IchthyNet: An Ensemble Method for the Classification of In Situ Marine Zooplankton Shadowgraph Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Preprocessing
2.2. Convolutional Neural Networks
2.2.1. VGG-16
2.2.2. ResNet-50
2.2.3. ShadowNet
2.3. Random Forest Ensemble
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marino, A.; Geneva, A. Deep scattering layer investigation through multi-beam bathymetry. In Proceedings of the OCEANS’94, Brest, France, 13–16 September 1994; IEEE: New York, NY, USA; Volume 3, pp. III–184. [Google Scholar]
- Lee, E.H.; Choi, S.Y.; Seo, M.H.; Soh, H.Y. Impacts of hypoxia on the mesozooplankton community structure in a semi-enclosed bay. Front. Mar. Sci. 2022, 9, 1005442. [Google Scholar] [CrossRef]
- Boldrocchi, G.; Villa, B.; Monticelli, D.; Spanu, D.; Magni, G.; Pachner, J.; Mastore, M.; Bettinetti, R. Zooplankton as an indicator of the status of contamination of the Mediterranean Sea and temporal trends. Mar. Pollut. Bull. 2023, 197, 115732. [Google Scholar] [CrossRef] [PubMed]
- Parmar, T.K.; Rawtani, D.; Agrawal, Y.K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 2016, 9, 110–118. [Google Scholar] [CrossRef]
- Nelson, D.M.; Tréguer, P.; Brzezinski, M.A.; Leynaert, A.; Quéguiner, B. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 1995, 9, 359–372. [Google Scholar] [CrossRef]
- Acuña, J.L.; Deibel, D.; Saunders, P.A.; Booth, B.; Hatfield, E.; Klein, B.; Mei, Z.-P.; Rivkin, R. Phytoplankton ingestion by appendicularians in the North Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 5101–5115. [Google Scholar] [CrossRef]
- Llopiz, J.K.; Richardson, D.E.; Shiroza, A.; Smith, S.L.; Cowen, R.K. Distinctions in the diets and distributions of larval tunas and the important role of appendicularians. Limnol. Oceanogr. 2010, 55, 983–996. [Google Scholar] [CrossRef]
- Canino, M.F.; Grant, G.C. The feeding and diet of Sagitta tenuis (Chaetognatha) in the lower Chesapeake Bay. J. Plankton Res. 1985, 7, 175–188. [Google Scholar] [CrossRef]
- Purcell, J.E. Dietary composition and diel feeding patterns of epipelagic siphonophores. Mar. Biol. 1981, 65, 83–90. [Google Scholar] [CrossRef]
- Main, R.J. Observations of the feeding mechanism of a ctenophore, Mnemiopsis leidyi. Biol. Bull. 1928, 55, 69–78. [Google Scholar] [CrossRef]
- Fulton, R.S.; Wear, R.G. Predatory feeding of the hydromedusae Obelia geniculata and Phialla quadrata. Mar. Biol. 1985, 87, 47–54. [Google Scholar] [CrossRef]
- Christie, M.R.; Tissot, B.N.; Albins, M.A.; Beets, J.P.; Jia, Y.; Ortiz, D.M.; Thompson, S.E.; Hixon, M.A. Larval connectivity in an effective network of marine protected areas. PLoS ONE 2010, 5, e15715. [Google Scholar] [CrossRef] [PubMed]
- Orenstein, E.; Ayata, S.D.; Maps, F.; Biard, T.; Becker, E.; Benedetti, F. Machine learning techniques to characterize functional traits of plankton from image data. Limnol. Oceanogr. 2022, 67, 1647–1669. [Google Scholar] [CrossRef] [PubMed]
