Phloretin–Chitosan Nanoparticles and Tamoxifen: Synergistic Modulation of BRCA Genes and Enhanced Sensitization in Breast Cancer
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Materials
2.2. Synthesis of Ph-ChNPs
2.3. Entrapment Efficiency
2.4. Characterization of Ph-ChNPs
2.4.1. UV-VIS Absorption Spectra
2.4.2. Transmission Electron Microscope of Ph-ChNPs
2.4.3. Particle Size and Zeta Potential of Ph-ChNPs
2.4.4. Infrared Spectra (FTIR) of Ph-ChNPs
2.5. In Vitro Cytotoxicity on Cancer Cells
2.6. Estimation of the LD50 of Ph-ChNPs
2.6.1. Mouse Acclimation
2.6.2. LD50 Determination
2.7. Biochemical Investigations
2.7.1. Plasma Metabolic Parameters Assays
2.7.2. Breast Tissue Investigations
Antioxidant Enzymes and Tumor Biomarker Assays
Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)
2.8. Histological Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Characterization of Phloretin–Chitosan Nanoparticles (Ph-ChNPs)
3.1.1. UV Absorption Spectra
3.1.2. Morphology, Particle Size and Zeta Potential of Ph-ChNPs
3.1.3. FTIR Spectroscopy
3.2. Cell Viability Evaluation
3.3. Determination of LD50 of Ph-ChNPs
between adjacent groups; d = dose interval.
3.4. Effect of Ph-ChNPs and Tamoxifen on Plasma TC, TG and HDL-c in Treated Mice
3.5. Biomarkers Assays in Breast Tissues
3.5.1. Antioxidant Enzymes (SOD and CAT) Reduced Glutathione (GSH) and Malondialdehyde (MDA) Evaluation
3.5.2. Apoptotic and Inflammatory Biomarkers in Breast Tissue of Treated Mice
3.5.3. Tumor Marker Assay in Treated Mice
3.5.4. Gene Expression in Treated Mice
3.6. Histological Alteration of Breast Tissues of Different Treated Mice Groups
Limitations of the Current Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Breast Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 13 March 2024).
- Yin, S.Y.; Wei, W.C.; Jian, F.Y.; Yang, N.S. Therapeutic applications of herbal medicines for cancer patients. Evid. Based Complement. Altern. Med. 2013, 2013, 302426. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ang, E.; Ang, W.H.D.; Lopez, V. Losing the breast: A meta-synthesis of the impact in women breast cancer survivors. Psychooncology 2018, 27, 376–385. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Association. Chemotherapy for Breast Cancer. Available online: https://www.cancer.org/content/dam/CRC/PDF/Public/8581.00.pdf (accessed on 27 October 2021).
- Cancer Research UK. Chemotherapy for Breast Cancer. Available online: https://www.cancerresearchuk.org/about-cancer/breast-cancer/treatment/chemotherapy (accessed on 11 July 2023).
