Comparison between Bone-Level and Tissue-Level Implants in Immediate-Loading Full-Arch Rehabilitations: A Retrospective Multi-Center 1-Year Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Study Design
2.3. Surgery Procedures
2.4. Outcomes
- Implant survival rate;
- MBL assessed 12-months after surgery (T12). Digital intraoral periapical radiographs acquired using the parallel approach were used to assess MBL following the methods described in previous published articles [30,31]. The bone level was calculated as the distance between the head of the implant and the most coronal bone at both the mesial and distal aspect of the implants. Both the X-rays taken immediately following surgery (T0) and the ones taken at T12 were used. The MBL resulted as difference between T12 and T0;
- Plaque index (PI), peri-implant probing depth (PPD), and bleeding on probing (BOP) were evaluated as peri-implant soft tissue parameters at the 12-month follow-up. A periodontal UNC 15 probe (Hu-Friedy, Chicago, IL, USA) was used to measure PI, PD, and BI at 4 locations for each implant. PI and BOP were expressed as number of surfaces per implant presented with plaque or bleeding.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barootchi, S.; Askar, H.; Ravidà, A.; Gargallo-Albiol, J.; Travan, S.; Wang, H.L. Long-term Clinical Outcomes and Cost-Effectiveness of Full-Arch Implant-Supported Zirconia-Based and Metal-Acrylic Fixed Dental Prostheses: A Retrospective Analysis. Int. J. Oral Maxillofac. Implant. 2020, 35, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Schropp, L.; Isidor, F.; Kostopoulos, L.; Wenzel, A. Patient experience of, and satisfaction with, delayed-immediate vs. delayed single-tooth implant placement. Clin. Oral Implant. Res. 2004, 15, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Catapano, S.; Ortensi, L.; Mobilio, N.; Grande, F. The New Elderly Patient: A Necessary Upgrade. Prosthesis 2021, 3, 99–104. [Google Scholar] [CrossRef]
- Ortensi, L.; Ortensi, M.; Minghelli, A.; Grande, F. Implant-Supported Prosthetic Therapy of an Edentulous Patient: Clinical and Technical Aspects. Prosthesis 2020, 2, 140–152. [Google Scholar] [CrossRef]
- Tealdo, T.; Menini, M.; Bevilacqua, M.; Pera, F.; Pesce, P.; Signori, A.; Pera, P. Immediate versus delayed loading of dental implants in edentulous patients’ maxillae: A 6-year prospective study. Int. J. Prosthodont. 2014, 27, 207–214. [Google Scholar] [CrossRef] [PubMed]
- De Bruyn, H.; Raes, S.; Ostman, P.O.; Cosyn, J. Immediate loading in partially and completely edentulous jaws: A review of the literature with clinical guidelines. Periodontology 2000 2014, 66, 153–187. [Google Scholar] [CrossRef] [PubMed]
- Wittneben, J.G.; Buser, D.; Salvi, G.E.; Bürgin, W.; Hicklin, S.; Brägger, U. Complication and failure rates with implant-supported fixed dental prostheses and single crowns: A 10-year retrospective study. Clin. Implant Dent. Relat. Res. 2014, 16, 356–364. [Google Scholar] [CrossRef]
- Sailer, I.; Karasan, D.; Todorovic, A.; Ligoutsikou, M.; Pjetursson, B.E. Prosthetic failures in dental implant therapy. Periodontology 2000 2022, 88, 130–144. [Google Scholar] [CrossRef]
- Catapano, S.; Ferrari, M.; Mobilio, N.; Montanari, M.; Corsalini, M.; Grande, F. Comparative Analysis of the Stability of Prosthetic Screws under Cyclic Loading in Implant Prosthodontics: An In Vitro Study. Appl. Sci. 2021, 11, 622. [Google Scholar] [CrossRef]
