Insight into the Dyeability of Bio-Based Polyamide 56 by Natural Dyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- Roots: Curcuma longa (turmeric), Scutellaria baicalensis georgi (radix scutellariae), Rheum rhabarbarum (rhubarb), Salvia miltiorrhiza bunge (radix salviae miltiorrhizae), Rubia tinctorum (madder), and Spatholobi caulis (caulis spatholobi)
- Fruit peels: Punica granatum (pomegranate), Physalis alkekengi L. (physalis alkekengi), Citrus sinensis (orange), Allium cepa (onion), and Piri fructus (pear)
- Stem: Thymus vulgaris (thyme)
- Peeled branches: Acacia catechu (catechu)
- Fruit shell: Castanea sativa (chestnut)
- Leaves: Olea europaea (olive tree leaf), Eucalyptus globulus (eucalyptus leaf), and Spinacia oleracea (spinach)
2.2. Preparation of Plant Dye Solutions
2.3. Dyeing of PA56 Fabric with Plant Dye Solutions
2.4. Preparation of Dye Powders from Plant Dye Solutions
2.5. Dyeing of PA56, PA6, and PA66 Fabrics with Dye Powders
2.6. Dyeing Rate of PA56 Fabric with Indigo Dye
2.7. Methods
2.7.1. Glass Transition Temperature and Crystallinity Measurements
2.7.2. End Group Content Measurement
2.7.3. X-Ray Diffraction Measurement
2.7.4. Fractional Free-Volume Simulation Details
2.7.5. Color Measurement
2.7.6. Color Fastness Testing for PA56 Fibers
3. Results and Discussion
3.1. Screening of Preferred Natural Plant Dyes for PA56 Fiber
3.2. Dyeing Results of Using Plant Dye Powders on PA56 Fabric
3.3. Comparison and Discussion of the Dye Ability of PA56, PA6, and PA66 Fibers
3.3.1. Comparison of the Dye Ability of PA56, PA6, and PA66 Fabrics
3.3.2. Comparison of the Free Volume of PA56, PA6, and PA66 Macromoleculars
3.3.3. Comparison of Glass Transition Temperatures, Melting Points, and Crystallinity of PA56, PA6, and PA66 Fibers
3.3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.Y.; Xie, W.J.; Hua, Z.J.; Cao, L.H.; Xiong, Z.Y.; Tang, Y.; Yuan, Z.Q. Recent advancements in natural plant colorants used for hair dye applications: A review. Molecules 2022, 27, 8062. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Shahid-ul-Islam, N.; Mohammad, F. Recent advancements in natural dye applications: A review. J. Clean. Prod. 2013, 53, 310–331. [Google Scholar] [CrossRef]
- Cerempei, A.; Muresan, E.I.; Cimpoesu, N.; Carp-Carare, C.; Rimbu, C. Dyeing and antibacterial properties of aqueous extracts from quince (Cydonia oblonga) leaves. Ind. Crop. Prod. 2016, 94, 216–225. [Google Scholar] [CrossRef]
- Pan, J.J.; Xia, Z.P.; Lu, J.H.; Zhang, H.B.; Liu, Y. Natural dye extracted from Pterocarpus santalinus wood waste for green dyeing and its binding mechanism with yak wool fabrics. Ind. Crop. Prod. 2024, 210, 118121. [Google Scholar] [CrossRef]
- Taherirad, F.; Maleki, H.; Barani, H.; Khashei-Siuki, A.; Khazaei, F. Optimizing dyeing parameters for sustainable wool dyeing using quinoa plant components with antibacterial properties. Clean. Eng. Technol. 2024, 21, 100780. [Google Scholar] [CrossRef]
- Ferreira, F.L.; Campos, É.A.; Santos, W.L.F.; Silva, M.G. Wool fabric dyeing with natural dye extracted from Cinnamomum verum J. Presl Fruit. Fibers Polym. 2023, 24, 4301–4309. [Google Scholar] [CrossRef]
