Marine Biodegradability and Ecotoxicity of MWool® Recycled Wool Fibers: A Circular-Economy-Based Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Logic Model of Experiments
2.2. Mesocosms Treatments
2.3. Physico–Chemical Analyses
2.4. Chemical Microanalyses
2.5. Ultrastructural Analyses
2.6. Ecotoxicological Assays
2.7. Quality Assurance and Quality Control
2.8. Statistical Analyses
3. Results
3.1. Physical–Chemical Alteration of Wool Fibers
3.1.1. Microchemical Analyses
3.1.2. Ultrastructural Analyses
3.2. Effects of Wool Degradation on Water
Release of Microfibers in Water
3.3. Effects of Pigment Release in Water
Pigment Release in Water
3.4. Ecotoxicity of Exposure Water
- MW. The lowest percent change was observed in the species P. tricornutum at time point T3 (I% 2.7 ± 1.2), while the highest change occurred in B. plicatilis at time point T7 (30% ± 0 after 24 and 48 h). In P. lividus, the greatest change was observed at time T1 (Δ% from T0 16.1%), while the least change occurred at time T7 (Δ% from T6 of +2.5%).
- MWc. In P. lividus, the greatest change was observed at time T1 (Δ% from T0 of 180.3%), and the least at time T7 (Δ% 131.8). In P. tricornutum, the greatest change was observed at time point T7 (Δ% 175.9), and the least at time point T2 (Δ% 166.9). In B. plicatilis, the greatest change was observed at time point T7 (Δ% 318.2), and the least at time point T1 (Δ% 0.0).
4. Discussion
4.1. General Features
4.2. Degradation of Wool in Marine Environment
4.3. Ecotoxicological Effects
4.4. Pro and Cons and Future Developments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pauna, V.H.; Buonocore, E.; Renzi, M.; Russo, G.F.; Franzese, P.P. The issue of microplastics in marine ecosystems: A bibliometric network analysis. Mar. Pollut. Bull. 2019, 149, 110612. [Google Scholar] [CrossRef]
- Renzi, M.; Guerranti, C.; Blašković, A. Microplastic contents from maricultured and natural mussels. Mar. Pollut. Bull. 2018, 131, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Kosuth, M.; Mason, S.A.; Wattenberg, E.V. Anthropogenic contamination of tap water, beer, and sea salt. PLoS ONE 2018, 13, e0194970. [Google Scholar] [CrossRef] [PubMed]
- De Falco, F.; Di Pace, E.; Cocca, M.; Avella, M. The contribution of washing processes of synthetic clothes to microplastic pollution. Sci. Rep. 2019, 9, 6633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauria, G.; Achtypi, A.; Perold, V.; Lee, J.R.; Pierucci, A.; Bornman, T.G.; Aliani, S.; Ryan, P.G. Microfibers in oceanic surface waters: A global characterization. Sci. Adv. 2020, 6, eaay8493. [Google Scholar] [CrossRef] [PubMed]
