Demonstration of the Temporal Evolution of Tropical Cyclone “Phailin” Using Gray-Zone Simulations and Decadal Variability of Cyclones over the Bay of Bengal in a Warming Climate
Abstract
:1. Introduction
2. The Synoptic Conditions during Phailin Cyclone
3. Numerical Experiments and Data Used
3.1. WRF Model Setup
3.2. Classification of Single- and Double-Moment Microphysics
4. Results and Discussion
4.1. Intensity and Structure of Phailin
4.2. Circulations and Dynamical Mechanism for Eyewall Development
4.3. Middle and Vertical Atmospheric Features
4.4. Rainfall Variability Due to Cyclone
4.5. Characteristics of Precipitation Hydrometeors
5. Impact of Global Warning on Cyclones
6. Conclusions
- The gray-zone simulations of track, intensity, and precipitation processes during ESCS stage were sensitive to the parameterization of different microphysical processes.
- One of the most sensitive results found that the eyewall clouds and characteristics during the deep depression (DD) to severe cyclonic storm (SCS) stage were better represented by the MY scheme than other MP schemes. However, WSM3 showed relatively better results regarding landfall over the Odisha coast and lower track errors than other MP schemes (Figure 4).
- Above 700 hPa, the water vapor in the cloud condenses into water, droplets releasing the latent heat, which originally evaporates the water. Latent heat provides the energy to drive the tropical cyclone circulation. However, lower heat release was utilized by Phailin to lower its surface pressure and increase the wind speeds (Figure 6).
- The eyewall development and its dynamical mechanism were analyzed with double- and single-moment MP schemes, which are sensitive and indicate the linkage between water vapor on one side and precipitation on the other. All the MP schemes simulated rainfall in terms of location and magnitude and closely agreed with TRMM rainfall (Figure 10e).
- Based on the above results, we can conclude that a double-moment cloud microphysical scheme (MY) is preferred for cyclonic systems. However, the MY scheme is unable to simulate the wind speed in the middle atmosphere.
- The clouds associated with Phailin that contribute to the vertical and horizontal redistribution of water vapor contents are well-simulated in all the schemes (WSM3, MY, WSM6, and WSM5).
- It is also important to assess the sensitivity of the simulated results of the double-moment MP schemes in WRF to provide helpful information towards improving cloud microphysics parameterization in the future. All the schemes show different results. Thus, a unified scheme is suggested for a consensus among various schemes by applying equal/unequal weight.
- There is a shift in cyclone formation over the Indian Ocean due to regional warming and availability of moisture supply in the Bay of Bengal, which has been especially evident over the western region in the recent decade (2011–2020) compared to the previous decade (2001–2010).
- The uncertainty that arises due to model physics could be identified with individual simulations, but multi-physics ensemble techniques using a number of physical parameterization schemes (PBL, cumulus convection, and cloud microphysics) are better at simulating track and intensity of TCs over NIO.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, T.S.V.V.; Sanjay, J.; Basu, B.K.; Mitra, A.K.; Rao, D.V.B.; Sharma, O.P.; Pal, P.K.; Krishnamurti, T.N. Experimental superensemble forecasts of tropical cyclones over the Bay of Bengal. Nat. Hazards 2006, 41, 471–485. [Google Scholar] [CrossRef]
