Zeolite Synthesized from Solid Waste for Eco-System Remediation: Selective Adsorption in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Synthesis of Na-A Zeolites from Industrial Solid Wastes
2.3. Adsorption Experiments
2.4. Characterizations
3. Results and Discussion
3.1. Characterization of the Fly Ashes
3.2. Characterization of the Zeolites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbosa, F.O.; de Souza, D.M.T.; Campos, G.O.; de Almeida Carvalho, A.L.F.; de Oliveira, B.M.; Caminha, G.C.; de Araújo, L.V.; de Almeida, C.F. Portfólio de patentes em tecnologias nucleares e outras tecnologias competitivas da CNEN com foco na sustentabilidade/CNEN’s patent portfolio on nuclear and other competitive technologies with a focus on sustainability. Braz. J. Dev. 2021, 7, 187–210. [Google Scholar] [CrossRef]
- ReliefWeb. Climate Change and Nuclear Power 2022: Securing Clean Energy for Climate Resilience—World. Available online: https://reliefweb.int/report/world/climate-change-and-nuclear-power-2022-securing-clean-energy-climate-resilience (accessed on 26 October 2023).
- Kumari, S.; Chowdhry, J.; Kumar, M.; Chandra Garg, M. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects. Environ. Res. 2024, 260, 119782. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, M.; Yan, W.; Yu, J. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chem. Sci. 2023, 14, 1935–1959. [Google Scholar] [CrossRef] [PubMed]
- Derbe, T.; Temesgen, S.; Bitew, M. A Short Review on Synthesis, Characterization, and Applications of Zeolites. Adv. Mater. Sci. Eng. 2021, 2021, 6637898. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, T.; Lv, Y.; Jing, T.; Gao, X.; Gu, Z.; Li, S.; Ao, H.; Fang, D. Recent Progress on the Synthesis and Applications of Zeolites from Industrial Solid Wastes. Catalysts 2024, 14, 734. [Google Scholar] [CrossRef]
- Murukutti, M.K.; Jena, H. Synthesis of nano-crystalline zeolite-A and zeolite-X from Indian coal fly ash, its char-acterization and performance evaluation for the removal of Cs+ and Sr2+ from simulated nuclear waste. J. Hazard. Mater. 2022, 423, 127085. [Google Scholar] [CrossRef]
- Nasser, G.A.; Muraza, O.; Nishitoba, T.; Malaibari, Z.; Yamani, Z.H.; Al-Shammari, T.K.; Yokoi, T. Microwave-Assisted Hydrothermal Synthesis of CHA Zeolite for Methanol-to-Olefins Reaction. Ind. Eng. Chem. Res. 2019, 58, 60–68. [Google Scholar] [CrossRef]
- Park, J.W.; Kim, S.S.; Lee, W.K.; Lee, C.H. Optimization of crystallization parameters for synthesis of zeolitic materials from coal fly ash using fusion/hydrothermal method. Mol. Cryst. Liq. 2020, 704, 136–144. [Google Scholar] [CrossRef]
- Panitchakarn, P.; Laosiripojana, N.; Viriya-umpikul, N.; Pavasant, P. Synthesis of high-purity Na-A and Na-X zeolite from coal fly ash. J. Air Waste Manag. Assoc. 2014, 64, 586–596. [Google Scholar] [CrossRef]
- Kotova, O.B.; Shabalin, I.L.; Shushkov, D.A.; Kocheva, L.S. Hydrothermal synthesis of zeolites from coal fly ash. Adv. Appl. Ceram. 2016, 115, 152–157. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, R.; Liu, Q.; Cao, Q.; Guo, R. Synthesis of zeolite A from fly ash and its application in the slow release of urea. Waste Manag. 2023, 158, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Z.; Yi, H.; Tang, X.; Cheng, H.; Yu, Q. Synthesis and application prospect of small-pore zeolites in vehicle exhaust purification. Fuel 2023, 348, 128577. [Google Scholar] [CrossRef]
- Ybañez, Q.; Sanchez, P.; Buladaco, M.S., II; Rosales, J.E. Synthesis and Characterization of Nanozeolite from Sugarcane Bagasse Ash and Its Nutrient Loading Potential. Philipp. Agric. Sci. 2022, 105, 317–324. [Google Scholar] [CrossRef]
- Belviso, C. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Prog. Energy Combust. Sci. 2018, 65, 109–135. [Google Scholar] [CrossRef]
- Zou, Q.; Lin, W.; Xu, D.; Wu, S.; Mondal, A.K.; Huang, F. Study the effect of zeolite pore size and acidity on the catalytic pyrolysis of Kraft lignin. Fuel Process Technol. 2022, 237, 107467. [Google Scholar] [CrossRef]
- de Carvalho Izidoro, J.; Fungaro, D.A.; Cataldo, E. Zeolites synthesized from agro-industrial residues applied in agriculture: A review and future prospects. Soil. Use Manag. 2024, 40, e13003. [Google Scholar] [CrossRef]
- Izidoro, J.d.C.; Fungaro, D.A.; Abbott, J.E.; Wang, S. Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel 2013, 103, 827–834. [Google Scholar] [CrossRef]
- Izidoro, J.d.C.; Fungaro, D.A.; dos Santos, F.S.; Wang, S. Characteristics of Brazilian coal fly ashes and their syn-thesized zeolites. Fuel Process Technol. 2012, 97, 38–44. [Google Scholar] [CrossRef]