- Cesa, F.S.; Turra, A.; Checon, H.H.; Leonardi, B.; Baruque-Ramos, J. Laundering and textile parameters influence fibers release in household washings. Environ. Pollut. 2020, 257, 113553. [Google Scholar] [CrossRef]
- Sillanpää, M.; Sainio, P. Release of polyester and cotton fibers from textiles in machine washings. Environ. Sci. Pollut. Res. Int. 2017, 24, 19313–19321. [Google Scholar] [CrossRef]
- Zambrano, M.C.; Pawlak, J.J.; Daystar, J.; Ankeny, M.; Cheng, J.J.; Venditti, R.A. Microfibers generated from the laundering of cotton, rayon and polyester based fabrics and their aquatic biodegradation. Mar. Pollut. Bull. 2019, 142, 394–407. [Google Scholar] [CrossRef]
- De Falco, F.; Cocca, M.; Avella, M.; Thompson, R.C. Microfibers release to water, via laundering, and to air, via everyday use: A comparison between polyester clothing with different textile parameters. Environ. Sci. Technol. 2020, 54, 3288–3296. [Google Scholar] [CrossRef]
- Arshad, K.; Skrifvars, M.; Vivod, V.; Valh, J.; Voncina, B. Biodegradation of natural textile materials in soil. Tekstilec 2014, 57, 118–132. [Google Scholar] [CrossRef]
- Bianco, I.; Gerboni, R.; Picerno, G.; Blengini, G.A. Life cycle assessment (LCA) of MWool® recycled Wool Fibers. Resources 2022, 11, 41. [Google Scholar] [CrossRef]
- M.D. 173/2016 (Ministerial Decree 173/2016), Decreto Ministeriale 173 del 15 Luglio del 2016. Regolamento Recante Modalità e Criteri Tecnici per l’Autorizzazione all’Immersione in Mare dei Materiali di Escavo di Fondali Marini. 16G00184—GU Serie Generale n.208 del 06-09-2016. Italian Law, Italian Language. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:ministero.ambiente.e.tutela.territorio.e.mare:decreto:2016-07-15;173!vig= (accessed on 10 March 2023).
- Bigongiari, N.; Cipriani, L.E.; Pranzini, E.; Renzi, M.; Vitale, G. Assessing shelf aggregates compatibility for beach nourishment in Tuscany (Italy). Mar. Pollut. Bull. 2015, 93, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Broccoli, A.; Morroni, L.; Valentini, A.; Vitiello, V.; Renzi, M.; Nuccio, C.; Pellegrini, D. Comparison of different ecotoxicological batteries with WOE approach for the environmental quality evaluation of harbour sediments. Aquat. Toxicol. 2021, 237, 105905. [Google Scholar] [CrossRef] [PubMed]
- Renzi, M.; Guerranti, C.; Anselmi, S.; Provenza, F.; Leone, M.; La Rocca, G.; Cavallo, A. A multidisciplinary approach to Posidonia oceanica detritus management (Port of Sperlonga, Italy): A story of turning a problem into a resource. Water 2022, 14, 2856. [Google Scholar] [CrossRef]
