Medial Ball-in-Socket Posterior Cruciate-Sacrificing Total Knee Arthroplasty: Clinical, Functional and Radiographic Evaluation of 100 Consecutive Implants
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, J.T.; Walker, R.W.; Evans, J.P.; Blom, A.W.; Sayers, A.; Whitehouse, M.R. How Long Does a Knee Replacement Last? A Systematic Review and Meta-Analysis of Case Series and National Registry Reports with More than 15 Years of Follow-Up. Lancet 2019, 393, 655–663. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.R.; Santos, A.A.M.; de Sampaio Carvalho Júnior, J.; Matos, M.A. Quality of Life after Total Knee Arthroplasty: Systematic Review. Rev. Bras. Ortop. 2014, 49, 520–527. [Google Scholar] [CrossRef]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Australian Orthopeaedic Association National Joint Replacement Registry. 2019 Annual Report. 2019. Available online: https://aoanjrr.sahmri.com/Annual-Reports-2019 (accessed on 25 July 2023).
- The 2019 Annual Report of the American Joint Replacement Registry. 2019. Available online: https://www.aaos.org/Registries/Publications/Ajrr-Annual-Report/ (accessed on 25 July 2023).
- Kim, T.K.; Chang, C.B.; Kang, Y.G.; Kim, S.J.; Seong, S.C. Causes and Predictors of Patient’s Dissatisfaction After Uncomplicated Total Knee Arthroplasty. J. Arthroplast. 2009, 24, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Gunaratne, R.; Pratt, D.N.; Banda, J.; Fick, D.P.; Khan, R.J.K.; Robertson, B.W. Patient Dissatisfaction Following Total Knee Arthroplasty: A Systematic Review of the Literature. J. Arthroplast. 2017, 32, 3854–3860. [Google Scholar] [CrossRef] [PubMed]
- Bugelli, G.; Ascione, F.; Cazzella, N.; Franceschetti, E.; Franceschi, F.; Dell’Osso, G.; Svantesson, E.; Samuelsson, K.; Giannotti, S. Pseudo-Patella Baja: A Minor yet Frequent Complication of Total Knee Arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1831–1837. [Google Scholar] [CrossRef]
- Fritzsche, H.; Beyer, F.; Postler, A.; Lützner, J. Different Intraoperative Kinematics, Stability, and Range of Motion between Cruciate-Substituting Ultracongruent and Posterior-Stabilized Total Knee Arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1465–1470. [Google Scholar] [CrossRef]
- Núñez-Cortés, R.; Chamorro, C.; Ortega-Palavecinos, M.; Mattar, G.; Paredes, O.; Besoaín-Saldaña, Á.; Cruz-Montecinos, C. Social Determinants Associated to Chronic Pain after Total Knee Arthroplasty. Int. Orthop. 2019, 43, 2767–2771. [Google Scholar] [CrossRef]
- Longo, U.G.; Candela, V.; Pirato, F.; Hirschmann, M.T.; Becker, R.; Denaro, V. Midflexion Instability in Total Knee Arthroplasty: A Systematic Review. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 370–380. [Google Scholar] [CrossRef]
- Most, E.; Zayontz, S.; Li, G.; Otterberg, E.; Sabbag, K.; Rubash, H.E. Femoral Rollback after Cruciate-Retaining and Stabilizing Total Knee Arthroplasty. Clin. Orthop. Relat. Res. 2003, 410, 101–113. [Google Scholar] [CrossRef]