- Andreani, T.; Cheng, R.; Elbadri, K.; Ferro, C.; Menezes, T.; Santos, M.; Pereira, C.; Santos, H. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Deliv. Transl. Res. 2024, 14, 2845–2916. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Saha, P.; Dey, S.; Sinha, D. Natural Products as Chemosensitizers for Adjunct Therapy in Cancer Management. In Pharmacotherapeutic Botanicals for Cancer Chemoprevention; Kumar, M., Sharma, A., Kumar, P., Eds.; Springer: Singapore, 2020. [Google Scholar]
- Tang, Y.; Wang, Y.; Kiani, M.F.; Wang, B. Classification, treatment strategy, and associated drug resistance in breast cancer. Clin. Breast Cancer 2016, 16, 335–343. [Google Scholar] [CrossRef]
- Mao, Y.; Keller, E.T.; Garfield, D.H.; Shen, K.; Wang, J. Stromal cells and tumor microenvironment and breast cancer. Cancer Metastasis Rev. 2013, 32, 303–315. [Google Scholar] [CrossRef]
- Van der Spek, Y.M.; Kroep, J.R.; Tollenaar, R.A.E.M.; Mesker, W.E. Chemotherapy resistance and stromal targets in breast cancer treatment: A review. Mol. Biol. Rep. 2020, 47, 8169–8177. [Google Scholar] [CrossRef]
- Hussein, M.A.; Soad Mohamed, A.G. In vivo Hepato-protective Properties of Purslane Extracts on Paracetamol-Induced Liver Damage. Malays. J. Nutr. 2010, 16, 161–170. [Google Scholar]
- Mohamad, E.A.; Mohamed, Z.N.; Hussein, M.A.; Elneklawi, M.S. GANE can improve lung fibrosis by reducing inflammation via promoting p38MAPK/TGF-β1/NF-κB signaling pathway downregulation. ACS Omega 2022, 7, 3109–3120. [Google Scholar] [CrossRef]
- Aly, S.H.; Abulsoud, A.I.; Moustafa, Y.M.; Abdel Mageed, S.S.; Abdelmaksoud, N.M.; El-Dakroury, W.A.; Mohammed, O.A.; Abdel-Reheim, M.A.; Zaki, M.B.; Rizk, N.I.; et al. Harnessing natural compounds to modulate miRNAs in breast cancer therapy. Funct. Integr. Genom. 2024, 24, 211. [Google Scholar] [CrossRef]
- El Gizawy, H.A.; Abo-Salem, H.M.; Ali, A.A.; Hussein, M.A. Phenolic profiling and therapeutic potential of certain isolated compounds from Parkia roxburghii against AChE activity as well as GABA A α5, GSK-3β, and p38α MAP-kinase genes. ACS Omega 2021, 6, 20492–20511. [Google Scholar] [CrossRef]
- Ortíz, R.; Quiñonero, F.; Beatriz García-Pinel, B.; Marco Fuel, M.; Mesas, C.; Cabeza, L.; Melguizo, C.; Prados, J. Nanomedicine to Overcome Multidrug Resistance Mechanisms in Colon and Pancreatic Cancer: Recent Progress. Cancers 2021, 13, 2058. [Google Scholar] [CrossRef] [PubMed]
- Teoh, P.L.; Liau, M.; Cheong, B.E. Phylanodiflora L. Extracts induce apoptosis and cell cycle arrest in human breast cancer cell line, MCF-7. Nutr. Cancer 2019, 71, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qu, L.; Dong, Y.; Han, L.; Liu, E.; Fang, S. A review of recent research progress on the astragalus genus. Molecules 2014, 19, 18850–18880. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Lai, J.Y. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment, Polym. Chem. 2020, 11, 6988–7008. [Google Scholar]
- Agarwal, M.; Agarwal, M.K.; Shrivastav, N.; Pandey, S.; Das, R.; Gaur, P. Preparation of Chitosan Nanoparticles and their in-vitro Characterization. Int. J. Life. Sci. Scienti. Res. 2018, 4, 1713–1720. [Google Scholar] [CrossRef]