- Renzi, M.; Pastorino, P.; Provenza, F.; Anselmi, S.; Specchiulli, A.; Cavallo, A. Integrated analytical approach: An added value in environmental diagnostics. J. Mar. Sci. Eng. 2023, 11, 66. [Google Scholar] [CrossRef]
- Benedetti-Checchi, L. Beyond BACI: Optimization of environmental sampling through monitoring and simulation. Ecol. Appl. 2001, 11, 783–799. [Google Scholar] [CrossRef]
- Bradbury, J.H. The morphology and chemical structure of wool. In Macromolecular Chemistry-11; Elversier: Amsterdam, The Netherlands, 1977; pp. 247–253. [Google Scholar]
- Taylor, D.S. Chapter 5: Australian Innovation in Textile Technology. In Technology in Australia 1788–1988, Australian Academy of Technological Sciences and Engineering; Australian Science and Technology Heritage Centre: Canberra, Australia, 1988. [Google Scholar]
- Guinotte, J.M.; Fabry, V.J. Ocean Acidification and Its Potential Effects on Marine Ecosystems. Ann. N. Y. Acad. Sci. 2008, 1134, 320–342. [Google Scholar] [CrossRef] [Green Version]
- Kalho, K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 1994, 22, 719–722. [Google Scholar]
- Steinhardt, J.; Fugitt, C.H.; Harris, M. Combination of Wool Protein with Acid and Base: The Effect of Temperature on the Titration Curve. Text. Res. 1940, 11, 72–94. [Google Scholar] [CrossRef]
- Andersson, A.J.; Mackenzie, F.T. Revisiting four scientific debates in ocean acidification research. Biogeosciences 2012, 9, 893–905. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, H.J.; Chapman, G.V. The chemical composition of wool. The chemical composition of wool. I. The separation and microscopic characterization of components produced by ultrasonic disintegration. Austin J. Biol. Sci. 1964, 17, 960–972. [Google Scholar] [CrossRef] [Green Version]
- Arizzi-Novelli, A.; Argese, E.; Tagliapietra, D.; Bettiol, C.; Volpi Ghirardini, A. Toxicity of tributyltin and triphenyltin to early life stages of Paracentrotus lividus (Echinodermata: Echinoidea). Environ. Toxicol. Chem. 2002, 21, 859–864. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Thilagam, H.; Vivek Raja, P. Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans. Chemosphere 2008, 71, 515–528. [Google Scholar] [CrossRef]
- Calevro, F.; Campani, S.; Ragghianti, M.; Bucci, S.; Mancino, G. Tests of toxicity and teratogenicity in biphasic vertebrates treated with heavy metals (Cr3+, A13+, Cd2+). Chemosphere 1998, 37, 3011–3017. [Google Scholar] [CrossRef] [PubMed]
Acute Toxicity (Type II) | Acute Toxicity (Type II) | Chronic Toxicity (Type III) | |
---|---|---|---|
Species | Brachionus plicatilis | Phaeodactylum tricornutum | Paracentrotus lividus |