- Brånemark, P.; Adell, R.; Breine, U.; Hansson, B.O.; Lindstrom, J.; Ohlsson, A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand. J. Plast. Reconstr. Sug. 1969, 3, 81–100. [Google Scholar] [CrossRef]
- Balshi, T.J.; Wolfinger, G.J.; Slauch, R.W.; Balshi, S.F. A retrospective analysis of 800 Brånemark System implants following the All-on-Four protocol. J. Prosthodont. 2014, 23, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Garzón, N.; Mauri-Obradors, E.; Roselló-LLabrés, X.; Estrugo-Devesa, A.; Jané-Salas, E.; López-López, J. Comparison of Marginal Bone Loss Between Implants with Internal and External Connections: A Systematic Review. Int. J. Oral Maxillofac. Implant. 2018, 33, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Manzella, C.; Burello, V.; Bignardi, C.; Carossa, S.; Schierano, G. A method to improve passive fit of frameworks on implant- supported prostheses: An in vivo study. Int. J. Prosthodont. 2013, 26, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Gil, F.J.; Herrero-Climent, M.; Lazaro, P.; Rios, J.V. Implant-abutment connections: Influence of the design on the microgap and their fatigue and fracture behavior of dental implants. J. Mater. Sci. Mater. Med. 2014, 25, 1825–1830. [Google Scholar] [CrossRef] [PubMed]
- Almeida, E.O.; Freitas, A.C., Jr.; Bonfante, E.A.; Marotta, L.; Silva, N.R.; Coelho, P.G. Mechanical testing of implant-supported anterior crowns with different implant/abutment connections. Int. J. Oral Maxillofac. Implant. 2013, 28, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Satoh, T.; Sogo, M. In vitro differences of stress concentrations for internal and external hex implant-abutment connections: A short communication. J. Oral Rehabil. 2006, 33, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Penarrocha-Oltra, D.; Soldini, C.; Mazzocco, F.; Penarrocha, M.; Covani, U. Microbiological assessment of the implant-abutment interface in different connections: Cross-sectional study after 5 years of functional loading. Clin. Oral Implant. Res. 2015, 26, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Vetromilla, B.M.; Brondani, L.P.; Pereira-Cenci, T.; Bergoli, C.D. Influence of different implant-abutment connection designs on the mechanical and biological behavior of single-tooth implants in the maxillary esthetic zone: A systematic review. J. Prosthet. Dent. 2019, 121, 398–403. [Google Scholar] [CrossRef]
- Lazzara, R.J.; Porter, S.S. Platform switching: A new concept in implant dentistry for controlling postrestorative crestal bone levels. Int. J. Periodontics Restor. Dent. 2006, 26, 9–17. [Google Scholar]
- Menini, M.; Pesce, P.; Bagnasco, F.; Carossa, M.; Mussano, F.; Pera, F. Evaluation of internal and external hexagon connections in immediately loaded full-arch rehabilitations: A within-person randomised split-mouth controlled trial. Int. J. Oral Implantol. 2019, 12, 169–179. [Google Scholar]
- Pera, F.; Menini, M.; Bagnasco, F.; Mussano, F.; Ambrogio, G.; Pesce, P. Evaluation of internal and external hexagon connections in immediately loaded full-arch rehabilitations: A within-person randomized split-mouth controlled trial with a 3-year follow-up. Clin. Implant Dent. Relat. Res. 2021, 23, 562–567. [Google Scholar] [CrossRef]