- Jafari, A.M.; Morsali, A.; Bozorgmehr, M.R.; Beyramabadi, S.A.; Mohseni, S. Modeling and characterization of lenalidomide-loaded tripolyphosphate-crosslinked chitosan nanoparticles for anticancer drug delivery, Int. J. Biol. Macromol. 2024, 260, 129360. [Google Scholar] [CrossRef]
- Elrod, H.A.; Sun, S.Y. PPARgamma and Apoptosis in Cancer. PPAR Res. 2008, 2008, 704165. [Google Scholar] [CrossRef]
- Flamant, L.; Notte, A.; Ninane, N.; Raes, M.; Michiels, C. Anti-apoptotic role of HIF-1 and AP-1 in paclitaxel exposed breast cancer cells under hypoxia. Mol. Cancer 2010, 9, 191. [Google Scholar] [CrossRef]
- Üremiş, N.; Üremiş, M.M.; Çiğremiş, Y.; Tosun, E.; Baysar, A.; Türköz, Y. Cucurbitacin I exhibit anticancer efficacy through induction of apoptosis and modulation of JAK/STAT3, MAPK/ERK, and AKT/mTOR signaling pathways in HepG2 cell line. J. Food Biochem. 2022, 46, e14333. [Google Scholar] [CrossRef]
- Xu, D.; Shen, H.; Tian, M.; Chen, W.; Zhang, X. Cucurbitacin I inhibit the proliferation of pancreatic cancer through the JAK2/STAT3 signalling pathway in vivo and in vitro. J. Cancer 2022, 13, 2050–2060. [Google Scholar] [CrossRef]
- Mariadoss, A.V.A.; Vinayagam, R.; Senthilkumar, V.; Paulpandi, M.; Murugan, K.; Xu, B.; Gothandam, K.M.; Kotakadi, V.S.; David, E. Phloretin loaded chitosan nanoparticles augments the pH-dependent mitochondrial-mediated intrinsic apoptosis in human oral cancer cells. Int. J. Biol. Macromol. 2019, 130, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Alsanea, S.; Gao, M.; Liu, D. Phloretin prevents high-fat diet-induced obesity and improves metabolic homeostasis. AAPS J. 2017, 19, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, D.; Lin, H.; Jiang, S.; Han, L.; Hou, S.; Lin, S.; Cheng, Z.; Bian, W.; Zhang, X.; et al. Enhanced oral bioavailability and bioefficacy of phloretin using mixed polymeric modified self-nanoemulsions. Food Sci. Nutr. 2020, 8, 3545–3558. [Google Scholar] [CrossRef] [PubMed]
- Abu-Azzam, O.; Nasr, M. In vitro anti-inflammatory potential of phloretin microemulsion as a new formulation for prospective treatment of vaginitis. Pharm. Dev. Technol. 2020, 25, 930–935. [Google Scholar] [CrossRef]
- Alamir, M.; Hussein, M.A.; Aboud, H.; Khedr, M.; Zanaty, M. Optimization of phloretin-loaded nanospanlastics for targeting of FAS/SREBP1c/AMPK/OB-Rb signaling pathway in HFD-induced obesity. Curr. Pharm. Biotechnol. 2024, 26, 92–107. [Google Scholar] [CrossRef]
- Kakkar, S.; Kaur, I.P. Spanlastics—A novel Nano vesicular carrier system for ocular delivery. Int. J. Pharm. 2011, 413, 202–210. [Google Scholar] [CrossRef]
- Fazil, M.; Md, S.; Haque, S.; Kumar, M.; Baboota, S.; Sahni, J.; Ali, J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur. J. Pharm. Sci. 2012, 47, 6–15. [Google Scholar] [CrossRef]
- Song, H.; Su, C.; Cui, W.; Zhu, B.; Liu, L.; Chen, Z.; Zhao, L. Folic acid-chitosan conjugated nanoparticles for improving tumor-targeted drug delivery. Biomed. Res. Int. 2013, 2013, 723158. [Google Scholar] [CrossRef]
- Salar, R.K.; Kumar, N. Synthesis and characterization of vincristine loaded folic acid–chitosan conjugated nanoparticles. Resour.-Effic. Technol. 2016, 2, 199–214. [Google Scholar]