- de Carvalho Izidoro, J.; Kim, M.C.; Bellelli, V.F.; Pane, M.C.; Botelho Junior, A.B.; Espinosa, D.C.R.; Soares Tenório, J.A. Synthesis of zeolite A using the waste of iron mine tailings dam and its application for industrial effluent treatment. J. Sustain. Min. 2019, 18, 277–286. [Google Scholar] [CrossRef]
- Izidoro, J.; Castanho, D.; Rossati, C.; Fungaro, D.; Guilhen, S.; Nogueira, T.; De Fátima Andrade, M. Application of high-purity zeolite a synthesized from different coal combustion by-products in carbon dioxide capture. Int. J. Envirion. Manag. Mit. Rec. 2019, 2, 215–228. [Google Scholar] [CrossRef]
- Patel, H. Environmental valorisation of bagasse fly ash: A review. RSC Adv. 2020, 10, 31611–31621. [Google Scholar] [CrossRef]
- Praipipat, P.; Ngamsurach, P.; Roopkhan, N. Zeolite A powder and beads from sugarcane bagasse fly ash modified with iron(III) oxide-hydroxide for lead adsorption. Sci. Rep. 2023, 13, 1873. [Google Scholar] [CrossRef]
- Praipipat, P.; Ngamsurach, P.; Sanghuayprai, A. Modification of sugarcane bagasse with iron(III) oxide-hydroxide to improve its adsorption property for removing lead(II) ions. Sci. Rep. 2023, 13, 1467. [Google Scholar] [CrossRef]
- Tian, Q.; Sasaki, K. Application of fly ash-based materials for stabilization/solidification of cesium and strontium. Environ. Sci. Pol. Res. 2019, 26, 23542–23554. [Google Scholar] [CrossRef]
- Mozgawa, W.; Król, M.; Dyczek, J.; Deja, J. Investigation of the coal fly ashes using IR spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 132, 889–894. [Google Scholar] [CrossRef]
- Smith, J.V.; Dowell, L.G. Revised crystal structure of dehydrated Na-Type A zeolite. Z. Kristallogr. Cryst. Mater. 1968, 126, 135–142. [Google Scholar] [CrossRef]
- Król, M.K.; Jeleń, P. The Effect of Heat Treatment on the Structure of Zeolite A. Materials 2021, 14, 4642. [Google Scholar] [CrossRef]
- Titus, M. Preparation, Characterization and Modeling of Zeolite NaA Membranes for the Pervaporation Dehydration of Alcohol Mixtures. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2006. [Google Scholar]
- Vegere, K.; Kravcevica, R.; Krauklis, A.E.; Juhna, T. Comparative study of hydrothermal synthesis routes of zeolite A. Mater. Today Proc. 2020, 33, 1984–1987. [Google Scholar] [CrossRef]
- Koshlak, H. Synthesis of Zeolites from Coal Fly Ash Using Alkaline Fusion and Its Applications in Removing Heavy Metals. Materials 2023, 16, 4837. [Google Scholar] [CrossRef]
- Al Ezzi, A.; Ma, H. Equilibrium adsorption isotherm mechanism of water vapor on zeolites 3A, 4A, X, and Y. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Tampa, FL, USA, 3–9 November 2017; p. 6. [Google Scholar] [CrossRef]
- Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122, 17647–17695. [Google Scholar] [CrossRef]
Sample | SiO2 | Al2O3 | Fe2O3 | CaO | Na2O | K2O | Other | L.O.I. * | Si/Al |
---|---|---|---|---|---|---|---|---|---|
CFA | 47.8 | 24.5 | 6.0 | 11.7 | - | 2.8 | 5.5 | 2.0 | 1.95 |
SCBA | 83.7 | 4.8 | 5.8 | - | - | - | 3.5 | 2.0 | 17.43 |
STD-4A | 34.4 | 30.7 | 0.0 | 0.0 | 13.6 | - | 0.0 | 21.3 | 1.12 |
ZCFA | 35.4 | 29.8 | 3.7 | 4.8 | 10.2 | - | 1.8 | 14.2 | 1.19 |
ZSCBA | 33.2 | 31.3 | 1.6 | 0.1 | 17.4 | - | 0.6 | 15.8 | 1.06 |
Sample | SBET (m2/g) | CEC (meq·g−1) | Cs2O (wt%) * |
---|---|---|---|
STD-4A | 255 [29] | 3.14 | 27.9 |
ZCFA | 193 | 3.15 | 26.0 |
ZSCBA | 212 | 2.31 | 33.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, M.S.; Costa-Silva, D.; Izidoro, J.C.; Fungaro, D.A.; Castanho, S.M. Zeolite Synthesized from Solid Waste for Eco-System Remediation: Selective Adsorption in Wastewater. Chemistry 2025, 7, 3. https://doi.org/10.3390/chemistry7010003
Araujo MS, Costa-Silva D, Izidoro JC, Fungaro DA, Castanho SM. Zeolite Synthesized from Solid Waste for Eco-System Remediation: Selective Adsorption in Wastewater. Chemistry. 2025; 7(1):3. https://doi.org/10.3390/chemistry7010003
Chicago/Turabian StyleAraujo, Mariana S., Danilo Costa-Silva, Juliana C. Izidoro, Denise A. Fungaro, and Sonia Mello Castanho. 2025. "Zeolite Synthesized from Solid Waste for Eco-System Remediation: Selective Adsorption in Wastewater" Chemistry 7, no. 1: 3. https://doi.org/10.3390/chemistry7010003
APA StyleAraujo, M. S., Costa-Silva, D., Izidoro, J. C., Fungaro, D. A., & Castanho, S. M. (2025). Zeolite Synthesized from Solid Waste for Eco-System Remediation: Selective Adsorption in Wastewater. Chemistry, 7(1), 3. https://doi.org/10.3390/chemistry7010003