- Taheri, M.; Akbari, S.; Shamshiri, A.R.; Shayesteh, Y.S. Marginal bone loss around bone-level and tissue-level implants: A systematic review and meta-analysis. Ann. Anat. 2020, 231, 151525. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Menini, M.; Covani, U.; Pesce, P. Clinical outcomes of using a prosthetic protocol to rehabilitate tissue-level implants with a convergent collar in the esthetic zone: A 3-year prospective study. J. Prosthet. Dent. 2020, 123, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Carossa, M.; Alovisi, M.; Crupi, A.; Ambrogio, G.; Pera, F. Full-Arch Rehabilitation Using Trans-Mucosal Tissue-Level Implants with and without Implant-Abutment Units: A Case Report. Dent. J. 2022, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- Pera, F.; Pesce, P.; Menini, M.; Fanelli, F.; Kim, B.C.; Zhurakivska, K.; Mayer, Y.; Isola, G.; Cianciotta, G.; Crupi, A.; et al. Immediate loading full-arch rehabilitation using transmucosal tissue-level implants with different variables associated: A one-year observational study. Minerva Dent. Oral Sci. 2023, 72, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Menini, M.; Bagnasco, F.; Di Tullio, N.; Pesce, P. Tissue-level versus bone-level single implants in the anterior area rehabilitated with feather-edge crowns on conical implant abutments: An up to 5-year retrospective study. J. Prosthet. Dent. 2022, 128, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Dellepiane, E.; Deiana, T.; Fulcheri, E.; Pera, P.; Pesce, P. Comparison of Bone-Level and Tissue-Level Implants: A Pilot Study with a Histologic Analysis and a 4-Year Follow-up. Int. J. Periodontics Restor. Dent. 2022, 42, 535–543. [Google Scholar] [CrossRef]
- El-Kholey, K.E. Efficacy of two antibiotic regimens in the reduction of early dental implant failure: A pilot study. Int. J. Oral Maxillofac. Surg. 2014, 43, 487–490. [Google Scholar] [CrossRef]
- Tan, W.C.; Ong, M.; Han, J.; Mattheos, N.; Pjetursson, B.E.; Tsai, A.Y.; Sanz, I.; Wong, M.C.; Lang, N.P.; ITI Antibiotic Study Group. Effect of systemic antibiotics on clinical and patient-reported outcomes of implant therapy—A multicenter randomized controlled clinical trial. Clin. Oral Implant. Res. 2014, 25, 185–193. [Google Scholar] [CrossRef]
- Pera, F.; Menini, M.; Alovisi, M.; Crupi, A.; Ambrogio, G.; Asero, S.; Marchetti, C.; Canepa, C.; Merlini, L.; Pesce, P.; et al. Can Abutment with Novel Superlattice CrN/NbN Coatings Influence Peri-Implant Tissue Health and Implant Survival Rate Compared to Machined Abutment? 6-Month Results from a Multi-Center Split-Mouth Randomized Control Trial. Materials 2023, 16, 246. [Google Scholar] [CrossRef]
- Menini, M.; Pesce, P.; Delucchi, F.; Ambrogio, G.; Canepa, C.; Carossa, M.; Pera, F. One-stage versus two-stage technique using two splinted extra-short implants: A multicentric split-mouth study with a one-year follow-up. Clin. Implant Dent. Relat. Res. 2022, 24, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Testori, T.; Del Fabbro, M.; Capelli, M.; Zuffetti, F.; Francetti, L.; Weinstein, R.L. Immediate occlusal loading and tilted implants for the rehabilitation of the atrophic edentulous maxilla: 1-year interim results of a multicenter prospective study. Clin. Oral Implant. Res. 2008, 19, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Capelli, M.; Zuffetti, F.; Del Fabbro, M.; Testori, T. Immediate rehabilitation of the completely edentulous jaw with fixed prostheses supported by either upright or tilted implants: A multicenter clinical study. Int. J. Oral Maxillofac. Implant. 2007, 22, 639–644. [Google Scholar]