- Bhaskar Rao, D.V.; Srinivas, D. Multi-Physics ensemble prediction of tropical cyclone movement over Bay of Bengal. Nat. Hazards 2014, 70, 883–902. [Google Scholar]
- Jullien, S.; Marchesiello, P.; Menkes, C.; Lefèvre, J.; Jourdain, N.; Samson, G.; Lengaigne, M. Ocean feedback to tropical cyclones: Climatology and processes. Clim. Dyn. 2014, 43, 2831–2854. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, M.; Sharma, M.; Devi, S.S.; Kumar, S.V.J.; Sabade, B.S. Frequency of genesis and landfall of different categories of tropical cyclones over the North Indian. Ocean. Mausam 2021, 72, 1–26. [Google Scholar]
- Kumar, V.; Sahu, D.K.; Simon, A.; Thomas, A.; Sinha, T.; Bielli, J.; Krishnamurti, T.N. Buoyancy Streams and Cloud Flare-Ups Along Rainbands in the Eye Wall of Rapidly Intensifying Storms. Pure Appl. Geophys. PAGEOPH 2021, 178, 223–243. [Google Scholar] [CrossRef]
- Rao, D.V.B.; Prasad, D.H.; Srinivas, D. Impact of horizontal resolution and the advantages of the nested domains approach in the prediction of tropical cyclone intensification and movement. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Houze, R.A. Clouds in Tropical Cyclones. Mon. Weather. Rev. 2010, 138, 293–344. [Google Scholar] [CrossRef]
- Pattnaik, S.; Inglish, C.; Krishnamurti, T.N. Influence of Rain-Rate Initialization, Cloud Microphysics, and Cloud Torques on Hurricane Intensity. Mon. Weather. Rev. 2011, 139, 627–649. [Google Scholar] [CrossRef]
- Bao, J.-W.; Michelson, S.A.; Grell, E.D. Pathways to the Production of Precipitating Hydrometeors and Tropical Cyclone Development. Mon. Weather. Rev. 2016, 144, 2395–2420. [Google Scholar] [CrossRef]
- Stephens, G.L. Cloud feedbacks in the climate system: A critical review. J. Clim. 2005, 18, 237–273. [Google Scholar] [CrossRef] [Green Version]
- Randall, D.; Khairoutdinov, M.; Arakawa, A. Grabowski W Breaking the cloud parameterization dead-lock. Bull Am. Meteorol. Soc. 2003, 84, 1547–1564. [Google Scholar] [CrossRef]
- Grabowski, W.W.; Morrison, H.; Shima, S.I.; Abade, G.C.; Dziekan, P.; Pawlowska, H. Modeling of cloud mi-crophysics: Can we do better? Bull Am. Meteorol. Soc. 2019, 100, 655–672. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Taraphdar, S.; Pauluis, O.M.; Xue, L.; Liu, C.; Rasmussen, R.; Ajayamohan, R.S.; Tessendorf, S.; Jing, X.; Chen, S.; Grabowski, W.W. WRF Gray-Zone Simulations of Precipitation Over the Middle-East and the UAE: Impacts of Physical Parameterizations and Resolution. J. Geophys. Res. Atmos. 2021, 126, e2021JD034648. [Google Scholar] [CrossRef]
- Srinivas, C.V.; Yesubabu, V.; Venkatesan, R.; Ramarkrishna, S.S.V.S. Impact of assimilation of conventional and satellite meteorological observations on the numerical simulation of a Bay of Bengal Tropical Cyclone of November 2008 near Tamil Nadu using WRF model. Meteorol. Atmos. Phy. 2009, 110, 19–44. [Google Scholar] [CrossRef]
- Osuri, K.K.; Mohanty, U.C.; Routray, A.; Kulkarni, M.A.; Mohapatra, M. Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Nat. Hazards 2012, 63, 1337–1359. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Dudha, M.G.; Huang, X.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/ TN-475? STR. 2008, p. 113. Available online: http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf (accessed on 21 August 2021).
