Testing and Interpreting Latent Variable Interactions Using the semTools Package
Abstract
:1. Introduction
1.1. Interaction among Observed Variables
1.2. Interaction among Latent Variables
1.3. Product-Indicator Approaches
2. Materials and Methods
2.1. Estimating Latent Interactions in Lavaan
dat2 <- indProd (dat, var1 = c("x1", "x2", "x3"), var2 = c("z1", "z2", "z3"), match = FALSE, meanC = FALSE, residualC = FALSE, doubleMC = TRUE)
mod <- " ## Factor loadings x =~ x1 + x2 + x3 z =~ z1 + z2 + z3 y =~ y1 + y2 + y3 xz =~ x1.z1 + x1.z2 + x1.z3 + x2.z1 + x2.z2 + x2.z3 + x3.z1 + x3.z2 + x3.z3 ## Regression y ~ x + z + xz ## Residual covariances ## constrained to equality between the same item x1.z1 ~~ t1∗x1.z2 + t1∗x1.z3 x1.z2 ~~ t1∗x1.z3 x2.z1 ~~ t2∗x2.z2 + t2∗x2.z3 x2.z2 ~~ t2∗x3.z3 x3.z1 ~~ t3∗x3.z2 + t3∗x3.z3 x3.z2 ~~ t3∗x3.z3 x1.z1 ~~ t4∗x2.z1 + t4∗x3.z1 x2.z1 ~~ t4∗x3.z1 x1.z2 ~~ t5∗x2.z2 + t5∗x3.z3 x2.z2 ~~ t5∗x3.z2 x1.z3 ~~ t6∗x2.z3 + t6∗x3.z3 x2.z3 ~~ t6∗x3.z3 " fit <- sem (mod , data = dat2, std .lv = TRUE, meanstructure = TRUE)
2.2. Probing and Plotting Latent Interactions
2.3. Real-Data Application
3. Results
4. Discussion
4.1. Extensions
4.2. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DMC | Double mean centering |
LMS | Latent moderated structural equations |
ML(E) | Maximum likelihood (estimation) |
Standard error | |
SEM | Structural equation model(ing) |
References
- Aiken, L.S.; West, S.G.; Reno, R.R. Multiple Regression: Testing and Interpreting Interactions; Sage: Thousand Oaks, CA, USA, 1991. [Google Scholar]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences; Routledge: Mahwah, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Jaccard, J.; Turrisi, R. Interaction Effects in Multiple Regression; Sage: Mahwah, NJ, USA, 2003; Number 27. [Google Scholar]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford: New York, NY, USA, 2017. [Google Scholar]
- Judd, C.M.; McClelland, G.H.; Ryan, C.S. Data Analysis: A Model Comparison Approach to Regression, ANOVA, and Beyond, 3rd ed.; Routledge: Mahwah, NJ, USA, 2017. [Google Scholar]
- Kenny, D.A.; Judd, C.M. Estimating the nonlinear and interactive effects of latent variables. Psychol. Bull. 1984, 96, 201–210. [Google Scholar] [CrossRef]
- Jöreskog, K.G.; Yang, F. Nonlinear structural equation models: The Kenny–Judd model with interaction effects. In Advanced Structural Equation Modeling: Issues and Techniques; Marcoulides, G.A., Schumacker, R.E., Eds.; Psychology Press: New York, NY, USA, 1996; pp. 57–88. [Google Scholar] [CrossRef]
- Klein, A.; Moosbrugger, H. Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika 2000, 65, 457–474. [Google Scholar] [CrossRef]
- Marsh, H.W.; Wen, Z.; Hau, K.T. Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. Psychol. Methods 2004, 9, 275–300. [Google Scholar] [CrossRef] [PubMed]
- Little, T.D.; Bovaird, J.A.; Widaman, K.F. On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables. Struct. Equ. Model. 2006, 13, 497–519. [Google Scholar] [CrossRef]
- Lodder, P.; Denollet, J.; Emons, W.H.; Nefs, G.; Pouwer, F.; Speight, J.; Wicherts, J.M. Modeling interactions between latent variables in research on Type D personality: A Monte Carlo simulation and clinical study of depression and anxiety. Multivar. Behav. Res. 2019, 54, 637–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A language and Environment for Statistical Computing; Version 3.6.1; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Oehlert, G.W. A note on the delta method. Am. Stat. 1992, 46, 27–29. [Google Scholar] [CrossRef]
- Long, J.A. Interactions: Comprehensive, User-Friendly Toolkit for Probing Interactions, R package version 1.1.0; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Ganzach, Y. Misleading interaction and curvilinear terms. Psychol. Methods 1997, 2, 235. [Google Scholar] [CrossRef]
