Stable Fluorenyl Radicals Showing Tunable Doublet Emission
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Synthesis
2.3. General Procedure for Deprotonation and Oxidation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, X.; Zhang, Z.; Yang, Y.; Li, S.; Lee, C.-S. Organic Radical Materials in Biomedical Applications: State of The Art and Perspectives. Exploration 2022, 2, 20210264. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.X.; Li, Y.; Huang, F. Persistent and Stable Organic Radicals: Design, Synthesis, and Applications. Chem 2021, 7, 288–332. [Google Scholar] [CrossRef]
- Ratera, I.; Veciana, J. Playing with Organic Radicals as Building Blocks for Functional Molecular Materials. Chem. Soc. Rev. 2012, 41, 303–349. [Google Scholar] [CrossRef] [PubMed]
- Guin, J.; De Sarkar, S.; Grimme, S.; Studer, A. Biomimetic Carbene-catalyzed Oxidations of Aldehydes Using TEMPO. Angew. Chem. Int. Ed. 2008, 47, 8727–8730. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Kawamata, Y.; Maruoka, K. An Organic Thiyl Radical Catalyst for Enantioselective Cyclization. Nat. Chem. 2014, 6, 702–705. [Google Scholar] [CrossRef]
- De Nooy, A.E.J.; Besemer, A.C.; van Bekkum, H. On the Use of Stable Organic Nitroxyl Radicals for the Oxidation of Primary and Secondary Alcohols. Synthesis 1996, 10, 1153–1176. [Google Scholar] [CrossRef]
- Ji, L.; Shi, J.; Wei, J.; Yu, T.; Huang, W. Air-Stable Organic Radicals: New-Generation Materials for Flexible Electronics? Adv. Mater. 2020, 32, 1908015. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, X.; Harbuzaru, A.; Wang, L.; Wang, Y.; Changwoo, K.; Guo, H.; Shi, Y.; Chen, J.; Sun, H.; et al. Stable Organic Diradicals Based on Fused Quinoidal Oligothiophene Imides with High Electrical Conductivity. J. Am. Chem. Soc. 2020, 142, 4329–4340. [Google Scholar] [CrossRef]
- Hou, X.; Geng, K.; Li, J.; Wu, S.; Wu, J. Dibenzylidene-s-indacenetetraone Linked n-Type Semiconducting Covalent Organic Framework via Aldol Condensation. ACS Mater. Lett. 2022, 4, 1154–1159. [Google Scholar] [CrossRef]
- Phan, H.; Herng, T.S.; Wang, D.; Li, X.; Zeng, W.; Ding, J.; Loh, K.P.; Wee, A.T.S.; Wu, J. Room-Temperature Magnets Based on 1,3,5-Triazine-Linked Porous Organic Radical Frameworks. Chem 2019, 5, 1223–1234. [Google Scholar] [CrossRef]
- Lu, X.; Lee, S.; Kim, J.O.; Gopalakrishna, T.; Phan, H.; Herng, T.S.; Lim, Z.L.; Zeng, Z.; Ding, J.; Kim, D.; et al. Stable 3,6-Linked Fluorenyl Radical Oligomers with Intramolecular Antiferromagnetic Coupling and Polyradical Characters. J. Am. Chem. Soc. 2016, 138, 13048–13058. [Google Scholar] [CrossRef]
- Mahmood, J.; Park, J.; Shin, D.; Choi, H.; Seo, J.; Yoo, J.W.; Baek, J. Organic Ferromagnetism: Trapping Spins in the Glassy State of an Organic Network Structure. Chem 2018, 4, 2357–2369. [Google Scholar] [CrossRef]
- Ai, X.; Evans, E.; Dong, S.; Gillett, A.; Guo, H.; Chen, Y.; Hele, T.; Friend, R.; Li, F. Efficient Radical-based Light-emitting Diodes with Doublet Emission. Nature 2018, 563, 536–540. [Google Scholar] [CrossRef]
- Abdurahman, A.; Peng, Q.; Ablikim, O.; Ai, X.; Li, F. A Radical Polymer with Efficient Deep-red Luminescence in The Condensed State. Mater. Horiz. 2019, 6, 1265–1270. [Google Scholar] [CrossRef]
- Rugg, B.; Krzyaniak, M.; Phelan, B.; Ratner, M.; Young, R.; Wasielewski, M. Photodriven Quantum Teleportation of An Electron Spin State in A Covalent Donor–Acceptor–Radical system. Nat. Chem. 2019, 11, 981–986. [Google Scholar] [CrossRef]