Method | UNI EN ISO 19820:2016 | UNI EN ISO 10253:2017 | EPA/600/R-95-136/S15 and ISPRA 11/17 |
Endpoint | Mortality | Inhibition of growth | Embryotoxicity |
24 and 48 h | 72 h | 72 h | |
Unit | % | % | % |
(a) | T0 | T1 | T2 | T3 | T4 | T5 | T6 | T7 | |
---|---|---|---|---|---|---|---|---|---|
Natural Water | 0.3 | ||||||||
MWc | Mean | 1.4 | 5.2 | 4.3 | 36.6 | 58.3 | 56.5 | 34.7 | 53.5 |
SD | 0.1 | 3.0 | 0.7 | 6.8 | 27.4 | 13.5 | 9.3 | 0.5 | |
Min | 1.4 | 1.9 | 3.6 | 30.5 | 36.9 | 41.1 | 24.4 | 52.9 | |
Max | 1.5 | 7.9 | 5.0 | 43.9 | 89.1 | 66.4 | 42.4 | 53.7 | |
MW | Mean | 2.0 | 4.1 | 9.0 | 8.9 | 25.8 | 42.9 | 42.8 | 85.8 |
SD | 0.9 | 2.0 | 4.1 | 6.4 | 18.2 | 10.1 | 22.2 | 35.0 | |
Min | 1.3 | 2.5 | 4.3 | 3.6 | 12.8 | 32.5 | 20.6 | 45.5 | |
Max | 3.1 | 6.4 | 11.3 | 15.9 | 46.6 | 52.7 | 65.1 | 108.7 | |
(b) | T0 | T1 | T2 | T3 | T4 | T5 | T6 | T7 | |
MW vs. MWc | t-Test | 0.26 | 0.66 | 0.11 | 0.05 | 0.13 | 0.53 | 0.46 | 0.24 |
F-Test | 0.62 | 0.65 | 0.32 | 0.10 | 0.34 | 0.71 | 0.55 | 0.67 | |
(c) | T0–T1 | T0–T2 | T0–T3 | T0–T4 | T0–T5 | T0–T6 | T0–T7 | ||
t-Test | MWc | 0.05 | 0.06 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | |
MW | 0.13 | 0.03 | 0.04 | 0.02 | 0.01 | 0.01 | 0.01 | ||
F-Test | MWc | 0.05 | 0.01 | 0.06 | 0.04 | 0.01 | <0.01 | <0.01 | |
MW | 0.25 | 0.05 | 0.02 | <0.01 | <0.01 | <0.01 | <0.01 |
MWc | MW | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | S (g/L) | O2 (mg/L) | pH | S (g/L) | O2 (mg/L) | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
T0 | 7.83 | 0.06 | 28.1 | 1.2 | 6.3 | 0.1 | 7.83 | 0.08 | 28.1 | 1.7 | 6.3 | 0.6 |
T1 | 7.75 | 0.09 | 28.4 | 1.8 | 6.6 | 0.4 | 7.70 | 0.08 | 28.7 | 1.3 | 6.4 | 0.3 |
T2 | 7.68 | 0.10 | 29.0 | 1.0 | 6.4 | 0.5 | 7.79 | 0.17 | 28.9 | 1.2 | 6.5 | 0.4 |
T3 | 7.81 | 0.17 | 29.1 | 0.8 | 5.8 | 0.1 | 7.77 | 0.14 | 29.4 | 0.8 | 6.7 | 0.5 |
T4 | 7.67 | 0.07 | 29.2 | 1.0 | 6.5 | 0.3 | 7.84 | 0.21 | 28.9 | 0.5 | 6.5 | 0.5 |
T5 | 7.78 | 0.21 | 28.9 | 0.3 | 6.1 | 0.3 | 7.78 | 0.12 | 28.4 | 0.7 | 6.4 | 0.1 |
T6 | 7.77 | 0.02 | 28.5 | 0.3 | 6.4 | 0.4 | 7.92 | 0.10 | 28.9 | 0.3 | 6.7 | 0.2 |
T7 | 7.83 | 0.06 | 28.6 | 0.5 | 6.5 | 0.9 | 7.83 | 0.13 | 28.5 | 0.3 | 6.2 | 0.1 |
Max | 7.83 | 0.21 | 29.2 | 1.8 | 6.6 | 0.9 | 7.92 | 0.21 | 29.4 | 1.7 | 6.7 | 0.6 |
Min | 7.67 | 0.02 | 28.1 | 0.3 | 5.8 | 0.1 | 7.70 | 0.08 | 28.1 | 0.3 | 6.2 | 0.1 |
t-TEST | t-TEST | |||||||||||
pH | S (g/L) | O2 (mg/L) | pH | S (g/L) | O2 (mg/L) | |||||||
T0–T1 | 0.3 | 0.9 | 0.3 | 0.4 | 0.8 | 0.8 | ||||||
T0–T2 | 0.1 | 0.4 | 0.7 | 0.8 | 0.7 | 1.0 | ||||||
T0–T3 | 0.9 | 0.3 | <0.01 | 0.9 | 0.4 | 0.6 | ||||||
T0–T4 | 0.03 | 0.3 | 0.3 | 0.6 | 0.7 | 1.0 | ||||||
T0–T5 | 0.7 | 0.4 | 0.2 | 0.8 | 1.0 | 0.8 | ||||||