- Srinivas, C.V.; Bhakar Rao, D.V.; Yesubabu, V.; Baskarana, R.; Venkatraman, B. Tropical Cyclone Predic-tions over the Bay of Bengal Using the High Resolution Advanced Research Weather Research and Fore-casting (ARW) Model. Q. J. R Meteorol. Soc. 2012, 139, 1810–1825. [Google Scholar] [CrossRef]
- Mohanty, U.C.; Osuri, K.K.; Tallapragada, V.; Marks, F.; Pattanayak, S.; Mohapatra, M.; Rathore, L.S.; Gopalakrishnan, S.G.; Niyogi, D. A Great Escape from the Bay of Bengal “Super Sapphire–Phailin” Tropical Cyclone: A Case of Improved Weather Forecast and Societal Response for Disaster Mitigation. Earth Interact. 2015, 19, 1–11. [Google Scholar] [CrossRef]
- Bhattacharya, S.K.; Kotal, S.D.; Roy Bhowmik, S.K.; Kundu, P.K. Sensitivity of WRF-ARW Model to Cumu-lus Parameterisation Schemes in Prediction of TC Intensity and Track Over the North Indian Ocean. In Tropical Cyclone Activity over the North Indian Ocean; Springer: Cham, Switzerland, 2017; pp. 295–306. [Google Scholar]
- Choudhury, D.; Das, S. The sensitivity to the microphysical schemes on the skill of forecasting the track and intensity of tropical cyclones using WRF-ARW model. J. Earth Syst. Sci. 2017, 126, 57. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Dubey, S.; Kumar, V.; Deepa, R.; Bhardwaj, A. Scale interaction during an extreme rain event over southeast India. Q. J. R. Meteorol. Soc. 2017, 143, 1442–1458. [Google Scholar] [CrossRef]
- Gallus, W.A.; Pfeifer, M. Intercomparison of simulations using 5 WRF microphysical schemes with dual-Polarization data for a German squall line. Adv. Geosci. 2008, 16, 109–116. [Google Scholar] [CrossRef]
- Reeves, H.D.; Ii, D.D. The Dependence of QPF on the Choice of Microphysical Parameterization for Lake-Effect Snowstorms. J. Appl. Meteorol. Clim. 2013, 52, 363–377. [Google Scholar] [CrossRef]
- Wu, L.; Wang, B. Effects of Convective Heating on Movement and Vertical Coupling of Tropical Cyclones: A Numerical Study. J. Atmospheric. Sci. 2001, 58, 3639–3649. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. How Do Outer Spiral Rainbands Affect Tropical Cyclone Structure and Intensity? J. Atmospheric Sci. 2009, 66, 1250–1273. [Google Scholar] [CrossRef]
- Mohanty, U.C.; Mandal, M.; Raman, S. Simulation of Orissa Super Cyclone using PSU/NCAR Mesoscale Model. Nat. Hazards 2004, 31, 373–390. [Google Scholar] [CrossRef] [Green Version]
- Rao, D.V.B.; Prasad, D.H. Sensitivity of tropical cyclone intensification to boundary layer and convective processes. Nat. Hazards 2006, 41, 429–445. [Google Scholar] [CrossRef]
- Mahala, B.K. Pratap Kumar Mohanty, Birendra Kumar Nayak Impact of Microphysics Schemes in the Simulation of Cyclone Phailin using WRF model. Procedia Eng. 2015, 116, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Mandal, M.; Singh, K.S.; Balaji, M.; Mohapatra, M. Performance of WRF-ARW model in real-time pre-diction of Bay of Bengal cyclone ‘Phailin’. Pure Appl. Geophys. 2016, 173, 1783–1801. [Google Scholar] [CrossRef]