- Dennis, D.A.; Komistek, R.D.; Mahfouz, M.R.; Haas, B.D.; Stiehl, J.B. Conventry Award Paper: Multicenter Determination of In Vivo Kinematics After Total Knee Arthroplasty. Clin. Orthop. Relat. Res. 2003, 416, 37–57. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.A.R.; Pinskerova, V. The Movement of the Normal Tibio-Femoral Joint. J. Biomech. 2005, 38, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Ogden, S.; Blaha, J.D.; Alexander, A.; Fitch, D.A.; Barnes, C.L. Midterm Clinical and Radiographic Results of the Medial Pivot Total Knee System. Int. Orthop. 2014, 38, 2495–2498. [Google Scholar] [CrossRef]
- Hossain, F.; Patel, S.; Rhee, S.J.; Haddad, F.S. Knee Arthroplasty with a Medially Conforming Ball-and-Socket Tibiofemoral Articulation Provides Better Function. Clin. Orthop. Relat. Res. 2011, 469, 55–63. [Google Scholar] [CrossRef]
- Benjamin, B.; Pietrzak, J.R.T.; Tahmassebi, J.; Haddad, F.S. A Functional Comparison of Medial Pivot and Condylar Knee Designs Based on Patient Outcomes and Parameters of Gait. Bone Jt. J. 2018, 100-B, 76–82. [Google Scholar] [CrossRef]
- De Falco, L.; Troiano, E.; Cesar, M.; Aiuto, P.; Peri, G.; Nuvoli, N.; Fortina, M.; Mondanelli, N.; Giannotti, S. Intra-Operative Local plus Systemic Tranexamic Acid Significantly Decreases Post-Operative Bleeding and the Need for Allogeneic Blood Transfusion in Total Knee Arthroplasty. Med. Glas. 2021, 18, 267–272. [Google Scholar] [CrossRef]
- Collins, N.J.; Roos, E.M. Patient-Reported Outcomes for Total Hip and Knee Arthroplasty: Commonly Used Instruments and Attributes of a ‘Good’ Measure. Clin. Geriatr. Med. 2012, 28, 367–394. [Google Scholar] [CrossRef]
- Roos, E.M.; Engelhart, L.; Ranstam, J.; Anderson, A.F.; Irrgang, J.J.; Marx, R.G.; Tegner, Y.; Davis, A.M. ICRS Recommendation Document: Patient-Reported Outcome Instruments for Use in Patients with Articular Cartilage Defects. Cartilage 2011, 2, 122–136. [Google Scholar] [CrossRef]
- Garratt, A.M.; Brealey, S.; Gillespie, W.J. Patient-Assessed Health Instruments for the Knee: A Structured Review. Rheumatology 2004, 43, 1414–1423. [Google Scholar] [CrossRef]
- Wright, R.W. Knee Injury Outcomes Measures. J. Am. Acad. Orthop. Surg. 2009, 17, 31–39. [Google Scholar] [CrossRef]
- Alviar, M.J.; Olver, J.; Brand, C.; Hale, T.; Khan, F. Do Patient-Reported Outcome Measures Used in Assessing Outcomes in Rehabilitation after Hip and Knee Arthroplasty Capture Issues Relevant to Patients? Results of a Systematic Review and ICF Linking Process. J. Rehabil. Med. 2011, 43, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Collins, N.J.; Roos, E.M.; Misra, D.; Felson, T.D.; Crossley, K.M. Measures of Knee Function. Arthritis Care Res. 2011, 63 (Suppl. S11), S208–S228. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Merchan, E.C. Knee Instruments and Rating Scales Designed to Measure Outcomes. J. Orthop. Traumatol. 2012, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Roos, E.M.; Lohmander, L.S. The Knee Injury and Osteoarthritis Outcome Score (KOOS): From Joint Injury to Osteoarthritis. Health Qual. Life Outcomes 2003, 1, 64. [Google Scholar] [CrossRef]
