibuprofen in Chocolate-Coated Honey Core. J. Pharm. Innov. 2020, 15, 404–415. [Google Scholar] [CrossRef]
- Kamaris, G.; Tsami, M.; Lotca, G.-R.; Almpani, S.; Markopoulou, C.K. A Pre-Column Derivatization Method for the HPLC-FLD Determination of Dimethyl and Diethyl Amine in Pharmaceuticals. Molecules 2024, 29, 5535. [Google Scholar] [CrossRef] [PubMed]
- McCormick, D.B. Vitamin B6. In Present Knowledge in Nutrition; Bowman, B.A., Russell, R.M., Eds.; International Life Sciences Institute: Washington, DC, USA, 2006; Volume 1, pp. 269–277. [Google Scholar]
- Al-Kabariti, A.Y.; Arafat, B.T.; Oriquat, G.A.; Možná, P.; Jaidy, H.; Rehmani, A.; Patel, K.; Al-Qinna, N.; Alhnan, M.A. In Vitro and In Vivo Evaluation of Dark Chocolate as Age-Appropriate Oral Matrix. Eur. J. Pharm. Sci. 2024, 192, 106646. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Gao, N.; Lv, H.; Sun, M.; Zhang, P. Controlled Release of Bilayer Tablet Comprising Vitamin B6 Rapid-Release Layer and Melatonin Sustained-Release Layer. Pharm. Sci. Adv. 2023, 1, 100008. [Google Scholar] [CrossRef]
Reference Title | Comments |
---|---|
“Simultaneous determination of melatonin and pyridoxine in tablets by gas chromatography–mass spectrometry” [36] | LODs: 5 ng/mL MEL; 2 ng/mL PYR LOQs: 10 ng/mL MEL; 5 ng/mL PYR Specialized software knowledge is required, time-consuming method, and complex and expensive instrument |
“Simultaneous spectrofluorimetric and spectrophotometric determination of melatonin and pyridoxine in pharmaceutical preparations by multivariate calibration methods” [37] | LODs in FLD: 0.035 μg/mL MEL; 0.075 μg/mL PYR LOQs in FLD: 0.08 μg/mL MEL; 0.12 μg/mL PYR LODs in UV: 0.5 μg/mL MEL; 0.4 μg/mL PYR LOQs in UV: 1.3 μg/mL MEL; 1.2 μg/mL PYR Specialized software knowledge is required. Can only be used if no interfering substances that absorb or fluoresce coexist |
“Simultaneous determination of melatonin–pyridoxine combination in tablets by zero-crossing derivative spectrophotometry and spectrofluorimetry” [41] | LODs in FLD: 287 ng/mL MEL; 42 ng/mL PYR LOQs in FLD: 957 ng/nL MEL; 141 ng/mL PYR LODs in UV derivative: 5.3 ng/mL MEL; 66 ng/mL PYR LOQs in UV derivative: 18 ng/mL MEL; 220 ng/mL PYR Can only be used if no interfering substances that absorb or fluoresce coexist |
“Comparative ANNs with Different Input Layers and GA-PLS Study for Simultaneous Spectrofluorimetric Determination of Melatonin and Pyridoxine HCl in the Presence of Melatonin’s Main Impurity” [42] | Low sensitivity Specialized software knowledge is required Can only be used if no interfering substances that fluoresce coexist |
“Spectrophotometric Estimation of Melatonin and Pyridoxine Hydrochloride in Combined Dosage Forms” [43] | Dynamic range: 1.2–15.6 μg/mL MEL; 12–32 μg/mL PYR |
