Coupled Meteo–Hydrodynamic Approach in Semi-Enclosed Basins and Sensitivity Assessment of Wind-Driven Current
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodological Approach
- -
- Implement a specific operational procedure for interfacing the WRF model and the Mike circulation model;
- -
- Setting of the hydrodynamic model of the Mar Piccolo basin using the Mike 3 model (DHI);
- -
- Run test of the hydrodynamic model by using as meteorological forcing the data acquired by the closest meteorological station (time-varying data but constant in the domain);
- -
- Run test of the coupled meteo–hydro model by using the meteorological forcing of the output data processed by the WRF model (domain- and time-varying data);
- -
- Comparison and analysis of results obtained for characteristic meteorological conditions.
2.2. Study Site
2.3. Numerical Simulation
2.3.1. Hydrodynamic Modeling
2.3.2. Meteorological Modeling
2.3.3. Coupling of the WRF Meteorological Model with the Hydrodynamic Model
2.3.4. Application of Procedure to the Case Study
- -
- WRF input: Analysis-ECMWF 0.16° (spatial resolution about 16 km and temporal resolution of 6 h);
- -
- Output temporal resolution: 1 h—Spatial resolution output: 1 Km—Scaling: 4–1;
- -
- Run period: 7 July 2019–19 February 2019.
- Hydrodynamic simulation without meteorological forcing (constant in time and space);
- Hydrodynamic simulation with meteorological forcing from ARPA Puglia ground station (time-varying but constant forcing in space);
- Hydrodynamic simulation with forcing from WRF model output (varying in both time and domain).
2.4. Comparison with Measured Values
3. Results
3.1. Comparison of the Results
3.1.1. Case Study of Intense Wind Speed Coming from NNW
3.1.2. Case Study with Weak Wind Coming from the ESE
3.2. Analysis of the WRF Model Output
3.3. Analysis of Wind-Induced Current Variability
- Sea currents resulting from the hydrodynamic simulation performed with meteorological forcing from the WRF model (red vector);
- Sea currents resulting from the hydrodynamic simulation performed with meteorological forcing from the ARPA ground station, variable in time but constant in space (green vector);
- Sea currents resulting from the hydrodynamic simulation performed with no meteorological forcing computed (blue vector).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armenio, E.; Meftah, M.B.; Bruno, M.F.; De Padova, D.; De Pascalis, F.; De Serio, F.; Di Bernardino, A.; Mossa, M.; Leuzzi, G.; Monti, P. Semi enclosed basin monitoring and analysis of meteo, wave, tide and current data: Sea monitoring. In Proceedings of the 2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Bari, Italy, 13–14 June 2016; pp. 1–6. [Google Scholar]
- Armenio, E.; De Serio, F.; Mossa, M. Analysis of data characterizing tide and current fluxes in coastal basins. Hydrol. Earth Syst. Sci. 2017, 21, 3441–3454. [Google Scholar]
- De Serio, F.; Malcangio, D.; Mossa, M. Circulation in a Southern Italy coastal basin: Modelling and field measurements. Cont. Shelf Res. 2007, 27, 779–797. [Google Scholar] [CrossRef]
- Armenio, E.; De Padova, D.; De Serio, F.; Mossa, M. Monitoring system for the sea: Analysis of meteo, wave and current data. In Proceedings of the IMEKO TC19 Workshop on Metrology for the Sea MetroSea, Naples, Italy, 11–13 October 2017; pp. 143–148. [Google Scholar]
- Roland, A.; Cucco, A.; Ferrarin, C.; Hsu, T.-W.; Liau, J.-M.; Ou, S.-H.; Umgiesser, G.; Zanke, U. On the development and verification of a 2-D coupled wave-current model on unstructured meshes. J. Mar. Syst. 2009, 78, S244–S254. [Google Scholar] [CrossRef]
- Pascalis, F.D.; Petrizzo, A.; Ghezzo, M.; Lorenzetti, G.; Manfè, G.; Alabiso, G.; Zaggia, L. Estuarine circulation in the Taranto Seas. Environ. Sci. Pollut. Res. 2016, 23, 12515–12534. [Google Scholar] [CrossRef]
- Gaeta, M.G.; Samaras, A.G.; Federico, I.; Archetti, R.; Maicu, F.; Lorenzetti, G. A coupled wave–3-D hydrodynamics model of the Taranto Sea (Italy): A multiple-nesting approach. Nat. Hazards Earth Syst. Sci. 2016, 16, 2071–2083. [Google Scholar] [CrossRef]
- Ferrarin, C.; Davolio, S.; Bellafiore, D.; Ghezzo, M.; Maicu, F.; Mc Kiver, W.; Drofa, O.; Umgiesser, G.; Bajo, M.; De Pascalis, F.; et al. Cross-scale operational oceanography in the Adriatic Sea. J. Oper. Oceanogr. 2019, 12, 86–103. [Google Scholar] [CrossRef]
- Zarzuelo, C.; López-Ruiz, A.; Bermúdez, M.; Ortega-Sánchez, M. Measurements and modeling of water levels, currents, density, and wave climate on a semi-enclosed tidal bay, Cádiz (southwest Spain). Earth Syst. Sci. Data 2023, 15, 3095–3110. [Google Scholar] [CrossRef]
- Monti, P.; Leuzzi, G. Lagrangian models of dispersion in marine environment. Environ. Fluid. Mech. 2010, 10, 637–656. [Google Scholar] [CrossRef]
- Scroccaro, I.; Matarrese, R.; Umgiesser, G. Application of a finite element model to the Taranto Sea. J. Chem. Ecol. 2014, 20 (Suppl. S1), 205–224. [Google Scholar] [CrossRef]
- Mike 21 & Mike 3 Flow Model FM 2021. DHI A/S Headquarters. Available online: https://www.mikepoweredbydhi.com/download/product-documentation (accessed on 30 January 2022).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. 2019: A Description of the Advanced Research WRF Version 4. Available online: https://opensky.ucar.edu/islandora/object/technotes%3A588 (accessed on 30 January 2022).
