Preliminary Study on the Assessment of the Marginal Fit of Three-Dimensional Methacrylate Oligomer Phosphine Oxide Provisional Fixed Dental Prostheses Made by Digital Light Processing
Abstract
1. Introduction
Background
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abt, E.; Carr, A.B.; Worthington, H.V. Interventions for replacing missing teeth: Partially absent dentition. Cochrane Database Syst. Rev. 2012, 2, CD003814. [Google Scholar] [CrossRef] [PubMed]
- Salinas, T.; Block, M.S.; Sadan, A. Fixed partial denture or single-tooth implant restoration? Statistical considerations for sequencing and treatment. J. Oral Maxillofac. Surg. 2004, 62, 2–16. [Google Scholar] [PubMed]
- Reitemeier, B.; Hänsel, K.; Kästner, C.; Weber, A.; Walter, M.H. A prospective 10-year study of metal ceramic single crowns and fixed dental prosthesis retainers in private practice set tings. J. Prosthet. Dent. 2013, 109, 149–155. [Google Scholar] [CrossRef]
- Limones, A.; Molinero-Mourelle, P.; Azevedo, L.; Romeo-Rubio, M.; Correia, A.; Gómez-Polo, M. Zirconia-ceramic vs. metal-ceramic multi-unit tooth-supported posterior fixed dental prosthesis: A systematic review and meta-analysis. J. Am. Dent. Assoc. 2020, 151, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Givens, E.J., Jr.; Neiva, G.; Yaman, P.; Dennison, J.B. Marginal adaptation and color stability of four provisional mate-rials. J. Prosthodont. 2008, 17, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Svanborg, P. A systematic review on the accuracy of zirconia crowns and fixed dental prosthe-ses. Biomater. Investig. Dent. 2020, 7, 9–15. [Google Scholar] [PubMed]
- Rinke, S.; Fornefett, D.; Gersdorff, N.; Lange, K.; Roediger, M. Multifactorial analysis of the impact of differ-ent manufacturing processes on the marginal fit of zirconia copings. Dent. Mater. J. 2012, 31, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Joda, T.; Ferrari, M.; Gallucci, G.O.; Wittneben, J.G.; Brägger, U. Digital technology in fixed implant prostho-dontics. Periodontology 2017, 73, 178–192. [Google Scholar] [CrossRef] [PubMed]
- Revilla-León, M.; Meyer, M.J.; Özcan, M. Metal additive manufacturing technologies: Literature review of current status and prosthodontic applications. Int. J. Comput. Dent. 2019, 22, 55–67. [Google Scholar] [PubMed]
- Revilla-León, M.; Meyers, M.J.; Zandinejad, A.; Özcan, M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J. Esthet. Restor. Dent. 2019, 31, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Stansbury, J.W.; Idacavage, M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, N.; Wismeijer, D.; Osman, R. Additive Manufacturing Techniques in Prosthodontics: Where Do We Currently Stand? A Critical Review. Int. J. Prosthodont. 2017, 30, 474–484. [Google Scholar] [CrossRef] [PubMed]
- McLean, J.W.; Von Fraunhofer, J.A. The estimation of cement film thickness by an in vivo technique. Br. Dent. J. 1971, 131, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Nawafleh, N.; Mack, F.; Evans, J.; Mackay, J.; Hatamleh, M.M. Accuracy and Reliability of Methods to Measure Marginal Adaptation of Crowns and FDPs: A Literature Review. J. Prosthodont. 2013, 22, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Holmes, J.R.; Bayne, S.C.; Holland, G.A.; Sulik, W.D. Considerations in measurement of marginal fit. J. Prosthet. Dent. 1989, 62, 405–408. [Google Scholar] [CrossRef]
- Park, G.-S.; Kim, S.-K.; Heo, S.-J.; Koak, J.-Y.; Seo, D.-G. Effects of Printing Parameters on the Fit of Implant-Supported 3D Printing Resin Prosthetics. Matererials 2019, 12, 2533. [Google Scholar] [CrossRef] [PubMed]