“Spectrophotometric determination of melatonin and pyridoxine HCl in binary mixture using first derivative of the ratio spectra method” [38] | Dynamic range: 1–30 μg/mL MEL; 1–22 μg/mL PYR LODs: 0.17 μg/mL MEL; 0.12 μg/mL PYR LOQs: 0.55 μg/mL MEL; 0.41 μg/mL PYR |
“Simultaneous Analysis of Pyridoxine and Melatonin in Tablet Formulation by Derivative Ultraviolet Spectroscopy” [44] | Dynamic range: 0.5–3.5 μg/mL MEL; 2–10 μg/mL PYR LODs: 0.05 μg/mL MEL; 0.26 μg/mL PYR |
“Determination of melatonin and pyridoxine in pharmaceutical preparations for health-caring purposes by capillary electrophoresis with electrochemical detection” [45] | Dynamic range: 2.5–1000 μmol/L MEL; 5–1000 μmol/L PYR LODs: 1.3 μmol/L MEL; 2.7 μmol/L PYR Treatment of the electrode |
“Simultaneous determination of melatonin and pyridoxine in tablet formulations by differential pulse voltammetry” [46] | Dynamic range: 20–80 μΜ MEL; 20–400 μΜ PYR LODs: 5.86 μΜ MEL; 2.45 μΜ PYR LOQs: 19.5 μΜ MEL; 8.15 μΜ PYR |
“Voltammetric determination of melatonin and pyridoxine (vitamin B6) in tablets” [40] | Dynamic range: 5–50 μΜ MEL; 5–50 μΜ PYR LODs: 490 nΜ MEL; 185 nΜ PYR LOQs: 860 nΜ MEL; 300 nΜ PYR Chemically modified electrode that its preparation is time-consuming |
“Voltammetric Method for the Simultaneous Determination of Melatonin and Pyridoxine in Dietary Supplements Using a Cathodically Pretreated Boron-doped Diamond Electrode” [39] | Dynamic range: 1–100 μg/mL MEL; 10–175 μg/mL PYR LODs: 0.14 μg/mL MEL; 1.35 μg/mL PYR LOQs: 0.47 μg/mL MEL; 4.49 μg/mL PYR RSDs > 2% Pretreatment of the electrode is required |
Analytes | Concentration Range (ng/mL) | Linear Regression | %y Intercept | Correlation Coefficient | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|---|---|
PYR-HCl | 0.3–9.6 | y = 1387575.43 ± 36854.28 x + 17874.82 ± 202851.86 | 0.1 | 0.999 | 0.09 | 0.29 |
MEL | 3.2–96 | y = 3155.3 ± 113.7 x + 5886.3± 6257.71 | 1.5 | 0.999 | 0.92 | 3.04 |
Analytes | Repeatability | Intermediate Precision | |||||
---|---|---|---|---|---|---|---|
Concentration (ng/mL) | %RSD | Concentration (ng/mL) | %RSD | ||||
1st Day | 2nd Day | 3rd Day | Total | ||||
PYR | 0.32 (n = 5) | 0.57 | 0.32 (n = 5) | 0.57 | 0.77 | 0.96 | 1.32 |
4.8 (n = 3) | 1.47 | 4.8 (n = 3) | 1.47 | 1.97 | 1.84 | 1.88 | |
9.6 (n = 3) | 0.30 | 9.6 (n = 3) | 0.30 | 0.46 | 1.45 | 1.40 | |
MEL | 3.2 (n = 5) | 1.66 | 3.2 (n = 5) | 1.66 | 1.08 | 1.19 | 1.26 |
48 (n = 3) | 1.55 | 48 (n = 3) | 1.55 | 1.55 | 0.87 | 1.59 | |
96 (n = 3) | 1.06 | 96 (n = 3) | 1.06 | 0.89 | 0.61 | 1.01 |
Concertation PYR-HCl (ng/mL) | Found PYR-HCl (ng/mL) | Recovery (%) ±sd (n = 3) | Concertation MEL (ng/mL) | Found MEL (ng/mL) | Recovery (%) ±sd (n = 3) |
---|---|---|---|---|---|
0.32 | 0.324 | 101.3 ± 1.7 | 32 | 32.31 | 101.0 ± 1.9 |
1.92 | 1.916 | 99.8 ± 1.2 | 19.2 | 19.34 | 100.7 ± 1.4 |