- Santosh, K.B.Y.; Arun, M.I.; Mohan, K.G.C.; Inamuddin; Abdullah, M.A. Nanohydroxyapatite reinforced chitosan composite Hydrogel with tunable mechanical and biological properties for cartilage regeneration. Sci. Rep. 2019, 9, 15957. [Google Scholar]
- Abeer, A.A.; Sahera, F.M. New Carrageenan/2-Dimethyl Aminoethyl Methacrylate/Gelatin/ZnO Nanocomposite as a Localized Drug Delivery System with Synergistic Biomedical Applications. Processes 2024, 12, 2702. [Google Scholar] [CrossRef]
- Abal, P.; Louzao, M.C.; Antelo, A.; Alvarez, M.; Cagide, E.; Vilariño, N. Acute oral toxicity of tetrodotoxin in mice: Determination of lethal dose 50 (LD50) and no observed adverse effect level (NOAEL). Toxins 2017, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Sabaa, M.; Sharawy, M.H.; El-Sherbiny, M.; Said, E.; Salem, H.A.; Ibrahim, T.M. Canagliflozin interrupts mTOR-mediated inflammatory signaling and attenuates DMBA-induced mammary cell carcinoma in rats. Biomed. Pharmacother. 2022, 155, 113675. [Google Scholar] [CrossRef] [PubMed]
- Elia, S.G.; Al-Karmalawy, A.A.; Nasr, M.Y.; Elshal, M.F. Loperamide potentiates doxorubicin sensitivity in triple-negative breast cancer cells by targeting MDR1 and JNK and suppressing mTOR and Bcl-2: In vitro and molecular docking study. J. Biochem. Mol. Toxicol. 2022, 36, e22938. [Google Scholar] [CrossRef]
- Fossati, P.; Prencipe, L. Serum triacylglycerols determined calorimetrically with an enzyme that produces hydrogen peroxide. Clin. Chem. 1982, 1, 2077–2080. [Google Scholar] [CrossRef]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974, 4, 470–475. [Google Scholar] [CrossRef]
- Burnstein, M.; Selvenick, H.R.; Morfin, R. Rapid method for isolation of lipoprotein from human serum with polyanions. J. Lipid Res. 1970, 11, 583–595. [Google Scholar] [CrossRef]
- Owen, J.B.; Butterfield, D.A. Measurement of oxidized/reduced glutathione ratio. Methods Mol. Biol. 2010, 648, 269–277. [Google Scholar]
- Kakkar, P.; Das, B.; Visvanathan, P. A modified spectrophotometric assay of SOD. Indian. J. Biochem. Biophys. 1984, 21, 130–132. [Google Scholar]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Bancroft, G.D.; Steven, A. Theory and Practice of Histological Technique, 4th ed.; Churchill Livingstone: New York, NY, USA, 1983; pp. 99–112. [Google Scholar]
- Antoniou, V.; Mourelatou, E.A.; Galatou, E.; Avgoustakis, K.; Hatziantoniou, S. Gene Therapy with Chitosan Nanoparticles: Modern Formulation Strategies for Enhancing Cancer Cell Transfection. Pharmaceutics 2024, 16, 868. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Yadav, A.S.; Radharani, N.N.V.; Gorain, M.; Bulbule, A.; Shetti, D.; Roy, G.; Baby, T.; Kundu, G.C. RGD functionalized chitosan nanoparticle mediated targeted delivery of raloxifene selectively suppresses angiogenesis and tumor growth in breast cancer. Nanoscale 2020, 21, 10664–10684. [Google Scholar] [CrossRef]
- Sethuraman, S.P.; Velemurugan, S.; Raju, K.; Velayutham, N.K.; Ahmed, M.; Santhanabharathi, B.; Musthafa, M. Physalis Genus, a Plant Source against Breast Cancer on MCF-7 Cell Line: A Systematic Review. Curr. Pharmacol. Rep. 2024, 10, 454–466. [Google Scholar] [CrossRef]