- Molinero-Mourelle, P.; Canals, S.; Gomez-Polo, M.; Sola-Ruiz, M.; Highsmith, J.D.R.; Viñuela, A. Polylactic Acid as a Material for Three-Dimensional Printing of Provisional Restorations. Int. J. Prosthodont. 2018, 31, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, N.; Alharbi, S.; Cuijpers, V.M.; Osman, R.B.; Wismeijer, D. Three-dimensional evaluation of marginal and internal fit of 3D-printed interim restorations fabricated on different finish line designs. J. Prosthodont. Res. 2018, 62, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.O.; Tsitrou, E.A.; Pollington, S. Comparative in vitro evaluation of CAD/CAM vs. conven-tional provisional crowns. J. Appl. Oral Sci. 2016, 24, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Ortega, R.; Gonzalo, E.; Gomez-Polo, M.; Lopez-Suarez, C.; Suarez, M.J. SEM evaluation of the precision of fit of CAD/CAM zirconia and metal-ceramic posterior crowns. Dent. Mater. J. 2017, 36, 387–393. [Google Scholar] [CrossRef] [PubMed]
Measurements | N | Mean | Median | SD | Minimum | Maximum |
---|---|---|---|---|---|---|
Distal–buccal | 5 | 76.36 | 76.35 | 76.35 | 60.05 | 152.52 |
Distal–buccal | 5 | 41.05 | 22.5 | 41.51 | 7.5 | 105.03 |
Distal–buccal | 5 | 31.96 | 31.96 | 26.90 | 8.75 | 75.17 |
Distal–lingual | 5 | 62.49 | 62.49 | 26.06 | 37.83 | 100.12 |
Distal–lingual | 5 | 61.13 | 61.13 | 26.84 | 37.58 | 105.03 |
Distal–lingual | 5 | 29.5 | 29.5 | 15.61 | 13.46 | 52.74 |
Mesial–Buccal | 5 | 30.03 | 30.03 | 12.74 | 13.75 | 40.08 |
Mesial–Buccal | 5 | 22.65 | 22.65 | 7.47 | 15.21 | 35.09 |
Mesial–Buccal | 5 | 33.86 | 33.86 | 1.73 | 32.52 | 36.59 |
Mesial–lingual | 5 | 43.47 | 43.47 | 18.29 | 18.2 | 60.21 |
Mesial–lingual | 5 | 76.89 | 76.89 | 21.66 | 40.49 | 95.03 |
Mesial–lingual | 5 | 47.05 | 52.74 | 21.21 | 16.68 | 70.04 |
Total | 60 | 46.37 | 38.65 | 29.58 | 7.5 | 152.52 |
Characteristics | Value |
---|---|
Viscosity at 23 °C | 0.9–1.4 Pa s |
Bending strength | =85 MPa |
Bending e-module | =2100 MPa |
Shore hardness D | 80–90 |
Absorption of water | <30 μg/mm2 |
Water solubility | <5 μg/mm2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molinero-Mourelle, P.; Gómez-Polo, M.; Gómez-Polo, C.; Ortega, R.; del Río Highsmith, J.; Celemín-Viñuela, A. Preliminary Study on the Assessment of the Marginal Fit of Three-Dimensional Methacrylate Oligomer Phosphine Oxide Provisional Fixed Dental Prostheses Made by Digital Light Processing. Prosthesis 2020, 2, 240-245. https://doi.org/10.3390/prosthesis2030021
Molinero-Mourelle P, Gómez-Polo M, Gómez-Polo C, Ortega R, del Río Highsmith J, Celemín-Viñuela A. Preliminary Study on the Assessment of the Marginal Fit of Three-Dimensional Methacrylate Oligomer Phosphine Oxide Provisional Fixed Dental Prostheses Made by Digital Light Processing. Prosthesis. 2020; 2(3):240-245. https://doi.org/10.3390/prosthesis2030021
Chicago/Turabian StyleMolinero-Mourelle, Pedro, Miguel Gómez-Polo, Cristina Gómez-Polo, Rocio Ortega, Jaime del Río Highsmith, and Alicia Celemín-Viñuela. 2020. "Preliminary Study on the Assessment of the Marginal Fit of Three-Dimensional Methacrylate Oligomer Phosphine Oxide Provisional Fixed Dental Prostheses Made by Digital Light Processing" Prosthesis 2, no. 3: 240-245. https://doi.org/10.3390/prosthesis2030021
APA StyleMolinero-Mourelle, P., Gómez-Polo, M., Gómez-Polo, C., Ortega, R., del Río Highsmith, J., & Celemín-Viñuela, A. (2020). Preliminary Study on the Assessment of the Marginal Fit of Three-Dimensional Methacrylate Oligomer Phosphine Oxide Provisional Fixed Dental Prostheses Made by Digital Light Processing. Prosthesis, 2(3), 240-245. https://doi.org/10.3390/prosthesis2030021