- Alabiso, G.; Giacomini, M.; Milillo, M.; Ricci, P. The Taranto sea system: 8 years of chemical–physical measurements. Biol. Mar. Medit. 2005, 12, 369–373. [Google Scholar]
- Parenzan, P. Il Mar Piccolo e il Mar Grande di Taranto. Thalass. Salentina 1969, 3, 19–36. [Google Scholar]
- Buccolieri, A.; Buccolieri, G.; Cardellicchio, N.; Dell’Atti, A.; Di Leo, A.; Maci, A. Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, southern Italy). Mar. Chem. 2006, 99, 227–235. [Google Scholar] [CrossRef]
- Di Leo, A.; Annicchiarico, C.; Cardellicchio, N.; Spada, L.; Giandomenico, S. Trace metal distributions in Posidonia oceanica and sediments from Taranto Gulf (Ionian Sea, Southern Italy). Mediterr. Mar. Sci. 2013, 14, 204–213. [Google Scholar] [CrossRef]
- Cardellicchio, N.; Annicchiarico, C.; Di Leo, A.; Giandomenico, S.; Spada, L. The Mar Piccolo of Taranto: An interesting marine ecosystem for the environmental problems studies. Environ. Sci. Pollut. Res. 2016, 23, 12495–12501. [Google Scholar] [CrossRef]
- Braga, F.; Ciani, D.; Colella, S.; Organelli, E.; Pitarch, J.; Brando, V.E.; Bresciani, M.; Concha, J.A.; Giardino, C.; Scarpa, G.M.; et al. COVID-19 lockdown effects on a coastal marine environment: Disentangling perception versus reality. Sci. Total Environ. 2022, 817, 153002. [Google Scholar] [CrossRef]
- Moharir, R.V.; Khairnar, K.; Paunikar, W.N. MIKE 3 as a modeling tool for flow characterization: A review of applications on water bodies. Int. J. Adv. Stud. Comput. Sci. Eng. 2014, 3, 32. [Google Scholar]
- Trotta, F.; Pinardi, N.; Fenu, E.; Grandi, A.; Lyubartsev, V. Multinest high resolution model of submesoscale circulation features in the Gulf of Taranto. Ocean Dynam. 2017, 67, 1609–1625. [Google Scholar] [CrossRef]
- Mondal, K.; Bandyopadhyay, S.; Karmakar, S. Framework for global sensitivity analysis in a complex 1D-2D coupled hydrodynamic model: Highlighting its importance on flood management over large data-scarce regions. J. Environ. Manag. 2023, 332, 117312. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, G.D. Effective Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci. 2008, 34, 1284–1306. [Google Scholar] [CrossRef]
- Le Tuan, A.N.H.; Anh, D.H.; Linh, M.T.Y.; Thao, N.D. Investigation typhoon induced storm surge and high wave in Vietnam using coupled Delft3d-FLOW–WAVE models combined with weather research forecast (WRF) output wind field. Vnuhcm J. Eng. Technol. 2021, 4, 645–662. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; Technical Report; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- De Tomasi, F.; Martano, P.; Miglietta, M.; Morabito, A.; Perrone, M.R. Lidar monitoring of water vapor and comparison with numerical simulations. Nuovo C. Soc. Ital. Di Fis. Sez. C 2003, 26, 373–386. [Google Scholar]
- Fedele, F.; Tateo, A.; Menegotto, M.; Turnone, A.; Figorito, B.; Carducci, A.G.C.; Calculli, C.; Ribecco, N.; Pollice, A.; Bellotti, R. Impact of Planetary Boundary Layer parametrization scheme and land cover classification on surface processes: Wind speed and temperature bias spatial distribution analysis over south Italy. In Proceedings of the 15th EMS Annual Meeting & 12th European Conference on Applications of Meteorology (ECAM), Sofia, Bulgaria, 7–11 September 2015. [Google Scholar]