- Lubinski, D.; Humphreys, L.G. Assessing spurious “moderator effects”: Illustrated substantively with the hypothesized (“synergistic”) relation between spatial and mathematical ability. Psychol. Bull. 1990, 107, 385. [Google Scholar] [CrossRef] [Green Version]
- Harring, J.R.; Weiss, B.A.; Li, M. Assessing spurious interaction effects in structural equation modeling: A cautionary note. Educ. Psychol. Meas. 2015, 75, 721–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolbe, L.; Jorgensen, T.D. Using product indicators in restricted factor analysis models to detect nonuniform measurement bias. In Quantitative Psychology, Proceedings of the 82nd Annual Meeting of the Psychometric Society, New York, NY, USA, 10–13 July 2017; Wiberg, M., Culpepper, S.A., Janssen, R., González, J., Molenaar, D., Eds.; Springer: Zürich, Switzerland, 2018; pp. 235–245. [Google Scholar] [CrossRef]
- Woods, C.M.; Grimm, K.J. Testing for nonuniform differential item functioning with multiple indicator multiple cause models. Appl. Psychol. Meas. 2011, 35, 339–361. [Google Scholar] [CrossRef]
- Little, T.D.; Card, N.A.; Slegers, D.W.; Ledford, E.C. Representing contextual effects in multiple-group MACS models. In Modeling Contextual Effects in Longitudinal Studies; Little, T.D., Bovaird, J.A., Card, N.A., Eds.; Routledge: New York, NY, USA, 2007; pp. 121–147. [Google Scholar]
- Cham, H.; Reshetnyak, E.; Rosenfeld, B.; Breitbart, W. Full information maximum likelihood estimation for latent variable interactions with incomplete indicators. Multivar. Behav. Res. 2017, 52, 12–30. [Google Scholar] [CrossRef] [Green Version]
- Aytürk, E.; Cham, H.; Jennings, P.A.; Brown, J.L. Exploring the performance of latent moderated structural equations approach for ordered-categorical items. Struct. Equ. Model. 2020, 28, 410–422. [Google Scholar] [CrossRef]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Mplus: Los Angeles, CA, USA, 1998–2017. [Google Scholar]
- Umbach, N.; Naumann, K.; Brandt, H.; Kelava, A. Fitting nonlinear structural equation models in R with package nlsem. J. Stat. Softw. 2017, 77, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ng, J.C.; Chan, W. Latent moderation analysis: A factor score approach. Struct. Equ. Model. Multidiscip. J. 2020, 27, 629–648. [Google Scholar] [CrossRef]
- Cox, K.; Kelcey, B. Croon’s bias-corrected estimation of latent interactions. Struct. Equ. Model. 2021. [Google Scholar] [CrossRef]
- Scheines, R.; Hoijtink, H.; Boomsma, A. Bayesian estimation and testing of structural equation models. Psychometrika 1999, 64, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Song, X.Y.; Poon, W.Y. Comparison of approaches in estimating interaction and quadratic effects of latent variables. Multivar. Behav. Res. 2004, 39, 37–67. [Google Scholar] [CrossRef]
- Lee, S.Y.; Song, X.Y.; Tang, N.S. Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables. Struct. Equ. Model. 2007, 14, 404–434. [Google Scholar] [CrossRef]
- Merkle, E.C.; Rosseel, Y. blavaan: Bayesian structural equation models via parameter expansion. J. Stat. Softw. 2018, 85, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.C.; Wen, Z.; Marsh, H.W.; Lin, H.S. Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies. Struct. Equ. Model. 2010, 17, 374–391. [Google Scholar] [CrossRef]
- Garnier-Villarreal, M.; Jorgensen, T.D. Adapting fit indices for Bayesian structural equation modeling: Comparison to maximum likelihood. Psychol. Methods 2020, 25, 46–70. [Google Scholar] [CrossRef] [PubMed]
- Asparouhov, T.; Muthén, B. Advances in Bayesian model fit evaluation for structural equation models. Struct. Equ. Model. 2020, 28, 1–14. [Google Scholar] [CrossRef]
- Kolbe, L.; Jorgensen, T.D.; Molenaar, D. The impact of unmodeled heteroskedasticity on assessing measurement invariance in single-group models. Struct. Equ. Model. 2020, 28, 82–98. [Google Scholar] [CrossRef]