- Noble, P.C.; Scuderi, G.R.; Brekke, A.C.; Sikorskii, A.; Benjamin, J.B.; Lonner, J.H.; Chadha, P.; Daylamani, D.A.; Scott, W.N.; Bourne, R.B. Development of a New Knee Society Scoring System. Clin. Orthop. Relat. Res. 2012, 470, 20–32. [Google Scholar] [CrossRef]
- Apolone, G.; Mosconi, P. The Italian SF-36 Health Survey: Translation, Validation and Norming. J. Clin. Epidemiol. 1998, 51, 1025–1036. [Google Scholar] [CrossRef]
- Ware, J.E.; Sherbourne, C.D. The MOS 36-Item Short-Form Health Survey (SF-36). I. Conceptual Framework and Item Selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef]
- Steffen, T.; Seney, M. Test-Retest Reliability and Minimal Detectable Change on Balance and Ambulation Tests, the 36-Item Short-Form Health Survey, and the Unified Parkinson Disease Rating Scale in People with Parkinsonism. Phys. Ther. 2008, 88, 733–746. [Google Scholar] [CrossRef]
- Kaneda, K.; Niki, Y.; Kuroyanagi, Y.; Kobayashi, S.; Harato, K.; Iwama, Y.; Nagura, T. Kinematically Aligned Total Knee Arthroplasty Using Medial Pivot Knee Prosthesis Enhances Medial Pivot Motion: A Comparative Kinematic Study with Mechanically Aligned Total Knee Arthroplasty. Arthroplast. Today 2022, 13, 24–28. [Google Scholar] [CrossRef]
- Bauer, L.; Woiczinski, M.; Thorwächter, C.; Müller, P.E.; Holzapfel, B.M.; Niethammer, T.R.; Simon, J.-M. Influence of Kinematic Alignment on Femorotibial Kinematics in Medial Stabilized TKA Design Compared to Mechanical Alignment. Arch. Orthop. Trauma. Surg. 2022, 143, 4339–4347. [Google Scholar] [CrossRef]
- Karachalios, T.; Varitimidis, S.; Bargiotas, K.; Hantes, M.; Roidis, N.; Malizos, K.N. An 11- to 15-Year Clinical Outcome Study of the Advance Medial Pivot Total Knee Arthroplasty. Bone Jt. J. 2016, 98-B, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Blaha, J.D. The Rationale for a Total Knee Implant That Confers Anteroposterior Stability throughout Range of Motion. J. Arthroplast. 2004, 19, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Samy, D.A.; Wolfstadt, J.I.; Vaidee, I.; Backstein, D.J. A Retrospective Comparison of a Medial Pivot and Posterior-Stabilized Total Knee Arthroplasty With Respect to Patient-Reported and Radiographic Outcomes. J. Arthroplast. 2018, 33, 1379–1383. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, D.K.; Blaha, J.; Barnes, C.L.; Fitch, D.; Obert, R.; Carroll, M. Quadriceps Efficiency Following Total Knee Arthroplasty with a Medial-Pivot System Is Similar to Control. Orthop. Proc. 2016, 98-B (Suppl. S9), 93. [Google Scholar]
- Minoda, Y.; Kobayashi, A.; Iwaki, H.; Miyaguchi, M.; Kadoya, Y.; Ohashi, H.; Yamano, Y.; Takaoka, K. Polyethylene Wear Particles in Synovial Fluid After Total Knee Arthroplasty. Clin. Orthop. Relat. Res. 2003, 410, 165–172. [Google Scholar] [CrossRef]
- Nishio, Y.; Onodera, T.; Kasahara, Y.; Takahashi, D.; Iwasaki, N.; Majima, T. Intraoperative Medial Pivot Affects Deep Knee Flexion Angle and Patient-Reported Outcomes After Total Knee Arthroplasty. J. Arthroplast. 2014, 29, 702–706. [Google Scholar] [CrossRef]
- Macheras, G.A.; Galanakos, S.P.; Lepetsos, P.; Anastasopoulos, P.P.; Papadakis, S.A. A Long Term Clinical Outcome of the Medial Pivot Knee Arthroplasty System. Knee 2017, 24, 447–453. [Google Scholar] [CrossRef]