- Shaikh, S.B.; Tambe, P.; Mujahid, Y.; Santra, M.; Biersack, B.; Ahmed, K. Targeting growth of breast cancer cell line (MCF-7) with curcumin-pyrimidine analogs. J. Chem. Sci. 2022, 134, 123. [Google Scholar] [CrossRef]
- Aniogo, E.C.; George, B.P.; Abrahamse, H. Characterization of resistant MCF-7 breast cancer cells developed by repeated cycles of photodynamic therapy. Front Pharmacol. 2022, 13, 964141. [Google Scholar] [CrossRef]
- Mansouri, S.; Alharbi, Y.; Alqahtani, A. Current status and prospects for improved targeted delivery approaches for cancer. Pathol. Res. Pract. 2024, 253, 154993. [Google Scholar] [CrossRef]
- Erhirhie, E.O.; Ihekwereme, C.P.; Ilodigwe, E.E. Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance. Interdiscip. Toxicol. 2018, 11, 5–12. [Google Scholar] [CrossRef]
- Fayed, A.; Ibrahem, M.A.; Hassan, S.A.; Hussein, M.A.; Roshdy, T. Cranberry extract as a promising functional food to regulate srebp1/ppar–α/cpt-1/aco signaling pathways in HFD-induced obesity in rats. Adv. Anim. Vet. Sci. 2022, 10, 1933–1944. [Google Scholar] [CrossRef]
- Haberl, E.M.; Pohl, R.; Rein-Fischboeck, L.; Höring, M.; Krautbauer, S.; Liebisch, G.; Buechler, C. Hepatic lipid profile in mice fed a choline-deficient, low-methionine diet resembles human non-alcoholic fatty liver disease. Lipids Health Dis. 2020, 19, 250. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, L.; Tao, J.; Ye, H.; Wang, J.; Gao, R.; Liu, W. A lipidomic approach to bisphenol F-induced non-alcoholic fatty liver disease-like changes: Altered lipid components in a murine model. Environ. Sci. Pollut. Res. 2023, 30, 112644–112659. [Google Scholar] [CrossRef] [PubMed]
- Mouskeftara, T.; Deda, O.; Papadopoulos, G.; Chatzigeorgiou, A.; Gika, H. Lipidomic Analysis of Liver and Adipose Tissue in a High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Mice Model Reveals Alterations in Lipid Metabolism by Weight Loss and Aerobic Exercise. Molecules 2024, 29, 1494. [Google Scholar] [CrossRef] [PubMed]
- Vilchis-Landeros, M.M.; Vázquez-Meza, H.; Vázquez-Carrada, M.; Uribe-Ramírez, D.; Matuz-Mares, D. Antioxidant Enzymes and Their Potential Use in Breast Cancer Treatment. Int. J. Mol. Sci. 2024, 25, 5675. [Google Scholar] [CrossRef]
- Huang, S.; Xu, Z.; Zhi, W.; Li, Y.; Hu, Y.; Zhao, F.; Zhu, X.; Mingsan Miao, M.; Jia, Y. pH/GSH dual-responsive nanoparticle for auto-amplified tumor therapy of breast cancer. J. Nanobiotechnol. 2024, 22, 324. [Google Scholar] [CrossRef]
- Gobba, N.A.E.K.; Hussein Ali, A.; El Sharawy, D.E.; Hussein, M.A. The potential hazardous effect of exposure to iron dust in Egyptian smoking and nonsmoking welders. Arch. Environ. Occup. Health 2018, 73, 189–202. [Google Scholar] [CrossRef]
- Boshra, S.A.; Hussein, M.A. Cranberry extract as a supplemented food in treatment of oxidative stress and breast cancer induced by N-Methyl-N-Nitrosourea in female virgin rats. Int. J. Phytomed. 2016, 8, 217–227. [Google Scholar]