5.76 | 5.70 | 99.0 ± 0.9 | 57.6 | 57.89 | 100.5 ± 0.8 |
7.68 | 7.70 | 100.3 ± 0.6 | 76.8 | 76.02 | 99.0 ± 0.9 |
9.6 | 9.55 | 99.5 ± 1.1 | 96 | 96.04 | 100.0 ± 0.6 |
Parameters | %RSD | |||
---|---|---|---|---|
PYR-HCl | MEL | |||
AUC | Tf | AUC | Tf | |
Mobile phase A:B | 1.01 | 1.19 | 0.98 | 1.33 |
(100:0, 99:1, 98:2) | ||||
Flow Rate mL/min | 3.09 | 0.86 | 2.51 | 0.66 |
(1.20, 1.25, 1.15) | ||||
Column T (°C) | 0.56 | 1.86 | 1.14 | 0.18 |
(44, 45, 46) | ||||
λexc/em | 0.74 | 0.36 | 0.97 | 0.60 |
(391/291, 390/290, 289/389 and 601/673, 602/674, 603/675) |
Mixture Components | |||||
Component | Name | Units | Type | Minimum | Maximum |
A | MeOH | mL | Mixture | 0 | 25 |
B | ACN | mL | Mixture | 25 | 50 |
Total = | 50.0 | ||||
Process Factors | |||||
Factor | Name | Units | Type | Minimum | Maximum |
C | Sonic/stirring | min | Numeric | 20.0 | 60.0 |
D | Freezing | h | Numeric | 0.5 | 12.0 |
Responses | |||||
Response | Name | Units | Observations | ||
R1 | B6 | % Recovery | 18 | ||
R2 | Melatonin | % Recovery | 18 |
PYR | MEL | ||||
---|---|---|---|---|---|
Source | F-Value | p-Value | F-Value | p-Value | |
Model | 8.27 | 0.0021 | 3.55 | 0.0423 | |
Linear Mixture | 5.87 | 0.0295 | 3.20 | 0.0952 | |
AB (A–B) | 18.80 | 0.0007 | 7.23 | 0.0176 | |
PYR | MEL | PYR | MEL | ||
Std. Dev. | 2.87 | 3.26 | R2 | 0.6391 | 0.4323 |
Mean | 97.77 | 98.51 | Adjusted R2 | 0.5618 | 0.3106 |
C.V. % | 2.94 | 3.31 | Predicted R2 | 0.4321 | 0.1735 |
Adeq. precision | 7.8434 | 4.8899 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamaris, G.; Mitsiou, V.-P.M.; Chachlioutaki, K.; Almpani, S.; Markopoulou, C.K. Development and Validation of an HPLC-FLD Method for the Determination of Pyridoxine and Melatonin in Chocolate Formulations—Digestion Simulation Study. Chemistry 2025, 7, 14. https://doi.org/10.3390/chemistry7010014
Kamaris G, Mitsiou V-PM, Chachlioutaki K, Almpani S, Markopoulou CK. Development and Validation of an HPLC-FLD Method for the Determination of Pyridoxine and Melatonin in Chocolate Formulations—Digestion Simulation Study. Chemistry. 2025; 7(1):14. https://doi.org/10.3390/chemistry7010014
Chicago/Turabian StyleKamaris, Georgios, Vasiliki-Panagiota M. Mitsiou, Konstantina Chachlioutaki, Sofia Almpani, and Catherine K. Markopoulou. 2025. "Development and Validation of an HPLC-FLD Method for the Determination of Pyridoxine and Melatonin in Chocolate Formulations—Digestion Simulation Study" Chemistry 7, no. 1: 14. https://doi.org/10.3390/chemistry7010014
APA StyleKamaris, G., Mitsiou, V.-P. M., Chachlioutaki, K., Almpani, S., & Markopoulou, C. K. (2025). Development and Validation of an HPLC-FLD Method for the Determination of Pyridoxine and Melatonin in Chocolate Formulations—Digestion Simulation Study. Chemistry, 7(1), 14. https://doi.org/10.3390/chemistry7010014