- Fedele, F.; Miglietta, M.M.; Perrone, M.R.; Burlizzi, P.; Bellotti, R.; Conte, D.; Carducci, A.G.C. Numerical simulations with the WRF model of water vapour vertical profiles: A comparison with LIDAR and radiosounding measurements. Atmos. Res. 2015, 166, 110–119. [Google Scholar] [CrossRef]
- Berman, F.; Chien, A.; Cooper, K.; Dongarra, J.; Foster, I.; Gannon, D.; Johnsson, L.; Kennedy, K.; Kesselman, C.; Mellor-Crumme, J.; et al. The GrADS project: Software support for high-level grid application development. Int. J. High. Perform. Comput. Appl. 2001, 15, 327–344. [Google Scholar] [CrossRef]
- Iriza, A.; Dumitrache, R.C.; Lupascu, A.; Stefan, S. Studies regarding the quality of numerical weather forecasts of the WRF model integrated at high-resolutions for the Romanian territory. Atmósfera 2016, 29, 11–21. [Google Scholar] [CrossRef]
- Yesubabu, V.; Kattamanchi, V.K.; Vissa, N.K.; Dasari, H.P.; Sarangam, V.B.R. Impact of ocean mixed-layer depth initialization on the simulation of tropical cyclones over the Bay of Bengal using the WRF-ARW model. Meteorol. Appl. 2019, 27, e1862. [Google Scholar] [CrossRef]
- Shahi, N.K.; Polcher, J.; Bastin, S.; Pennel, R.; Fita, L. Assessment of the spatio-temporal variability of the added value on precipitation of convection-permitting simulation over the Iberian Peninsula using the RegIPSL regional earth system model. Clim. Dyn. 2022, 59, 471–498. [Google Scholar] [CrossRef]
- Tateo, A.; Campanaro, V.; Amoroso, N.; Bellantuono, L.; Monaco, A.; Pantaleo, E.; Rinaldi, R.; Maggipinto, T. Predicting Air Quality from Measured and Forecast Meteorological Data: A Case Study in Southern Italy. Atmosphere 2023, 14, 475. [Google Scholar] [CrossRef]
- Tateo, A.; Miglietta, M.M.; Fedele, F.; Menegotto, M.; Monaco, A.; Bellotti, R. Ensemble using different Planetary Boundary Layer schemes in WRF model for wind speed and direction prediction over Apulia region. Adv. Sci. Res. 2017, 14, 95–102. [Google Scholar] [CrossRef]
Name | Notation/Comment | Setting |
---|---|---|
Module Selection | Shallow water equations | Hydrodynamic |
Wind drag multiple | constant | 0.001255 |
Run length | days | 40 |
Time step | seconds | 3600 |
Density | barotropic | - |
Initial Conditions | Varying in domain | u and v current velocity components 1 |
Boundary Conditions | Flather conditions | u and v current velocity components and water level 1 |
Eddy viscosity vertical | Log Low Formulation | 0.4 m2/s |
Eddy viscosity horizontal | Smagorinsky Formulation | 0.28 |
Bed Resistance | Varying in domain | Fields survey |
Coriolis forcing | Varying in domain | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armenio, E.; Tateo, A.; Fedele, F.; Ungaro, N.; Mossa, M.; Esposito, V.; Campanaro, V. Coupled Meteo–Hydrodynamic Approach in Semi-Enclosed Basins and Sensitivity Assessment of Wind-Driven Current. Oceans 2024, 5, 292-311. https://doi.org/10.3390/oceans5020019
Armenio E, Tateo A, Fedele F, Ungaro N, Mossa M, Esposito V, Campanaro V. Coupled Meteo–Hydrodynamic Approach in Semi-Enclosed Basins and Sensitivity Assessment of Wind-Driven Current. Oceans. 2024; 5(2):292-311. https://doi.org/10.3390/oceans5020019
Chicago/Turabian StyleArmenio, Elvira, Andrea Tateo, Francesca Fedele, Nicola Ungaro, Michele Mossa, Vittorio Esposito, and Vincenzo Campanaro. 2024. "Coupled Meteo–Hydrodynamic Approach in Semi-Enclosed Basins and Sensitivity Assessment of Wind-Driven Current" Oceans 5, no. 2: 292-311. https://doi.org/10.3390/oceans5020019