- Albrektsson, T.; Zarb, G.A. Current interpretations of the osseointegrated response: Clinical significance. Int. J. Prosthodont. 1993, 6, 95–105. [Google Scholar]
- Albrektsson, T.; Zarb, G.; Worthington, P.; Eriksson, A.R. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int. J. Oral Maxillofac. Implant. 1986, 1, 11–25. [Google Scholar]
- Tallarico, M.; Canullo, L.; Caneva, M.; Ozcam, M. Microbial colonization of the implant-abutment interface and its possible influence on the development of peri-implantitis: A systematic review with meta-analysis. J. Prosthodont. Res. 2017, 61, 233–241. [Google Scholar] [CrossRef]
- Afrashtehfar, K.I.; Brägger, U.; Hicklin, S.P. Reliability of Interproximal Bone Height Measurements in Bone- and Tissue-Level Implants: A Methodological Study for Improved Calibration Purposes. Int. J. Oral Maxillofac. Implant. 2020, 35, 289–296. [Google Scholar] [CrossRef]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions—Introduction and key changes from the 1999 classification. J. Clin. Periodontol. 2018, 45, S1–S8. [Google Scholar] [CrossRef]
- Agustín-Panadero, R.; Martínez-Martínez, N.; Fernandez-Estevan, L.; Faus-López, J.; Solá-Ruíz, M.F. Influence of Transmucosal Area Morphology on Peri-Implant Bone Loss in Tissue-Level Implants. Int. J. Oral Maxillofac. Implant. 2019, 34, 947–952. [Google Scholar] [CrossRef]
- Canullo, L.; Tallarico, M.; Pradies, G.; Marinotti, F.; Loi, I.; Cocchetto, R. Soft and hard tissue response to an implant with a convergent collar in the esthetic area: Preliminary report at 18 months. Int. J. Esthet. Dent. 2017, 12, 306–323. [Google Scholar]
- Lepidi, L.; Grande, F.; Baldassarre, G.; Suriano, C.; Li, J.; Catapano, S. Preliminary clinical study of the accuracy of a digital axiographic recording system for the assessment of sagittal condylar inclination. J. Dent. 2023, 135, 104583. [Google Scholar] [CrossRef] [PubMed]
- Grande, F.; Pozzan, M.C.; Marconato, R.; Mollica, F.; Catapano, S. Evaluation of Load Distribution in a Mandibular Model with Four Implants Depending on the Number of Prosthetic Screws Used for OT-Bridge System: A Finite Element Analysis (FEA). Materials 2022, 15, 7963. [Google Scholar] [CrossRef] [PubMed]
- Grande, F.; Celeghin, G.; Gallinaro, F.; Mobilio, N.; Catapano, S. Comparison of the accuracy between full-arch digital scans and scannable impression materials: An in vitro study. Minerva Dent. Oral Sci. 2023, 72, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Montanari, M.; Grande, F.; Lepidi, L.; Piana, G.; Catapano, S. Rehabilitation with implant-supported overdentures in preteens patients with ectodermal dysplasia: A cohort study. Clin. Implant Dent. Relat. Res. 2023; early view. [Google Scholar] [CrossRef]
Bone-Level/Tissue-Level | Variable | Mean (mm) | Standard Deviation | p-Value |
---|---|---|---|---|
BL | Mesial MBL | 1.412 | 0.75 | * 0.01552 |
TL | 1.165 | 0.38 | ||
BL | Distal MBL | 1.264 | 0.81 | 0.8839 |
TL | 1.222 | 0.37 | ||
BL | Total MBL | 1.324 | 0.64 | 0.10302 |
TL | 1.194 | 0.30 | ||
BL | BOP | 0.905 | 1.05 | * <0.00001 |
TL | 1.7 | 1.15 | ||
BL | PI | 1.892 | 1.51 | 0.61708 |
TL | 1.938 | 1.27 | ||
BL | PPD | 2.155 | 0.46 | 0.22004 |