- Kumar, S.; Routray, A.; Tiwari, G.; Chauhan, R.; Jain, I. Simulation of Tropical Cyclone ‘Phailin’ Using WRF Modeling System. In Tropical Cyclone Activity over the North Indian Ocean; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 307–316. [Google Scholar]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrain-ment processes. Mon. Wea. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef] [Green Version]
- Pattanayak, S.; Mohanty, U.C.; Osuri, K.K. Impact of Parameterization of Physical Processes on Simulation of Track and Intensity of Tropical Cyclone Nargis with WRF-NMM Model. Sci. World J. 2012, 2012, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Sandeep, C.P.; Krishnamoorthy, C.; Balaji, C. Impact of cloud parameterization schemes on the simula-tion of cyclone Vardah using the WRF model. Cur. Sci. 2018, 115, 1143–1153. [Google Scholar] [CrossRef]
- Dudhia, J. A multi-layer soil temperature model for MM5. In Proceedings of the Sixth PSU/NCAR Mesoscale Model Users Workshop, Boulder, CO, USA, 22 July 1996; pp. 22–24. [Google Scholar]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two dimensional model. J. Atmos Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Huang, Y.J.; Cui, X.P.; Wang, Y.P. Cloud microphysical differences with precipitation intensity in a tor-rential rainfall event in Sichuan, China. Atmos Oceanic. Sci. Lett. 2016, 9, 90–98. [Google Scholar] [CrossRef] [Green Version]
- McCumber, M.; Tao, W.K.; Simpson, J.; Penc, R.; Soong, S.T. Comparison of ice-phase microphysical pa-rameterization schemes using numerical simulations of tropical convection. J. App. Meteorol. 1991, 30, 985–1004. [Google Scholar] [CrossRef] [Green Version]
- Bony, S.; Stevens, B.; Frierson, D.M.W.; Jakob, C.; Kageyama, M.; Pincus, R.; Shepherd, T.G.; Sherwood, S.C.; Siebesma, A.P.; Sobel, A.; et al. Clouds, circulation and climate sensitivity. Nat. Geosci. 2015, 8, 261–268. [Google Scholar] [CrossRef]
- Morrison, H.; Milbrandt, J.A. Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests. J. Atmospheric Sci. 2015, 72, 287–311. [Google Scholar] [CrossRef]
- Jensen, E.J.; Pfister, L.; Jordan, D.E.; Bui, T.V.; Ueyama, R.; Singh, H.B.; Thornberry, T.D.; Rollins, A.W.; Gao, R.-S.; Fahey, D.W.; et al. The NASA Airborne Tropical Tropopause Experiment: High-Altitude Aircraft Measurements in the Tropical Western Pacific. Bull. Am. Meteorol. Soc. 2017, 98, 129–143. [Google Scholar] [CrossRef]
- Michalakes, J.; Chen, S.; Dudhia, J.; Hart, L.; Klemp, J.; Middlecoff, J.; Skamarock, W. Development of a Next-Generation Regional Weather Research and Forecast Model. In Developments in Teracomputing; World Scientific: Singapore, 2001; pp. 269–296. [Google Scholar]
- Chen, S.-H.; Sun, W.-Y. A One-dimensional Time Dependent Cloud Model. J. Meteorol. Soc. Jpn. 2002, 80, 99–118. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Pan, H.-L. Convective Trigger Function for a Mass-Flux Cumulus Parameterization Scheme. Mon. Weather. Rev. 1998, 126, 2599–2620. [Google Scholar] [CrossRef]
- Kessler, E. On the distribution and continuity of water substance in atmospheric circulations. Meteor. Monogr. 1969, 10, 88. [Google Scholar]