- Aytürk, E.; Cham, H.; Jennings, P.A.; Brown, J.L. Latent variable interactions with ordered-categorical indicators: Comparisons of unconstrained product indicator and latent moderated structural equations approaches. Educ. Psychol. Meas. 2020, 80, 262–292. [Google Scholar] [CrossRef] [PubMed]
- Echambadi, R.; Hess, J.D. Mean-centering does not alleviate collinearity problems in moderated multiple regression models. Mark. Sci. 2007, 26, 438–445. [Google Scholar] [CrossRef]
- Echambadi, R.; Arroniz, I.; Reinartz, W.; Lee, J. Empirical generalizations from brand extension research: How sure are we? Int. J. Res. Mark. 2006, 23, 253–261. [Google Scholar] [CrossRef]
- Savalei, V. Understanding robust corrections in structural equation modeling. Struct. Equ. Model. 2014, 21, 149–160. [Google Scholar] [CrossRef]
- Foldnes, N.; Hagtvet, K.A. The choice of product indicators in latent variable interaction models: Post hoc analyses. Psychol. Methods 2014, 19, 444–457. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, T.D.; Pornprasertmanit, S.; Schoemann, A.M.; Rosseel, Y. semTools: Useful Tools for Structural Equation Modeling, R package version 0.5-4; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Rosseel, Y. lavaan: An R package for structural equation modeling and more. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Pornprasertmanit, S.; Schoemann, A.M.; Geldhof, G.J.; Little, T.D. Probing latent interactions estimated with a residual centering approach. PsyArXiv 2021. [Google Scholar] [CrossRef]
- Von der Embse, N.P.; Schoemann, A.M.; Kilgus, S.P.; Wicoff, M.; Bowler, M. The influence of test-based accountability policies on teacher stress and instructional practices: A moderated mediation model. Educ. Psychol. 2017, 37, 312–331. [Google Scholar] [CrossRef]
- von der Embse, N.P.; Kilgus, S.P.; Solomon, H.J.; Bowler, M.; Curtiss, C. Initial development and factor structure of the Educator Test Stress Inventory. J. Psychoeduc. Assess. 2015, 33, 223–237. [Google Scholar] [CrossRef]
- Preacher, K.J.; Curran, P.J.; Bauer, D.J. Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. J. Educ. Behav. Stat. 2006, 31, 437–448. [Google Scholar] [CrossRef]
- Geldhof, G.J.; Pornprasertmanit, S.; Schoemann, A.M.; Little, T.D. Orthogonalizing through residual centering: Extended applications and caveats. Educ. Psychol. Meas. 2013, 73, 27–46. [Google Scholar] [CrossRef]
- Frisby, M.; Diemer, M.A. Everything in moderation: A proposed improvement to variance calculation for visualizing latent endogenous moderation. Struct. Equ. Model. 2021. [Google Scholar] [CrossRef]
x1z1 | x1z2 | x1z3 | x2z1 | x2z2 | x2z3 | x3z1 | x3z2 | x3z3 | |
---|---|---|---|---|---|---|---|---|---|
x1z1 | |||||||||
x1z2 | t1 | ||||||||
x1z3 | t1 | t1 | |||||||
x2z1 | t4 | 0 | 0 | ||||||
x2z2 | 0 | t5 | 0 | t2 | |||||
x2z3 | 0 | 0 | t6 | t2 | t2 | ||||
x3z1 | t4 | 0 | 0 | t4 | 0 | 0 | |||
x3z2 | 0 | t5 | 0 | 0 | t5 | 0 | t3 | ||
x3z3 | 0 | 0 | t6 | 0 | 0 | t6 | t3 | t3 |
Test Value | Slope | SE | p |
---|---|---|---|
−1 | 0.78 | 0.03 | <0.001 |
0 | 0.72 | 0.03 | <0.001 |
1 | 0.66 | 0.03 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoemann, A.M.; Jorgensen, T.D. Testing and Interpreting Latent Variable Interactions Using the semTools Package. Psych 2021, 3, 322-335. https://doi.org/10.3390/psych3030024
Schoemann AM, Jorgensen TD. Testing and Interpreting Latent Variable Interactions Using the semTools Package. Psych. 2021; 3(3):322-335. https://doi.org/10.3390/psych3030024
Chicago/Turabian StyleSchoemann, Alexander M., and Terrence D. Jorgensen. 2021. "Testing and Interpreting Latent Variable Interactions Using the semTools Package" Psych 3, no. 3: 322-335. https://doi.org/10.3390/psych3030024
APA StyleSchoemann, A. M., & Jorgensen, T. D. (2021). Testing and Interpreting Latent Variable Interactions Using the semTools Package. Psych, 3(3), 322-335. https://doi.org/10.3390/psych3030024