- Sabatini, L.; Risitano, S.; Parisi, G.; Tosto, F.; Indelli, P.F.; Atzori, F.; Massè, A. Medial Pivot in Total Knee Arthroplasty: Literature Review and Our First Experience. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2018, 11, 117954411775143. [Google Scholar] [CrossRef]
- Bianchi, N.; Facchini, A.; Mondanelli, N.; Sacchetti, F.; Ghezzi, R.; Gesi, M.; Capanna, R.; Giannotti, S. Medial Pivot vs Posterior Stabilized Total Knee Arthroplasty Designs: A Gait Analysis Study. Med. Glas. 2021, 18, 252–259. [Google Scholar] [CrossRef]
- Fitch, D.A.; Sedacki, K.; Yang, Y. Mid- to Long-Term Outcomes of a Medialpivot System for Primary Total Knee Replacement: A Systematic Review and Metaanalysis. Bone Jt. Res. 2014, 3, 297–304. [Google Scholar] [CrossRef]
- Young, T.; Dowsey, M.M.; Pandy, M.; Choong, P.F. A Systematic Review of Clinical Functional Outcomes after Medial Stabilized Versus Non-Medial Stabilized Total Knee Joint Replacement. Front. Surg. 2018, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Zhang, Q.S.; Zhang, K.; Cao, Y.W.; Chen, G.H.; Ling, Z.Z.; Xu, H. Total Knee Arthroplasty Using a Medial Pivot or Posterior Cruciate-Stabilizing Prosthesis in Chinese Patients. J. Knee Surg. 2020, 33, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Cacciola, G.; de Martino, I.; de Meo, F. Does the Medial Pivot Knee Improve the Clinical and Radiographic Outcome of Total Knee Arthroplasty? A Single Centre Study on Two Hundred and Ninety Seven Patients. Int. Orthop. 2020, 44, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Katchky, A.M.; Jones, C.W.; Walter, W.L.; Shimmin, A.J. Medial Ball and Socket Total Knee Ar-Throplasty: Five-Year Clinical Results. Bone Jt. J. 2019, 101-B, 59–65. [Google Scholar] [CrossRef] [PubMed]
SCORE | pre-op | 1 Month | 3 Months | 6 Months | 12 Months | 24 Months | 36 Months | 48 Months |
---|---|---|---|---|---|---|---|---|
nKSS (points) | 138.0 ± 13.1 | 183.6 ± 7.3 | 194.5 ± 9.2 | 197.2 ± 13.2 | 198.1 ± 10.6 | 201.3 ± 11.5 | 206.6 ± 12.8 | 206.4 ± 13.3 |
KOOS (points) | 38.4 ± 12.9 | 83.0 ± 6.7 | 89.9 ± 3.3 | 85.5 ± 12.4 | 88.3 ± 7.8 | 89.4 ± 7.6 | 91.5 ± 7.7 | 89.1 ± 12.3 |
SF-36 (%) | 51 ± 19.4 | 79.2 ± 14.0 | 80.3 ± 15.0 | 81.4 ± 14.0 | 79.3 ± 8.0 | 83.6 ± 10.0 | 83.7 ± 17.0 | 83.8 ± 12.0 |
nKSS (Points) | pre-op | 1 Month | 3 Months | 6 Months | 12 Months | 24 Months | 36 Months | 48 Months |
---|---|---|---|---|---|---|---|---|
Objective Knee Score | 48.3 ± 14.8 | 66.2 ± 1.8 | 67.5 ± 0.6 | 67.6 ± 0.5 | 67.7 ± 0.5 | 67.2 ± 1.6 | 67.9 ± 0.3 | 67 ± 2.2 |
Patient Expectations Score | 13.8 ± 1.9 | 11.2 ± 0.8 | 12 ± 1.8 | 12.7 ± 0.9 | 13 ± 1.0 | 12.4 ± 1.4 | 13.3 ± 0.9 | 12.8 ± 0.8 |
Patient Satisfaction Score | 30.3 ± 14 | 33.2 ± 3.6 | 35 ± 6.2 | 36.2 ± 4.4 | 35.3 ± 4.2 | 36.6 ± 3.9 | 38.2 ± 3.4 | 38.3 ± 3.3 |
Functional Score | 37.2 ± 17.9 | 73 ± 6.7 | 80 ± 8.2 | 80.7 ± 11.7 | 82.2 ± 11.8 | 85 ± 10.3 | 87.2 ± 10.2 | 88.5 ± 12.9 |
KOOS (Points) | pre-op | 1 Month | 3 Months | 6 Months | 12 Months | 24 Months | 36 Months | 48 Months |
---|---|---|---|---|---|---|---|---|