TL | 2.066 | 0.44 |
MBL Bone-Level Implants | ||||||
---|---|---|---|---|---|---|
Parameter | Variable | N | Mean (mm) | Std Dev | Median | p-Value |
Abutment | 0° | 25 | 1.13 | 0.69 | 1 | 0.1386 |
17° | 16 | 1.39 | 0.52 | 1.25 | ||
30° | 33 | 1.44 | 0.65 | 1.5 | ||
Implant inclinations | Tilted | 34 | 1.39 | 0.59 | 1.5 | 0.26 |
Upright | 40 | 1.27 | 0.69 | 1.25 | ||
Jaw distribution | Mandible | 20 | 1.11 | 0.75 | 1 | 0.083 |
Maxilla | 54 | 1.40 | 0.59 | 1.5 | ||
Lengths (mm) | 11.5 | 1 | 2 | - | 2 | 0.33 |
13 | 4 | 1.5 | 1.08 | 1.75 | ||
15 | 69 | 1.3 | 0.62 | 1.25 | ||
Diameters (mm) | 3.8 | 15 | 1.12 | 0.76 | 1 | 0.25 |
4.25 | 59 | 1.38 | 0.61 | 1.25 | ||
MBL tissue-level implants | ||||||
Abutment | None | 40 | 1.16 | 0.31 | 1.2 | 0.482 |
17° | 24 | 1.21 | 0.25 | 1.25 | ||
30° | 16 | 1.27 | 0.32 | 1.21 | ||
Implant inclinations | Tilted | 40 | 1.23 | 0.28 | 1.25 | 0.2485 |
Upright | 40 | 1.16 | 0.31 | 1.20 | ||
Jaw distribution | Mandible | 36 | 1.14 | 0.26 | 1.175 | 0.2945 |
Maxilla | 44 | 1.24 | 0.32 | 1.25 | ||
Lengths (mm) | 10 | 8 | 1.04 | 0.23 | 0.925 | 0.1114 |
11.5 | 18 | 1.30 | 1.28 | 1.28 | ||
13 | 27 | 1.12 | 1.25 | 1.25 | ||
15 | 27 | 1.16 | 1.15 | 1.15 | ||
Diameters (mm) | 3.8 | 48 | 1.18 | 0.28 | 1.21 | 0.89 |
4.25 | 32 | 1.21 | 0.32 | 1.25 |
Parameter | Variable | MBL BL Group Mean (SD) | MBL TL Group Mean (SD) | p-Value |
---|---|---|---|---|
Abutment | 17° | 1.39 (0.52) | 1.21 (0.25) | 0.4272 |
30° | 1.44 (0.65) | 1.27 (0.32) | 0.1139 | |
Implant inclinations | Tilted | 1.39 (0.59) | 1.23 (0.28) | 0.069 |
Upright | 1.27 (0.69) | 1.16 (0.31) | 0.4556 | |
Jaw distribution | Mandible | 1.11 (0.75) | 1.14 (0.26) | 0.6674 |
Maxilla | 1.40 (0.59) | 1.24 (0.32) | 0.085 | |
Lengths (mm) | 11.5 | 2 | 1.30 (1.28) | 0.1397 |
13 | 1.5 (1.08) | 1.12 (1.25) | 0.1835 | |
15 | 1.3 (0.62) | 1.16 (1.15) | 0.242 | |
Diameters (mm) | 3.8 | 1.12 (0.76) | 1.18 (0.28) | 0.8777 |
4.25 | 1.38 (0.61) | 1.21 (0.32) | 0.1438 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pera, F.; Carossa, M.; Bagnasco, F.; Crupi, A.; Ambrogio, G.; Isola, G.; Menini, M.; Pesce, P. Comparison between Bone-Level and Tissue-Level Implants in Immediate-Loading Full-Arch Rehabilitations: A Retrospective Multi-Center 1-Year Follow-Up Study. Prosthesis 2023, 5, 1301-1311. https://doi.org/10.3390/prosthesis5040089
Pera F, Carossa M, Bagnasco F, Crupi A, Ambrogio G, Isola G, Menini M, Pesce P. Comparison between Bone-Level and Tissue-Level Implants in Immediate-Loading Full-Arch Rehabilitations: A Retrospective Multi-Center 1-Year Follow-Up Study. Prosthesis. 2023; 5(4):1301-1311. https://doi.org/10.3390/prosthesis5040089
Chicago/Turabian StylePera, Francesco, Massimo Carossa, Francesco Bagnasco, Armando Crupi, Giulia Ambrogio, Gaetano Isola, Maria Menini, and Paolo Pesce. 2023. "Comparison between Bone-Level and Tissue-Level Implants in Immediate-Loading Full-Arch Rehabilitations: A Retrospective Multi-Center 1-Year Follow-Up Study" Prosthesis 5, no. 4: 1301-1311. https://doi.org/10.3390/prosthesis5040089
APA StylePera, F., Carossa, M., Bagnasco, F., Crupi, A., Ambrogio, G., Isola, G., Menini, M., & Pesce, P. (2023). Comparison between Bone-Level and Tissue-Level Implants in Immediate-Loading Full-Arch Rehabilitations: A Retrospective Multi-Center 1-Year Follow-Up Study. Prosthesis, 5(4), 1301-1311. https://doi.org/10.3390/prosthesis5040089