- Mostafa, M.M.; Amin, M.M.; Zakaria, M.Y.; Hussein, M.A.; Shamaa, M.M.; Abd El-Halim, S.M. Chitosan Surface-Modified PLGA Nanoparticles Loaded with Cranberry Powder Extract as a Potential Oral Delivery Platform for Targeting Colon Cancer Cells. Pharmaceutics 2023, 15, 606. [Google Scholar] [CrossRef]
- Soliman, S.; Mosallam, S.; Mamdouh, M.A.; Hussein, M.A.; Abd El-Halim, S. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv. 2022, 29, 427–439. [Google Scholar] [CrossRef]
- Hall, M.; Peters, G. Genetic alterations of cyclins, cyclin-dependent kinases, and cdk inhibitors in human cancer Adv. Cancer Res. 1996, 68, 67–108. [Google Scholar]
- Kishimoto, T. Interleukin-6: From basic science to medicine—40 years in immunology. Annu. Rev. Immunol. 2005, 23, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Payton, M.; Coats, S. Cyclin E2, the cycle continues. Int. J. Biochem. Cell Biol. 2002, 34, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Mosaad, Y.O.; Hussein, M.A.; Ateyya, H.; Mohamed, A.H.; Ali, A.A.; Ramadan, Y.A.; Wink, M.; El-Kholy, A.A. Vanin 1 Gene Role in Modulation of INOS/MCP-1/TGF-β1 Signaling Pathway in Obese Diabetic Patients. J. Inflamm. Res. 2022, 15, 6745–6759. [Google Scholar] [CrossRef]
- Emara, A.; Abd Elrahman, A.M.; Hassan, A.; Abdelghaney, A.; Bastawey, A.M.; Maher, A.; Al-Wadayi, A.M.; Shalaby, A.M.; Mohamed, M.M.; Gamal El Din, M.A.; et al. CEG-AgNPs Ameliorates DMBA-Induced Mammary Carcinogenicity by Alleviating Cytokines Expression. Pak. J. Biol. Sci. 2022, 25, 485–494. [Google Scholar]
- DeCensi, A.; Puntoni, M.; Johansson, H.; Guerrieri-Gonzaga, A.; Caviglia, S.; Avino, F.; Cortesi, L.; Ponti, A.; Pacquola, M.G.; Falcini, F.; et al. Effect Modifiers of Low-Dose Tamoxifen in a Randomized Trial in Breast Noninvasive Disease. Clin. Cancer Res. 2021, 27, 3576–3583. [Google Scholar] [CrossRef]
Group No. | Group | Treatment Description |
---|---|---|
I | Normal control | 3 mL of distilled water, orally for 8 weeks |
II | Ph-ChNPs | Mice treated orally with Ph-ChNPs (109 mg/kg body weight) (BW) daily for 4 consecutive weeks from weeks 5 to 8 |
III | DMBA | DMBA (7.5 mg/kg BW) was injected subcutaneously into the mammary cells of the mice twice weekly for 4 weeks [37] |
IV | DMBA + Ph-ChNPs | DMBA (7.5 mg/kg BW) was injected subcutaneously into the mammary cells of the mice twice weekly for 4 weeks [37]; after that, the animals were subjected to Ph-ChNPs daily for 4 weeks from week 5 to 8 |
V | DMBA + tamoxifen | DMBA (7.5 mg/kg BW) was injected subcutaneously into the mammary cells of the mice twice weekly for 4 weeks [38]; after that, the animals were treated 3 times/week with tamoxifen (20 mg/kg BW) orally daily for 4 weeks from week 5 to 8 [38] |
VI | DMBA + Ph-ChNPs + tamoxifen | DMBA (7.5 mg/kg BW) was injected subcutaneously into the mammary cells of the mice twice weekly for 4 weeks [37]; after that, animals were treated with Ph-ChNPs plus tamoxifen for 4 weeks from week 5 to 8 |
Gene | Sequence of Primers |
---|---|
BRCA-1 | F:5′- TGAAGACTGCTCGCAGAGTGATA-3′ R:5′-AGCTTCCAGGTGAGCCATTTC-3′ |
BRCA-2 | F:5′-TTGAGGACCCCAAGACCTGT-3′ R:5′-CCGGAGAGACAAAGGTGCA-3′ |
β-actin (internal control for qRT-PCR) | F:5′-CACCCGCGAGTACAACCTT-3′ R:5′-CCCATACCCACCATCACACC-3 |