- Ciranni, M.; Murino, V.; Odone, F.; Pastore, V.P. Computer vision and deep learning meet plankton: Milestones and future directions. Image Vis. Comput. 2024, 143, 104934. Available online: https://www.sciencedirect.com/science/article/pii/S0262885624000374 (accessed on 12 December 2024). [CrossRef]
- Bi, H.; Cheng, Y.; Cheng, X.; Benfield, M.C.; Kimmel, D.G.; Zheng, H.; Groves, S.; Ying, K. Taming the data deluge: A novel end-to-end deep learning system for classifying marine biological and environmental images. Limnol. Oceanogr. Methods 2024, 22, 47–64. [Google Scholar] [CrossRef]
- Ellen, J.S.; Ohman, M.D. Beyond transfer learning: Leveraging ancillary images in automated classification of plankton. Limnol. Oceanogr. Methods 2024, 22, 943–952. [Google Scholar] [CrossRef]
- Greer, A.T.; Duffy, P.I.; Walles, T.J.; Cousin, C.; Treible, L.M.; Aaron, K.D.; Nejstgaard, J.C. Modular shadowgraph imaging for zooplankton ecological studies in diverse field and mesocosm settings. Limnol. Oceanogr. Methods 2024, 23, 67–86. [Google Scholar] [CrossRef]
- Eerola, T.; Batrakhanov, D.; Barazandeh, N.V.; Kraft, K.; Haraguchi, L.; Lensu, L.; Suikkanen, S.; Seppälä, J.; Tamminen, T.; Kälviäinen, H. Survey of automatic plankton image recognition: Challenges, existing solutions and future perspectives. Artif. Intell. Rev. 2024, 57, 114. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Lumini, A.; Nanni, L. Deep learning and transfer learning features for plankton classification. Ecol. Inform. 2019, 51, 33–43. [Google Scholar] [CrossRef]
- Greer, A.T.; Lehrter, J.C.; Binder, B.M.; Nayak, A.R.; Barua, R.; Rice, A.E.; Cohen, J.H.; McFarl, M.; Hagemeyer, A.; Stockley, N.; et al. High-Resolution Sampling of a Broad Marine Life Size Spectrum Reveals Differing Size- and Composition-Based Associations with Physical Oceanographic Structure. Front. Mar. Sci. 2020, 7, 542701. [Google Scholar] [CrossRef]
- Cowen, R.K.; Guigand, C.M. In situ ichthyoplankton imaging system (ISIIS): System design and preliminary results. Limnol. Oceanogr. Methods 2008, 6, 126–132. [Google Scholar] [CrossRef]
- Luo, J.Y.; Irisson, J.O.; Graham, B.; Guig, C.; Sarafraz, A.; Mader, C.; Cowen, R.K. Automated plankton image analysis using convolutional neural networks. Limnol. Oceanogr. Methods 2018, 16, 814–827. [Google Scholar] [CrossRef]
- Greer, A.T.; Chiaverano, L.M.; Luo, J.Y.; Cowen, R.K.; Graham, W.M. Ecology and behaviour of holoplanktonic scyphomedusae and their interactions with larval and juvenile fishes in the northern Gulf of Mexico. ICES J. Mar. Sci. 2018, 75, 751–763. [Google Scholar] [CrossRef]
- Faillettaz, R.; Picheral, M.; Luo, J.Y.; Guig, C.; Cowen, R.K.; Irisson, J.O. Imperfect automatic image classification successfully describes plankton distribution patterns. Methods Oceanogr. 2016, 15, 60–77. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- LeCun, Y.; Cortes, C.; Burges, C. The MNIST Database. MNIST Handwritten Digit Database. 2010. Available online: https://wiki.pathmind.com/mnist (accessed on 26 September 2023).