- Hong, S.Y.; Lim, J.O. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Milbrandt, J.A.; Yau, M.K. A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter. J. Atmospheric Sci. 2005, 62, 3051–3064. [Google Scholar] [CrossRef] [Green Version]
- Milbrandt, J.A.; Yau, M.K. A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description. J. Atmospheric Sci. 2005, 62, 3065–3081. [Google Scholar] [CrossRef]
- IMD. Very Severe Cyclonic Storm PHAILIN over the Bay of Bengal (08–14 October 2013): A Report; India Meteorological Department (Ministry of Earth Sciences), Government of India: Delhi, India, 2013. [Google Scholar]
- Chandrasekar, R.; Balaji, C. Sensitivity of tropical cyclone Jal simulations to physics parameteriza-tions. J. Earth System. Sci. 2012, 121, 923–946. [Google Scholar] [CrossRef] [Green Version]
- Durai, V.R.; Kotal, S.D.; Bhowmik, S.R.; Bharadwaj, R. Performance of Global Forecast System for the Pre-diction of Intensity and Track of Very Severe Cyclonic Storm ‘Phailin’over North Indian Ocean. In High-Impact Weather Events over the SAARC Region; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 191–203. [Google Scholar]
- Weatherford, C.; Gray, W.M. Typhoon structure as revealed by aircraft reconnaissance. Part II: Struc-tural variability. Mon. Wea. Rev. 1988, 116, 1044–1056. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, H.F.; Rubsam, D.T. Hurricane Hilda, 1964, II Structure and budgets of the hurricane on 01 Oct, 1964. Mon. Wea. Rev. 1968, 104, 418–442. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.A.; Galarneau, T.J., Jr. The vertical structure of mesoscale convective vortices. J. Atmosp. Sci. 2009, 66, 686–704. [Google Scholar] [CrossRef]
- IMD. Cyclone Manual; IMD: Lodi Road, New Delhi, India, 2003. [Google Scholar]
- Mohapatra, M.; Bandyopadhyay, B.K.; Nayak, D.P. Evaluation of operational tropical cyclone intensity forecasts over north Indian Ocean issued by India Meteorological Department. Nat. Hazards 2013, 68, 433–451. [Google Scholar] [CrossRef]
- Moon, Y.; Nolan, D.S. Spiral Rainbands in a Numerical Simulation of Hurricane Bill. Part II: Propagation of Inner Rainbands. J. Atmospheric Sci. 2015, 72, 191–215. [Google Scholar] [CrossRef]
- Hazra, V.; Pattnaik, S.; Sisodiya, A.; Baisya, H.; Turner, A.; Bhat, G. Assessing the performance of cloud microphysical parameterization over the Indian region: Simulation of monsoon depressions and validation with INCOMPASS observations. Atmos. Res. 2020, 239, 104925. [Google Scholar] [CrossRef]
- Cossu, F.; Hocke, K. Influence of microphysical schemes on atmospheric water in the Weather Research and Forecasting model. Geosci. Model Dev. 2014, 7, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Bruyère, C.; Duda, M.; Dudhia, J.; Gill, D.; Lin, H.C.; Michalakes, J.; Rizvi, S.; Zhang, X. Weather Research & Forecasting ARW Version 3 Modeling System User’s Guide, Mesoscale & Microscale Meteorology Division; NCAR: Boulder, CO, USA, 2012. [Google Scholar]