- Benli, H.; Bahtiyari, M.I. An approach for the valorization of bio-waste pistachio shells (Pistacia vera L.): Dyeing of cellulose-based fabrics. J. Clean. Prod. 2024, 445, 141213. [Google Scholar] [CrossRef]
- Iqbal, K.; Afzal, H.; Siddiqui, M.O.R.; Bashir, U.; Jan, K.; Abbas, A.; Abid, H.A. Dyeing of wool fabric with natural dye extracted from Dalbergia Sissoo using natural mordants. Sustain. Chem. Pharm. 2023, 33, 101094. [Google Scholar] [CrossRef]
- Gedik, G.; Avinc, O.; Yavas, A.; Khoddami, A. A novel eco-friendly colorant and dyeing method for poly(ethylene terephthalate) substrate. Fibers Polym. 2014, 15, 261–272. [Google Scholar] [CrossRef]
- Atav, R.; Namirti, O. An ecofriendly dyeing method for polyester fibers: To bring traditional natural dyeing into industrial production. Fibers Polym. 2023, 24, 2027–2038. [Google Scholar] [CrossRef]
- Žagar, E.; Češarek, U.; Drinčić, A.; Sitar, S.; Shlyapnikov, I.M.; Pahovnik, D. Quantitative determination of PA6 and/or PA66 content in polyamide-containing wastes. ACS Sustain. Chem. Eng. 2020, 8, 758–768. [Google Scholar] [CrossRef]
- Yang, P.P.; Peng, X.Q.; Wang, S.; Li, D.; Li, M.; Jiao, P.F.; Zhuang, W.; Wu, J.L.; Wen, Q.S.; Ying, H.J. Crystal structure, thermodynamics, and crystallization of bio-based polyamide 56 salt. Cryst. Eng. Comm. 2020, 22, 2594–2604. [Google Scholar]
- Yang, H.; Wentao, L. Bio-based polyamide 56: Recent advances in basic and applied research. Polym. Eng. Sci. 2023, 63, 2484–2497. [Google Scholar] [CrossRef]
- Huang, Y.W.; Zhou, Q.X.; He, X.X.; Wang, Y.; Wu, J.Q.; Hao, X.M.; Wang, M.H.; Guo, Y.F. Discussion on factors affecting dyeing of bio-based polyamide 5,6 fibers compared with polyamide 6,6 fibers. J. Macromol. Sci. B 2023, 62, 463–477. [Google Scholar]
- Saleem, M.A.; Pei, L.; Saleem, M.F.; Shahid, S.; Wang, J. Sustainable dyeing of nylon fabric with acid dyes in decamethylcyclopentasiloxane (D5) solvent for improving dye uptake and reducing raw material consumption. J. Clean. Prod. 2021, 279, 123480. [Google Scholar]
- Haji, A.; Ghaheh, F.S.; Mohammadi, L. Dyeing of polyamide 6 fabric with new bio-colorant and bio-mordants. Environ. Sci. Pollut. 2023, 30, 37981–37996. [Google Scholar]
- Rehman, A.; Rehman, M.; Naveed, M.; Javed, K.; Khan, A. Eco-friendly dyeing of cotton with natural colorants using natural mordants obtained from aloe vera. J. Indian. Chem. Soc. 2024, 101, 101182. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, H.L.; Wang, R.; Liu, R.G.; Hao, X.M. Crystallization of polyamide 56/polyamide 66 blends: Non-isothermal crystallization kinetics. J. Appl. Polym. Sci. 2018, 135, 46409. [Google Scholar] [CrossRef]
- Filipecka-Szymczyk, K.; Makowska-Janusik, M.; Marczak, W. Molecular Dynamics simulation of hydrogels based on phosphorylcholine-containing copolymers for soft contact lens applications. Molecules 2023, 28, 6562. [Google Scholar] [CrossRef]
- Kräutler, B. Breakdown of chlorophyll in higher plants-phyllobilins as abundant, yet hardly vsible signs of ripening, senescence, and cell death. Angew. Chem. Int. Ed. 2016, 55, 4882–4907. [Google Scholar] [CrossRef] [PubMed]