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Indolia, S.; Goswami, A.K.; Mishra, S.P.; Asopa, P. Conceptual understanding of convolutional neural network—A deep learning approach. Procedia Comput. Sci. 2018, 132, 679–688. [Google Scholar] [CrossRef]
- Masci, J.; Meier, U.; Ciresan, D.; Schmidhuber, J.; Fricout, G. Steel defect classification with max-pooling convolutional neural networks. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; IEEE: New York, NY, USA; pp. 1–6. [Google Scholar]
- Gao, B.; Pavel, L. On the Properties of the Softmax Function with Application in Game Theory and Reinforcement Learning. arXiv 2017, arXiv:1704.00805. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Tammina, S. Transfer learning using vgg-16 with deep convolutional neural network for classifying images. Int. J. Sci. Res. Publ. 2019, 9, 143–150. [Google Scholar] [CrossRef]
- Islam, S.; Khan, S.I.A.; Abedin, M.M.; Habibullah, K.M.; Das, A.K. Bird species classification from an image using VGG-16 network. In Proceedings of the 7th International Conference on Computer and Communications Management, Bangkok, Thailand, 27–29 July 2019; pp. 38–42. [Google Scholar]
- Guan, Q.; Wang, Y.; Ping, B.; Li, D.; Du, J.; Qin, Y.; Xiang, J. Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: A pilot study. J. Cancer 2019, 10, 4876. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Liu, T.; Tao, D. Why resnet works? Residuals generalize. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 5349–5362. [Google Scholar] [CrossRef] [PubMed]
- Borawar, L.; Kaur, R. ResNet: Solving Vanishing Gradient in Deep Networks. In Proceedings of the International Conference on Recent Trends in Computing: ICRTC 2022, Ghaziabad, India, 3–4 June 2022; Springer: Singapore, 2022. [Google Scholar]
- Luo, A.; BoozAllen, J.; Sullivan, J.; Mills, S.; Cukierski, W. National Data Science Bowl. Kaggle. 2014. Available online: https://kaggle.com/competitions/datasciencebowl (accessed on 25 July 2014).
- Naz, T.; Burhan, Z.; Jamal, P.J.A. Seasonal abundance of diatoms in correlation with the physicochemical parameters from coastal waters of Pakistan. Pak. J. Bot. 2013, 45, 1477–1486. [Google Scholar]
Tow | Collection Date | ROI Count |
---|---|---|
1 | 27 April 2018–28 April 2018 | 4,852,173 |
2 | 30 April 2018 | 1,770,401 |
3 | 1 May 2018–2 May 2018 | 8,366,266 |
4 | 2 May 2018–3 May 2018 | 3,362,544 |
5 | 3 May 2018–4 May 2018 | 3,516,418 |
6 | 5 May 2018 | 4,135,340 |
7 | 6 May 2018 | 3,815,775 |
Layer | Input Size | Filters | Kernel Size | Step Size | Output Size |
---|---|---|---|---|---|
Conv2D 1 | 164 × 164 | 64 | 7 × 7 | 3 | 55 × 55 |
Conv2D 2 | 27 × 27 | 128 | 5 × 5 | 1 | 27 × 27 |
Conv2D 3 | 27 × 27 | 128 | 3 × 3 | 1 | 27 × 27 |
Conv2D 4 | 13 × 13 | 256 | 3 × 3 | 1 | 13 × 13 |
Conv2D 5 | 13 × 13 | 256 | 3 × 3 | 1 | 13 × 13 |
Model | Acc | F1 | Precision | Recall | Train Time (h:m:s) | Eval Time (h:m:s) |