- Abdurahman, A.; Hele, T.; Gu, Q.; Zhang, J.; Peng, Q.; Zhang, M.; Friend, R.; Li, F.; Evans, E. Understanding The Luminescent Nature of Organic Radicals for Efficient Doublet Emitters and Pure-red Light-emitting Diodes. Nat. Mater. 2020, 19, 1224–1229. [Google Scholar] [CrossRef] [PubMed]
- Ballester, M.; de la Fuente, G. Synthesis and Isolation of A Perchlorotriphenylcarbanion Salt. Tetrahetron Lett. 1970, 11, 4509–4510. [Google Scholar] [CrossRef]
- Ballester, M.; Riera-Figueras, J.; Castaner, J.; Badfa, C.; Monso, J. Inert Carbon Free Radicals. I. Perchlorodiphenylmethyl and Perchlorotriphenylmethyl Radical Series. J. Am. Chem. Soc. 1971, 93, 2215–2225. [Google Scholar] [CrossRef]
- Fox, M.A.; Gaillard, E.; Chen, C.C. Photochemistry of Stable Free Radicals: The Photolysis of Perchlorotriphenylmethyl Radicals. J. Am. Chem. Soc. 1987, 109, 7088–7094. [Google Scholar] [CrossRef]
- Armet, O.; Veciana, J.; Rovira, C.; Riera, J.; Castaner, J.; Molins, E.; Rius, J.; Miravitlles, C.; Olivella, S.; Brichfeus, J. Inert Carbon Free Radicals. 8. Polychlorotriphenylmethyl Radicals: Synthesis, Structure, and Spin-density Distribution. J. Phys. Chem. 1987, 91, 5608–5616. [Google Scholar] [CrossRef]
- Gamero, V.; Velasco, D.; Latorre, S.; López-Calahorra, F.; Brillas, E.; Juliá, L. [4-(N-Carbazolyl)-2,6-dichlorophenyl]bis(2,4,6-trichlorophenyl)methyl Radical An Efficient Red Light-emitting Paramagnetic Molecule. Tetrahedron Lett. 2006, 47, 2305–2309. [Google Scholar] [CrossRef]
- Peng, Q.; Obolda, A.; Zhang, M.; Li, F. Organic Light-Emitting Diodes Using a Neutral π Radical as Emitter: The Emission from a Doublet. Angew. Chem. Int. Ed. 2015, 54, 7091–7095. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xu, W.; Ma, H.; Ma, H.; Obolda, A.; Yan, W.; Dong, S.; Zhang, M.; Li, F. Novel Luminescent Benzimidazole-Substituent Tris(2,4,6-trichlorophenyl)methyl Radicals: Photophysics, Stability, and Highly Efficient Red-Orange Electroluminescence. Chem. Mater. 2017, 29, 6733–6739. [Google Scholar] [CrossRef]
- Ai, X.; Chen, Y.; Feng, Y.; Li, F. A Stable Room-Temperature Luminescent Biphenylmethyl Radical. Angew. Chem. Int. Ed. 2018, 57, 2869–2873. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Abdurahman, A.; Ai, X.; Li, F. Stable Luminescent Radicals and Radical-Based LEDs with Doublet Emission. CCS Chem. 2020, 2, 1129–1145. [Google Scholar] [CrossRef]
- Hattori, Y.; Kusamoto, T.; Nishihara, H. Luminescence, Stability, and Proton Response of an Open-Shell (3,5-Dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl Radical. Angew. Chem. Int. Ed. 2014, 44, 11845–11848. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Kusamoto, T.; Nishihara, H. Enhanced Luminescent Properties of an Open-Shell (3,5-Dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl Radical by Coordination to Gold. Angew. Chem. Int. Ed. 2015, 54, 3731–3734. [Google Scholar] [CrossRef]
- Kimura, S.; Tanushi, A.; Kusamoto, T.; Kochi, S.; Sato, T.; Nishihara, H. A Luminescent Organic Radical With Two Pyridyl Groups: High Photostability and Dual Stimuli-responsive Properties, With Theoretical Analyses of Photophysical Processes. Chem. Sci. 2018, 9, 1996–2007. [Google Scholar] [CrossRef]