Ph-ChNPs Concentration (µg/mL) | Mean Cell Viability % ± SD | Mean Cell Inhibition % ± SD |
---|---|---|
100 | 3.76 ± 0.17 | 96.24 ± 26.0 |
50 | 18.84 ± 0.79 | 81.16 ± 0.99 |
25 | 33.71 ± 1.74 | 66.29 ± 2.35 |
12.5 | 42.56 ± 1.70 | 57.44 ± 2.44 |
6.25 | 53.82 ± 1.68 | 46.18 ± 2.21 |
3.125 | 66.83 ± 0.94 | 33.17 ± 1.42 |
1.56 | 85.24 ± 0.43 | 14.76 ± 0.67 |
0.78 | 91.55 ± 1.23 | 8.45 ± 1.61 |
0.39 | 97.98 ± 1.17 | 2.02 ± 0.53 |
0.19 | 99.58 ± 0.51 | 0.42 ± 0.49 |
0 | 100 | 00 |
Group No. | Dose (mg/kg) | No. of Animals/Group | No. of Dead Animals | (Z) | (d) | (Z·d) |
---|---|---|---|---|---|---|
1 | 1100 | 10 | 1 | 1.5 | 500 | 750 |
2 | 1600 | 10 | 2 | 3.0 | 400 | 1200 |
3 | 2000 | 10 | 4 | 5.5 | 400 | 2200 |
4 | 2400 | 10 | 7 | 7.5 | 600 | 4500 |
5 | 3000 | 10 | 8 | 9 | 500 | 4500 |
6 | 3500 | 10 | 10 | -- | -- | -- |
Group No. | Groups | Bax (pg/mg Tissue) | BcL2 (pg/mg Tissue) | NF-kβ (pg/mg Tissue) | TNF-α (pg/mg Tissue) |
---|---|---|---|---|---|
(I) | Normal control | 127.78 ± 5.76 e | 30.68 ± 3.93 a | 1.65 ± 0.09 a | 159.50 ± 10.56 a |
(II) | Ph-ChNPs (109 mg/kg BW) | 104.17 ± 16.34 e | 29.59 ± 2.75 a | 1.63 ± 0.06 a | 161.49 ± 8.61 a |
(III) | DMBA (7.5 mg/kg BW) | 46.24 ± 4.81 a | 165.83 ± 12.73 e | 8.38 ± 0.46 e | 548.12 ± 21.19 e |
(IV) | DMBA + Ph-ChNPs | 79.43 ± 8.73 b | 54.12 ± 3.71 d | 3.35 ±0.22 b | 251.37 ± 20.59 b |
(V) | DMBA + tamoxifen (20 mg/kg BW) | 87.95 ± 7.54 c | 42.39 ± 2.26 c | 9.96 ± 1.13 d | 620.36 ± 16.64 d |
(VI) | DMBA + Ph-ChNPs + tamoxifen | 106.17 ± 14.66 d | 36.70 ± 2.91 b | 6.28 ± 0.30 c | 342.64 ± 12.64 c |
Group No. | Groups | IL-6 (pg/mg Tissue) | Cyclin D1 (ng/gm Tissue) | Cyclin E2 (ng/gm Tissue) |
---|---|---|---|---|
(I) | Normal control | 5.01 ± 0.48 a | 3.36 ± 0.21 a | 64.73 ± 5.48 a |
(II) | Ph-ChNPs (109 mg/kg BW) | 5.14 ± 0.15 a | 3.27 ± 0.13 a | 65.50 ± 4.30 a |
(III) | DMBA (7.5 mg/kg BW) | 24.68 ± 1.30 d | 14.98 ± 1.35 e | 136.43 ± 6.67 e |
(IV) | DMBA + Ph-ChNPs | 10.71 ± 0.82 c | 9.70 ± 1.08 d | 85.42 ± 7.62 b |
(V) | DMBA + tamoxifen (20 mg/kg BW) | 32.65 ± 3.97 e | 7.51 ± 0.52 c | 207.69 ± 17.44 d |
(VI) | DMBA + Ph-ChNPs + tamoxifen | 14.64 ± 1.61 b | 5.37 ± 0.68 b | 155.85 ± 8.43 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ageeli, A.A.; Mohamed, S.F. Phloretin–Chitosan Nanoparticles and Tamoxifen: Synergistic Modulation of BRCA Genes and Enhanced Sensitization in Breast Cancer. Chemistry 2025, 7, 68. https://doi.org/10.3390/chemistry7030068
Ageeli AA, Mohamed SF. Phloretin–Chitosan Nanoparticles and Tamoxifen: Synergistic Modulation of BRCA Genes and Enhanced Sensitization in Breast Cancer. Chemistry. 2025; 7(3):68. https://doi.org/10.3390/chemistry7030068
Chicago/Turabian StyleAgeeli, Abeer A., and Sahera F. Mohamed. 2025. "Phloretin–Chitosan Nanoparticles and Tamoxifen: Synergistic Modulation of BRCA Genes and Enhanced Sensitization in Breast Cancer" Chemistry 7, no. 3: 68. https://doi.org/10.3390/chemistry7030068
APA StyleAgeeli, A. A., & Mohamed, S. F. (2025). Phloretin–Chitosan Nanoparticles and Tamoxifen: Synergistic Modulation of BRCA Genes and Enhanced Sensitization in Breast Cancer. Chemistry, 7(3), 68. https://doi.org/10.3390/chemistry7030068