T0–T6 | 0.2 | 0.6 | 0.8 | 0.1 | 0.7 | 0.5 | ||||||
T0–T7 | 1.0 | 0.6 | 0.8 | 0.4 | 0.9 | 0.4 | ||||||
F-TEST | F-TEST | |||||||||||
pH | S (g/L) | O2 (mg/L) | pH | S (g/L) | O2 (mg/L) | |||||||
T0–T1 | <0.01 | 0.6 | 0.2 | 1.0 | 0.8 | 0.5 | ||||||
T0–T2 | 0.52 | 0.8 | 0.1 | 0.3 | 0.7 | 0.7 | ||||||
T0–T3 | 0.23 | 0.6 | 0.5 | 0.5 | 0.4 | 0.8 | ||||||
T0–T4 | 0.91 | 0.8 | 0.2 | 0.2 | 0.2 | 0.9 | ||||||
T0–T5 | 0.15 | 0.1 | 0.3 | 0.6 | 0.3 | 0.1 | ||||||
T0–T6 | 0.25 | 0.1 | 0.1 | 0.7 | <0.01 | 0.3 | ||||||
T0–T7 | 1.00 | 0.3 | 0.0 | 0.5 | <0.01 | 0.1 |
MW | P. tricornutum | B. plicatilis | P. lividus | |||||||
---|---|---|---|---|---|---|---|---|---|---|
I | SD | Mean | SD | Mean | SD | Mean | SD | Mean° | ||
(24 h) | (24 h) | (48 h) | (48 h) | |||||||
T0 | Mean | −9.4 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 7.1 | 1.3 | - |
Min | −10.2 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 5.7 | 0.6 | 0.0 | |
Max | −8.1 | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 1.5 | 0.0 | |
T1 | Mean | 4.2 | 1.1 | 3.3 | 5.8 | 3.3 | 5.8 | 16.1 | 2.3 | 7.5 |
Min | 3.2 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 14.3 | 1.5 | 5.5 | |
Max | 5.3 | 3.4 | 10.0 | 11.0 | 10.0 | 11.0 | 18.7 | 5.0 | 10.3 | |
T2 | Mean | 3.7 | 2.1 | 3.3 | 5.8 | 3.3 | 5.8 | 16.6 | 1.3 | 8.0 |
Min | 1.4 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 15.7 | 0.0 | 7.0 | |
Max | 5.3 | 1.6 | 10.0 | 11.0 | 10.0 | 11.0 | 18.0 | 1.7 | 9.6 | |
T3 | Mean | 2.7 | 1.2 | 6.7 | 5.8 | 6.7 | 5.8 | 17.3 | 2.6 | 8.8 |
Min | 1.4 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 | 14.3 | 0.6 | 5.5 | |
Max | 3.6 | 3.3 | 10.0 | 11.0 | 10.0 | 11.0 | 19.0 | 4.5 | 10.7 | |
T4 | Mean | 3.6 | 0.4 | 13.3 | 5.8 | 13.3 | 5.8 | 18.9 | 1.9 | 10.5 |
Min | 3.2 | 2.0 | 10.0 | 0.0 | 10.0 | 0.0 | 16.7 | 2.6 | 8.1 | |
Max | 4.0 | 3.4 | 20.0 | 11.0 | 20.0 | 11.0 | 20.0 | 4.6 | 11.8 | |
T5 | Mean | 3.2 | 0.8 | 16.7 | 5.8 | 16.7 | 5.8 | 19.0 | 1.8 | 10.7 |
Min | 2.3 | 1.9 | 10.0 | 0.0 | 10.0 | 0.0 | 17.0 | 1.5 | 8.5 | |
Max | 3.7 | 4.0 | 20.0 | 11.0 | 20.0 | 11.0 | 20.3 | 2.6 | 12.1 | |
T6 | Mean | 3.9 | 0.6 | 13.3 | 5.8 | 13.3 | 5.8 | 17.2 | 1.6 | 8.7 |
Min | 3.5 | 1.5 | 10.0 | 0.0 | 10.0 | 0.0 | 15.3 | 1.0 | 6.6 | |
Max | 4.5 | 3.5 | 20.0 | 11.0 | 20.0 | 11.0 | 18.3 | 2.1 | 9.9 | |
T7 | Mean | 3.5 | 1.6 | 30.0 | 0.0 | 30.0 | 0.0 | 19.7 | 1.5 | 11.4 |
Min | 2.3 | 1.6 | 30.0 | 11.0 | 30.0 | 11.0 | 18.0 | 0.0 | 9.6 | |
Max | 5.3 | 3.2 | 30.0 | 11.0 | 30.0 | 11.0 | 21.0 | 3.6 | 12.9 | |
MWc | P. tricornutum | B. plicatilis | P. lividus | |||||||
I | SD | Mean | SD | Mean | SD | Mean | SD | Mean° | ||