---|---|---|---|---|---|---|
VGG-16 | 0.94 | 0.94 | 0.94 | 0.94 | 04:21:21 | 0:08:44 |
ShadowNet | 0.95 | 0.95 | 0.95 | 0.95 | 04:49:50 | 0:04:40 |
ResNet-50 | 0.92 | 0.92 | 0.92 | 0.92 | 03:50:31 | 0:8:02 |
Delaware | ||||||
---|---|---|---|---|---|---|
Model | Acc | F1 | Precision | Recall | AUC | Eval Time (h:m:s) |
VGG-16 | 0.95 | 0.95 | 0.95 | 0.94 | 0.99 | 0:19:51 |
ShadowNet | 0.97 | 0.97 | 0.97 | 0.97 | 0.99 | 0:36:15 |
ResNet-50 | 0.93 | 0.93 | 0.93 | 0.93 | 0.99 | 1:06:02 |
IchthyNet Ensemble | 0.98 | 0.98 | 0.98 | 0.98 | 0.99 | 2:02:17 |
Florida | ||||||
Model | Acc | F1 | Precision | Recall | AUC | Eval Time (h:m:s) |
VGG-16 | 0.91 | 0.92 | 0.91 | 0.91 | 0.99 | 0:03:38 |
ShadowNet | 0.91 | 0.92 | 0.91 | 0.91 | 0.99 | 0:01:56 |
ResNet-50 | 0.92 | 0.92 | 0.92 | 0.92 | 0.98 | 0:04:18 |
IchthyNet Ensemble | 0.96 | 0.96 | 0.96 | 0.96 | 0.99 | 0:10:02 |
Delaware | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | APP | CHA | COP | CTE | DIA | HYD | INV | SHR | SIP | SNO | VEL |
VGG-16 | 0.95 | 0.86 | 0.92 | 0.89 | 1.0 | 0.99 | 0.90 | 0.98 | 0.93 | 0.98 | 0.98 |
ShadowNet | 0.94 | 0.97 | 0.97 | 0.95 | 0.98 | 0.98 | 0.90 | 0.98 | 0.96 | 0.96 | 0.99 |
ResNet-50 | 0.92 | 0.94 | 0.91 | 0.87 | 0.99 | 0.97 | 0.84 | 0.95 | 0.92 | 0.92 | 0.96 |
IchthyNet Ensemble | 0.97 | 0.98 | 0.98 | 0.96 | 0.99 | 0.99 | 0.87 | 0.99 | 0.98 | 0.98 | 0.99 |
Florida | |||||||||||
Model | APP | CHA | COP | CTE | DIA | HYD | INV | SHR | SIP | SNO | VEL |
VGG-16 | 0.90 | 0.95 | 0.94 | 0.50 | 0.88 | 0.92 | 0.93 | 0.86 | 0.79 | - | - |
ShadowNet | 0.89 | 0.93 | 0.97 | 0.42 | 0.87 | 0.87 | 0.96 | 0.80 | 0.82 | - | - |
ResNet-50 | 0.89 | 0.95 | 0.95 | 0.41 | 0.94 | 0.94 | 0.93 | 0.89 | 0.81 | - | - |
IchthyNet Ensemble | 0.96 | 0.98 | 0.98 | 0.71 | 0.93 | 0.96 | 0.97 | 0.92 | 0.93 | - | - |
Model | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
VGG-16 | 6:44:03 | 3:04:30 | 15:02:55 | 5:18:31 | 4:55:01 | 6:08:58 | 5:36:26 |
ShadowNet | 6:30:36 | 2:30:34 | 13:13:02 | 4:12:32 | 4:17:57 | 6:02:29 | 5:10:22 |
ResNet-50 | 7:48:57 | 3:17:16 | 14:20:41 | 7:39:01 | 4:45:42 | 6:44:37 | 6:35:58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slocum, B.; Penta, B. IchthyNet: An Ensemble Method for the Classification of In Situ Marine Zooplankton Shadowgraph Images. Oceans 2025, 6, 7. https://doi.org/10.3390/oceans6010007
Slocum B, Penta B. IchthyNet: An Ensemble Method for the Classification of In Situ Marine Zooplankton Shadowgraph Images. Oceans. 2025; 6(1):7. https://doi.org/10.3390/oceans6010007
Chicago/Turabian StyleSlocum, Brittney, and Bradley Penta. 2025. "IchthyNet: An Ensemble Method for the Classification of In Situ Marine Zooplankton Shadowgraph Images" Oceans 6, no. 1: 7. https://doi.org/10.3390/oceans6010007
APA StyleSlocum, B., & Penta, B. (2025). IchthyNet: An Ensemble Method for the Classification of In Situ Marine Zooplankton Shadowgraph Images. Oceans, 6(1), 7. https://doi.org/10.3390/oceans6010007