- Cui, X.; Wang, Y.; Yu, H. Microphysical differences with rainfall intensity in severe tropical storm Bilis. Atm. Sci. Lett. 2015, 16, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Roxy, M.K.; Gnanaseelan, C.; Parekh, A.; Chowdary, J.S.; Singh, S.; Modi, A.; Kakatkar, R.; Mohapatra, S.; Dhara, C.; Shenoi, S.C.; et al. Indian Ocean Warming. In Assessment of Climate Change over the Indian Region; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 191–206. [Google Scholar]
- Li, Z.; Yu, W.; Li, K.; Wang, H.; Liu, Y.; Liu, L. Environmental Conditions Modulating Tropical Cyclone Formation over the Bay of Bengal during the Pre-Monsoon Transition Period. J. Clim. 2019, 32, 4387–4394. [Google Scholar] [CrossRef]
- Lackmann, G.M. Hurricane Sandy before 1900 and after 2100. Bull Am. Meteorol. Soc. 2015, 96, 547–560. [Google Scholar] [CrossRef]
- Cho, C.; Li, R.; Wang, S.-Y.; Yoon, J.-H.; Gillies, R.R. Anthropogenic footprint of climate change in the June 2013 northern India flood. Clim. Dyn. 2016, 46, 797–805. [Google Scholar] [CrossRef] [Green Version]
- Villarini, G.; Zhang, W.; Quintero, F.; Krajewski, W.F.; A Vecchi, G. Attribution of the impacts of the 2008 flooding in Cedar Rapids (Iowa) to anthropogenic forcing. Environ. Res. Lett. 2020, 15, 114057. [Google Scholar] [CrossRef]
- Elsner, J.B. Continued Increases in the Intensity of Strong Tropical Cyclones. Bull. Am. Meteorol. Soc. 2020, 101, E1301–E1303. [Google Scholar] [CrossRef]
- Evan, A.T.; Kossin, J.; Chung, C.; Ramanathan, V. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols. Nat. Cell Biol. 2011, 479, 94–97. [Google Scholar] [CrossRef]
- Rajeevan, M.; Srinivasan, J.; Niranjan Kumar, K.; Gnanaseelan, C.; Ali, M.M. On the epochal var-iation of intensity of tropical cyclones in the Arabian Sea. Atmos. Sci. Lett. 2013, 14, 249–255. [Google Scholar] [CrossRef]
- Hazra, A.; Mukhopadhyay, P.; Taraphdar, S.; Chen, J.-P.; Cotton, W.R. Impact of aerosols on tropical cyclones: An investigation using convection-permitting model simulation. J. Geophys. Res. Atmos. 2013, 118, 7157–7168. [Google Scholar] [CrossRef]
Stage | Time | Pressure (hPa) | Wind Speed (kts) | Duration (Hours)/ Shape of the System | Latitude/Longitude |
---|---|---|---|---|---|
Depression (D) | 03 UTC 08 Oct 2013 | 1004 | 25 | 24 Dense clouds | 12.0° N; 96.0° E |
Deep Depression (DD) | 03 UTC 09 Oct 2013 | 1001 | 30 | 09 Dense clouds | 13.0° N; 93.5° E |
Cyclonic Storms (CS) | 12 UTC 09 Oct 2013 | 999 | 35 | 12 Dense clouds | 13.5° N;92.5° E |
Severe cyclonic storm (SCS) | 03 UTC 10 Oct 2013 | 990 | 55 | 03 Very dense clouds | 14.5° N; 91.0° E |
Very severe cyclonic storm (VSCS) | 06 UTC 10 Oct 2013 | 984 | 65 | 21 Almost closed eye and fair | 15.9° N; 90. 5° E |
Extreme severe cyclonic storm (ESCS) | 03 UTC 11 Oct 2013 | 940 | 115 | 20 Almost closed eye and good | 16.0° N; 88.5° E |
Extreme severe cyclonic storm (ESCS) | 03 UTC 12 Oct 2013 | 940 | 115 | 24 Almost closed eye and more prominent | 17.8° N; 86.0° E |
Severe cyclonic storm (SCS) | 03 UTC 13 Oct 2013 | 990 | 55 | Almost closed Eye | 17.8° N; 85.9° E |
Model Features | Non-Hydrostatic |
---|---|
Version | 3.7.1 |
Horizontal resolution | 25 km, 8.333 km |
Vertical levels | 42 |
Topography | USGS |
Dynamics | |
Time integration | 3rd order Runga-Kutta |
Time steps | 30 s |