- Kimura, S.; Uejima, M.; Ota, W.; Sato, T.; Nishihara, H.; Kusamoto, T. An Open-shell, Luminescent, Two-Dimensional Coordination Polymer with a Honeycomb Lattice and Triangular Organic Radical. J. Am. Chem. Soc. 2021, 143, 4329–4338. [Google Scholar] [CrossRef]
- Kimura, S.; Matsuoka, R.; Kimura, S.; Nishihara, H.; Kusamoto, T. Radical-Based Coordination Polymers as a Platform for Magnetoluminescence. J. Am. Chem. Soc. 2021, 143, 5610–5615. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wu, S.; Xu, D.; Tu, L.; Xie, Y.; Pasqués-Gramage, P.; Boj, P.G.; Díaz-García, M.A.; Li, F.; Wu, J.; et al. Stable Xanthene Radicals and Their Heavy Chalcogen Analogues Showing Tunable Doublet Emission from Green to Near-infrared. Angew. Chem. Int. Ed. 2024, 63, e202418762. [Google Scholar]
- Ballester, M.; Castañer, J.; Riera, J.; Pujadas, J.; Armet, O.; Onrubia, C.; Rio, J.A. Inert Carbon Free Radicals. 5. Perchloro-9-phenylfluorenyl Radical Series. J. Org. Chem. 1984, 49, 770–778. [Google Scholar] [CrossRef]
- Ballester, M.; Castañer, J.; Pujadas, J. Perchloro-9-phenylfluorenyl, A Remarkably Stable Carbon Free Radical. Tetrahedron Lett. 1971, 12, 1699–1702. [Google Scholar] [CrossRef]
- Abdurahman, A.; Wang, J.; Zhao, Y.; Li, P.; Shen, L.; Peng, Q. A Highly Stable Organic Luminescent Diradical. Angew. Chem. Int. Ed. 2023, 62, e202300772. [Google Scholar] [CrossRef]
- Liu, C.-H.; He, Z.; Ruchlin, C.; Che, Y.; Somers, K.; Perepichka, D.F. Thiele’s Fluorocarbons: Stable Diradicaloids with Efficient Visible-to-Near-Infrared Fluorescence from a Zwitterionic Excited State. J. Am. Chem. Soc. 2023, 145, 15702–15707. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Arnold, M.E.; Blinder, R.; Zolg, J.; Wischnat, J.; van Slageren, J.; Jelezko, F.; Kuehne, A.J.C.; von Delius, M.A. A Stable Chichibabin Diradicaloid with Near-Infrared Emission. Angew. Chem. Int. Ed. 2024, 63, e202404853. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, K.; He, L.; Wang, W.; Lai, W.; Yang, Y.; Dong, Y.; Xie, S.; Yuan, L.; Zeng, Z. Sulfone-Functionalized Chichibabin’s Hydrocarbons: Stable Diradicaloids with Symmetry Breaking Charge Transfer Contributing to NIR Emission beyond 900 nm. J. Am. Chem. Soc. 2024, 146, 6763–6772. [Google Scholar] [CrossRef]
- Viehe, H.G.; Janousek, Z.; Merényi, R.; Stella, L. The Captodative Effect. Acc. Chem. Res. 1985, 18, 148–154. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision A.2; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Guo, H.; Peng, Q.; Chen, X.K.; Guo, Q.; Dong, S.; Evans, E.; Gillett, A.; Ai, X.; Zhang, M.; Credgington, D.; et al. High Stability and Luminescence Efficiency in Donor–acceptor Neutral Radicals Not Following The Aufbau Principle. Nat. Mater. 2019, 18, 977–984. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Xu, T.; Zhu, J.; Wu, S.; Wu, J. Stable Fluorenyl Radicals Showing Tunable Doublet Emission. Chemistry 2025, 7, 21. https://doi.org/10.3390/chemistry7010021
Hou X, Xu T, Zhu J, Wu S, Wu J. Stable Fluorenyl Radicals Showing Tunable Doublet Emission. Chemistry. 2025; 7(1):21. https://doi.org/10.3390/chemistry7010021
Chicago/Turabian StyleHou, Xudong, Tingting Xu, Jun Zhu, Shaofei Wu, and Jishan Wu. 2025. "Stable Fluorenyl Radicals Showing Tunable Doublet Emission" Chemistry 7, no. 1: 21. https://doi.org/10.3390/chemistry7010021
APA StyleHou, X., Xu, T., Zhu, J., Wu, S., & Wu, J. (2025). Stable Fluorenyl Radicals Showing Tunable Doublet Emission. Chemistry, 7(1), 21. https://doi.org/10.3390/chemistry7010021