- Baig, G.A. Dyeing nylon with indigo in various pH regions. Autex Res. J. 2010, 10, 21–25. [Google Scholar] [CrossRef]
- Baig, G.A. A study on the exhaust dyeing of various synthetic fibres with indigo. Color. Technol. 2012, 128, 114–120. [Google Scholar] [CrossRef]
Plants/Plant Parts | λ | L* | a* | b* | Washing Fastness | Digital Images | |
---|---|---|---|---|---|---|---|
Pomegranate rind | 400 | 65.03 | 3.98 | 35.99 | 19.17 | 5 | |
Radix Salviae Miltiorrhizae | 400 | 65.61 | 4.69 | 22.52 | 3.34 | 5 | |
Radix scutellariae | 400 | 67.14 | 2.82 | 36.77 | 12.98 | 4–5 | |
Turmeric | 420 | 67.41 | 8.35 | 73.77 | 17.26 | 4 | |
Pear peel | 400 | 67.65 | 5.26 | 22.43 | 7.89 | 5 | |
Thyme | 400 | 68.81 | −0.36 | 27.53 | 4.67 | 4–5 | |
Physalis alkekengi peel | 400 | 72.79 | 3.36 | 21.69 | 3.10 | 4–5 | |
Sweet orange peel | 400 | 77.67 | −0.95 | 20.92 | 2.57 | 5 | |
Madder | 420 | 30.95 | 29.37 | 29.18 | 15.04 | 4–5 | |
Catechu | 400 | 23.90 | 11.93 | 15.60 | 29.13 | 4 | |
Onion peel | 410 | 37.47 | 10.50 | 23.18 | 28.95 | 4 | |
Olive tree leaf | 400 | 52.98 | 6.23 | 22.43 | 14.08 | 5 | |
Rhubarb | 440 | 54.55 | 6.73 | 47.76 | 12.72 | 4 | |
Eucalyptus leaf | 400 | 55.54 | 8.21 | 24.54 | 15.30 | 5 | |
Caulis spatholobi | 400 | 57.13 | 13.69 | 21.69 | 2.48 | 5 | |
Chestnut shell | 400 | 60.47 | 5.28 | 26.40 | 6.83 | 4–5 | |
Spinach | 400 | 10.11 | 2.45 | 14.02 | 2.10 | 3 |
PA56 Fabric | K/S | Washing Fastness | Rubbing Fastness | Light Fastness | |||
---|---|---|---|---|---|---|---|
Methods | Dye | Concentration (o.w.f.) | Dry | Wet | |||
Dyeing | Turmeric | 80% | 14.69 | 4 | 4–5 | 4–5 | 2 |
Madder | 90% | 11.43 | 4–5 | 4–5 | 4–5 | 2–3 | |
Catechu | 90% | 15.46 | 4 | 3–4 | 3–4 | 3–4 | |
Indigo | 6% | 16.5 | 4 | 3 | 2–3 | 4 | |
Dyeing and post-mordant treatment | Turmeric | 80% | 16.74 | 4–5 | 5 | 5 | 3–4 |
Madder | 90% | 14.51 | 4–5 | 5 | 5 | 3–4 | |
Catechu | 90% | 18.36 | 4 | 4 | 4 | 4–5 | |
Indigo | 6% | 19.76 | 4–5 | 3–4 | 3 | 5 |
Samples | Crystallinity (%) | Glass Transition Temperature (°C) | Free-Volume Simulation | -NH2 Content (mmol/kg) | ||
---|---|---|---|---|---|---|
FFV (%) | ||||||
PA56 | 32.46 | 50 | 9.3 | 5608 | 579 | 71.3 |
PA6 | 36.02 | 50 | 8.6 | 3041 | 287 | 76.4 |
PA66 | 39.03 | 50 | 8.4 | 6044 | 551 | 74.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Wu, J.; Wang, Y. Insight into the Dyeability of Bio-Based Polyamide 56 by Natural Dyes. Chemistry 2025, 7, 95. https://doi.org/10.3390/chemistry7030095
Sun C, Wu J, Wang Y. Insight into the Dyeability of Bio-Based Polyamide 56 by Natural Dyes. Chemistry. 2025; 7(3):95. https://doi.org/10.3390/chemistry7030095
Chicago/Turabian StyleSun, Chenchen, Jiaqing Wu, and Ying Wang. 2025. "Insight into the Dyeability of Bio-Based Polyamide 56 by Natural Dyes" Chemistry 7, no. 3: 95. https://doi.org/10.3390/chemistry7030095
APA StyleSun, C., Wu, J., & Wang, Y. (2025). Insight into the Dyeability of Bio-Based Polyamide 56 by Natural Dyes. Chemistry, 7(3), 95. https://doi.org/10.3390/chemistry7030095