Horizontal grid distribution | Arakawa C-grid |
Spatial differencing scheme | 6th order centered differencing |
Physics | |
Radiation scheme | Dudhia for short wave radiation/RRTM longwave radiation |
Surface layer | Monin–Obukhov similarity theory |
Land surface parameterization | 5-layer thermal diffusion |
PBL parameterization scheme | Yonsei University scheme (Hong et al. 2006) |
Cumulus parameterization scheme | Grell-Devenyi Ensemble (GDE) |
Cloud microphysics |
|
Initial and boundary conditions | Real data from NCEP FNL (1 × 1 degree) |
mp_Physics | Microphysical Scheme Name | Abbreviation | Hydrometeors |
---|---|---|---|
9 | Milbrandt–Yau double-moment 7-class [Milbrandt and Yau 2005a; Milbrandt and Yau 2005b] | MY | vapor, cloud, rain, ice, snow, graupel, and hail |
6 | WRF single-moment 6-class [Hong et al., 2006] | WSM6 | vapor, cloud, rain, ice, snow, and graupel |
4 | WRF single-moment 5-class [Hong et al., 2004] | WSM5 | vapor, cloud, rain, ice, and snow |
3 | WRF single-moment 3-class [Hong et al., 2004] | WSM3 | vapor, cloud/ice, and rain/snow. |
Stage of Phailin | Simulation Length | RMSE of CSLP (hPa) | RMSE of Wind at 10-m (Knots) | ||||||
---|---|---|---|---|---|---|---|---|---|
MY | WSM6 | WSM5 | WSM3 | MY | WSM6 | WSM5 | WSM3 | ||
D | 03z08 | 1.2 | 1.5 | 1.4 | 1.1 | 0.48 | 0.48 | 0.48 | 0.48 |
DD | 03z09 | 1.2 | 3.2 | 3.2 | 1.2 | 3.32 | 5.28 | 3.32 | 3.32 |
CS | 03z10 | 2.2 | 5.5 | 3.5 | 4.1 | 4.04 | 4.04 | 6.1 | 15.8 |
ESCS | 03z11 | 26.1 | 33.1 | 31.2 | 28.1 | 36.2 | 55.8 | 53.84 | 46.0 |
ESCS | 03z12 | 28 | 36 | 35 | 26 | 30.32 | 32.28 | 34.24 | 40.12 |
SCS | 03z13 | 5 | 5 | 1 | 1 | 11.88 | 11.88 | 11.88 | 5.76 |
State | Station | Latitude | Longitude | IMD (cm) | MY | WSM6 | WSM5 | WSM3 |
---|---|---|---|---|---|---|---|---|
Orissa | Tikarpara | 20.60 | 84.79 | 17 | 10.32 | 7.41 | 9.24 | 8.70 |
Rajghat | 21.07 | 86.50 | 92 | 14.94 | 12.34 | 16.42 | 8.05 | |
Nischintakoili | 20.48 | 86.18 | 11 | 16.62 | 13.59 | 15.27 | 13.72 | |
Mundali | 20.44 | 85.75 | 25 | 16.72 | 15.29 | 18.12 | 9.16 | |
Banki | 20.38 | 85.53 | 38 | 13.19 | 12.25 | 15.67 | 6.51 | |
Hindol | 20.61 | 85.20 | 23 | 13.72 | 12.23 | 14.04 | 9.93 | |
Mohana | 19.44 | 84.26 | 19 | 11.96 | 18.62 | 19.48 | 11.56 | |
Ramba | 19.51 | 85.09 | 14 | 1.54 | 11.22 | 11.14 | 8.23 | |
Purusottampur | 19.52 | 84.89 | 18 | 1.82 | 8.15 | 9.82 | 4.01 | |
Chandikhol | 20.71 | 86.10 | 15 | 14.08 | 19.32 | 23.78 | 15.17 | |
Danagadi | 20.97 | 86.08 | 19 | 17.05 | 23.45 | 21.78 | 9.68 | |
Daringibadi | 19.90 | 84.13 | 17 | 9.49 | 35.84 | 32.74 | 1.66 | |
Pattamundai | 20.59 | 86.57 | 15 | 14.50 | 14.02 | 13.74 | 8.91 | |
Joda | 22.02 | 85.41 | 19 | 14.03 | 12.01 | 11.81 | 4.56 | |
Banpur | 19.77 | 85.16 | 20 | 5.71 | 18.63 | 14.55 | 8.79 | |
Bangiriposi | 21.91 | 85.90 | 21 | 5.72 | 6.53 | 6.49 | 2.14 | |
Balimundali | 21.74 | 86.63 | 31 | 22.40 | 23.74 | 18.83 | 16.19 | |
Nayagarh | 20.12 | 85.10 | 18 | 9.27 | 11.27 | 13.99 | 10.86 | |
Ranpur | 19.90 | 85.40 | 30 | 13.12 | 20.23 | 19.70 | 6.65 | |
Puri | 19.81 | 85.83 | 12 | 5.64 | 16.64 | 12.32 | 8.05 | |