(24 h) | (24 h) | (48 h) | (48 h) | |||||||
T0 | Mean | −9.3 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 7.3 | 0.6 | - |
Min | −10.2 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 1.0 | 0.0 | |
Max | −7.8 | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 2.0 | 0.0 | |
T1 | Mean | 3.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 20.6 | 0.8 | 12.4 |
Min | 1.4 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 19.7 | 2.0 | 11.4 | |
Max | 4.5 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 21.0 | 3.6 | 12.9 | |
T2 | Mean | 2.9 | 0.3 | 3.3 | 5.8 | 3.3 | 5.8 | 19.0 | 2.7 | 10.7 |
Min | 2.6 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 16.3 | 2.5 | 7.7 | |
Max | 3.1 | 1.3 | 10.0 | 11.0 | 10.0 | 11.0 | 21.7 | 6.0 | 13.6 | |
T3 | Mean | 3.6 | 1.2 | 3.3 | 5.8 | 3.3 | 5.8 | 19.3 | 3.9 | 11.0 |
Min | 2.2 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 16.0 | 1.5 | 7.4 | |
Max | 4.4 | 2.8 | 10.0 | 11.0 | 10.0 | 11.0 | 23.7 | 3.6 | 15.8 | |
T4 | Mean | 3.5 | 0.9 | 13.3 | 5.8 | 13.3 | 5.8 | 17.8 | 3.0 | 9.3 |
Min | 2.7 | 0.8 | 10.0 | 0.0 | 10.0 | 0.0 | 14.7 | 0.6 | 5.9 | |
Max | 4.4 | 1.9 | 20.0 | 11.0 | 20.0 | 11.0 | 20.7 | 2.5 | 12.5 | |
T5 | Mean | 3.4 | 1.4 | 16.7 | 5.8 | 16.7 | 5.8 | 18.1 | 0.5 | 9.7 |
Min | 2.2 | 0.7 | 10.0 | 0.0 | 10.0 | 0.0 | 17.7 | 2.9 | 9.2 | |
Max | 4.9 | 2.1 | 20.0 | 11.0 | 20.0 | 11.0 | 18.7 | 3.6 | 10.3 | |
T6 | Mean | 3.0 | 0.9 | 13.3 | 5.8 | 13.3 | 5.8 | 17.8 | 2.7 | 9.3 |
Min | 1.9 | 0.8 | 10.0 | 0.0 | 10.0 | 0.0 | 14.7 | 1.2 | 5.9 | |
Max | 3.5 | 3.4 | 20.0 | 11.0 | 20.0 | 11.0 | 19.7 | 4.0 | 11.4 | |
T7 | Mean | 3.6 | 1.9 | 23.3 | 5.8 | 23.3 | 5.8 | 17.0 | 0.6 | 8.5 |
Min | 2.3 | 1.4 | 20.0 | 0.0 | 20.0 | 0.0 | 16.3 | 1.5 | 7.7 | |
Max | 5.8 | 3.2 | 30.0 | 11.0 | 30.0 | 11.0 | 17.3 | 3.2 | 8.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anselmi, S.; Provenza, F.; Bentivoglio, T.; Picerno, G.; Cavallo, A.; Renzi, M. Marine Biodegradability and Ecotoxicity of MWool® Recycled Wool Fibers: A Circular-Economy-Based Material. Oceans 2023, 4, 114-131. https://doi.org/10.3390/oceans4010009
Anselmi S, Provenza F, Bentivoglio T, Picerno G, Cavallo A, Renzi M. Marine Biodegradability and Ecotoxicity of MWool® Recycled Wool Fibers: A Circular-Economy-Based Material. Oceans. 2023; 4(1):114-131. https://doi.org/10.3390/oceans4010009
Chicago/Turabian StyleAnselmi, Serena, Francesca Provenza, Tecla Bentivoglio, Giuseppe Picerno, Andrea Cavallo, and Monia Renzi. 2023. "Marine Biodegradability and Ecotoxicity of MWool® Recycled Wool Fibers: A Circular-Economy-Based Material" Oceans 4, no. 1: 114-131. https://doi.org/10.3390/oceans4010009