Symptoms | 46.9 ± 15.0 | 91.4 ± 6.0 | 96.8 ± 3.0 | 91.8 ± 11.8 | 94.5 ± 11.6 | 96.0 ± 6.0 | 96.4 ± 5.0 | 94.6 ± 11.0 |
Pain | 48.8 ± 14.9 | 97.2 ± 4.8 | 98.1 ± 3.0 | 98.4 ± 2.1 | 97.5 ± 4.0 | 98.2 ± 2.5 | 98.8 ± 2.0 | 94.7 ± 10.7 |
ADL | 48.3 ± 16.9 | 96.2 ± 10.8 | 99.3 ± 10.7 | 97.3 ± 4.8 | 98.2 ± 2.9 | 96.5 ± 9.8 | 97.4 ± 5.0 | 96.2 ± 7.4 |
Sport/Rec | 11.5 ± 14.6 | 43.0 ± 23.0 | 61.3 ± 14.4 | 55.2 ± 30.0 | 58.3 ± 22.5 | 63.4 ± 19.1 | 69.0 ± 26.0 | 68.8 ± 25.9 |
QOL | 21.6 ± 14.5 | 87.5 ± 11.2 | 94.3 ± 6.5 | 87.5 ± 17.3 | 92.9 ± 11.8 | 92.8 ± 13.6 | 96.2 ± 6.2 | 91.3 ± 15.4 |
SF-36 (%) | pre-op | 1 Month | 3 Months | 6 Months | 12 Months | 24 Months | 36 Months | 48 Months |
---|---|---|---|---|---|---|---|---|
Physical functioning | 50 ± 15 | 70 ± 23 | 79 ± 5 | 77 ± 20 | 81 ± 8 | 79 ± 14 | 84 ± 11 | 77 ± 27 |
Role limitations due to physical health | 25 ± 19 | 78 ± 22 | 92 ± 10 | 87 ± 11 | 74 ± 35 | 81 ± 14 | 85 ± 32 | 77 ± 28 |
Role limitations due to emotional problems | 94 ± 18 | 93 ± 15 | 81 ± 32 | 87 ± 26 | 91 ± 18 | 82 ± 33 | 86 ± 34 | 94 ± 13 |
Energy/fatigue | 25 ± 15 | 76 ± 17 | 75 ± 44 | 79 ± 27 | 74 ± 29 | 81 ± 15 | 84 ± 21 | 90 ± 9 |
Emotional well-being | 54 ± 18 | 76 ± 16 | 69 ± 41 | 79 ± 29 | 75 ± 28 | 93 ± 6 | 84 ± 22 | 88 ± 9 |
Social functioning | 50 ± 15 | 94 ± 9 | 91 ± 19 | 87 ± 20 | 97 ± 10 | 95 ± 7 | 91 ± 17 | 84 ± 26 |
Pain | 41 ± 14 | 90 ± 11 | 87 ± 10 | 84 ± 18 | 90 ± 11 | 94 ± 11 | 89 ± 13 | 90 ± 19 |
General Health | 59 ± 14 | 70 ± 14 | 84 ± 8 | 80 ± 12 | 79 ± 15 | 82 ± 10 | 79 ± 16 | 88 ± 9 |
Health change | 57 ± 21 | 66 ± 29 | 66 ± 20 | 70 ± 29 | 52 ± 32 | 65 ± 31 | 72 ± 19 | 66 ± 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannotti, S.; Crippa Orlandi, N.; Troiano, E.; Cacioppo, M.; Giacché, T.; Greco, T.; Perisano, C.; Mondanelli, N. Medial Ball-in-Socket Posterior Cruciate-Sacrificing Total Knee Arthroplasty: Clinical, Functional and Radiographic Evaluation of 100 Consecutive Implants. Prosthesis 2023, 5, 1275-1286. https://doi.org/10.3390/prosthesis5040087
Giannotti S, Crippa Orlandi N, Troiano E, Cacioppo M, Giacché T, Greco T, Perisano C, Mondanelli N. Medial Ball-in-Socket Posterior Cruciate-Sacrificing Total Knee Arthroplasty: Clinical, Functional and Radiographic Evaluation of 100 Consecutive Implants. Prosthesis. 2023; 5(4):1275-1286. https://doi.org/10.3390/prosthesis5040087
Chicago/Turabian StyleGiannotti, Stefano, Nicholas Crippa Orlandi, Elisa Troiano, Matteo Cacioppo, Tiziano Giacché, Tommaso Greco, Carlo Perisano, and Nicola Mondanelli. 2023. "Medial Ball-in-Socket Posterior Cruciate-Sacrificing Total Knee Arthroplasty: Clinical, Functional and Radiographic Evaluation of 100 Consecutive Implants" Prosthesis 5, no. 4: 1275-1286. https://doi.org/10.3390/prosthesis5040087
APA StyleGiannotti, S., Crippa Orlandi, N., Troiano, E., Cacioppo, M., Giacché, T., Greco, T., Perisano, C., & Mondanelli, N. (2023). Medial Ball-in-Socket Posterior Cruciate-Sacrificing Total Knee Arthroplasty: Clinical, Functional and Radiographic Evaluation of 100 Consecutive Implants. Prosthesis, 5(4), 1275-1286. https://doi.org/10.3390/prosthesis5040087