Coastal AP | Palasa | 18.76 | 84.42 | 10 | 0.49 | 5.78 | 3.92 | 3.80 |
Sompeta | 18.95 | 84.58 | 11 | 1.34 | 10.79 | 5.63 | 1.42 | |
Itchapuram | 18.88 | 84.45 | 20 | 1.26 | 11.01 | 4.76 | 1.87 | |
Jharkhand | Tenughat | 23.73 | 85.79 | 7 | 3.58 | 2.58 | 4.38 | 1.20 |
Dhanbad | 23.80 | 86.43 | 7 | 3.15 | 2.52 | 3.65 | 0.50 | |
Chaibasa | 22.55 | 85.80 | 20 | 13.2 | 5.28 | 8.17 | 2.62 |
Year | DD | * SCS | ESCS | Duration of ESCS ≥ 24 h |
---|---|---|---|---|
2001–2010 | 20 | 14 | 2 | 2 |
2011–2020 | 19 | 11 | 6 | 6 |
Stage | VSCS/ESCS during 2011–2020 | VSCS/ESCS during 2001–2010 | ||||||
---|---|---|---|---|---|---|---|---|
Phailin (MSLP/Wind) | Lahar (MSLP/Wind) | Hudhud (MSLP/Wind) | Titli (MSLP/Wind) | Gaja (MSLP/Wind) | Bulbul (MSLP/Wind) | Sidr (MSLP/Wind) | Giri (MSLP/Wind) | |
D | 1004 (25) | 1004 (25) | 1004 (25) | 1002 (25) | 1002 (25) | 1004 (45) | 1004 (25) | 1002 (25) |
DD | 1001 (30) | 1002 (30) | 1000 (30) | 1000 (30) | 1000 (30) | 1001 (30) | 1002 (30) | 1002 (30) |
SC | 999 (35) | 996 (45) | 990 (45) | 998 (35) | 999 (35) | 998 (35) | 998 (40) | 998 (50) |
SCS | 990 (55) | 988 (55) | 988 (60) | 990 (55) | 990 (55) | 992 (50) | 992 (55) | 980 (60) |
VSCS | 984 (65) | 982 (70) | 970 (75) | 972 (70) | 988 (60) | 983 (65) | 986 (65) | 976 (70) |
ESCS | 940 (115) | 980 (75) | 950 (100) | 972 (80) | 976 (70) | 976 (75) | 968 (90) | 964 (90) |
ESCS | 940 (115) | 988 (55) | 950 (100) | 972 (80) | - | 982 (70) | 944 (115) | 950 (105) |
SCS | 990 (55) | 998 (40) | 987 (40) | 996 (45) | 999 (55) | 998 (45) | 1000 (45) | 992 (45) |
DD | 996 (30) | 1000 (30) | 998 (30) | 1001 (30) | 1003 (30) | 1002 (30) | 1002 (25) | 998 (25) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradhan, P.K.; Kumar, V.; Khadgarai, S.; Rao, S.V.B.; Sinha, T.; Kattamanchi, V.K.; Pattnaik, S. Demonstration of the Temporal Evolution of Tropical Cyclone “Phailin” Using Gray-Zone Simulations and Decadal Variability of Cyclones over the Bay of Bengal in a Warming Climate. Oceans 2021, 2, 648-674. https://doi.org/10.3390/oceans2030037
Pradhan PK, Kumar V, Khadgarai S, Rao SVB, Sinha T, Kattamanchi VK, Pattnaik S. Demonstration of the Temporal Evolution of Tropical Cyclone “Phailin” Using Gray-Zone Simulations and Decadal Variability of Cyclones over the Bay of Bengal in a Warming Climate. Oceans. 2021; 2(3):648-674. https://doi.org/10.3390/oceans2030037
Chicago/Turabian StylePradhan, Prabodha Kumar, Vinay Kumar, Sunilkumar Khadgarai, S. Vijaya Bhaskara Rao, Tushar Sinha, Vijaya Kumari Kattamanchi, and Sandeep Pattnaik. 2021. "Demonstration of the Temporal Evolution of Tropical Cyclone “Phailin” Using Gray-Zone Simulations and Decadal Variability of Cyclones over the Bay of Bengal in a Warming Climate" Oceans 2, no. 3: 648-674. https://doi.org/10.3390/oceans2030037
APA StylePradhan, P. K., Kumar, V., Khadgarai, S., Rao, S. V. B., Sinha, T., Kattamanchi, V. K., & Pattnaik, S. (2021). Demonstration of the Temporal Evolution of Tropical Cyclone “Phailin” Using Gray-Zone Simulations and Decadal Variability of Cyclones over the Bay of Bengal in a Warming Climate. Oceans, 2(3), 648-674. https://doi.org/10.3390/oceans2030037