Open-Ocean Carbonate System and Air–Sea CO2 Fluxes Across a NE Atlantic Seamount Complex (Madeira–Tore, August 2024)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Surface Physical and Biogeochemical Sampling and Analysis
2.3. Ancillary Data
2.3.1. Satellite Data
2.3.2. Atmospheric Data
2.3.3. CO2 Flux Calculations
3. Results
3.1. Physical and Biogeochemical Water Parameters
3.2. Phytoplankton Community
3.3. Inorganic Carbon System and Atmospheric Fluxes
3.4. Principal Components Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hönisch, B.; Ridgwell, A.; Schmidt, D.N.; Thomas, E.; Gibbs, S.J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R.C.; Greene, S.E.; et al. The Geological record of ocean acidification. Science 2012, 335, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef]
- Gruber, N.; Clement, D.; Carter, B.R.; Feely, R.A.; van Heuven, S.; Hoppema, M.; Ishii, M.; Key, R.M.; Kozyr, A.; Lauvset, S.K.; et al. The Oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 2019, 363, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Bates, N.; Astor, Y.; Church, M.; Currie, K.; Dore, J.; González-Dávila, M.; Lorenzoni, L.; Muller-Karger, F.; Olafsson, J.; Santa-Casiano, M. A Time-Series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 2014, 27, 126–141. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Sweeney, C.; Poisson, A.; Metzl, N.; Tilbrook, B.; Bates, N.; Wanninkhof, R.; Feely, R.A.; Sabine, C.; et al. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 1601–1622. [Google Scholar] [CrossRef]
- Fine, R.A.; Willey, D.A.; Millero, F.J. Global variability and changes in ocean total alkalinity from Aquarius satellite data. Geophys. Res. Lett. 2017, 44, 261–267. [Google Scholar] [CrossRef]
- OSPAR. Ocean Acidification. OSPAR Quality Status Report 2023. Available online: https://oap.ospar.org/en/ospar-assessments/quality-status-reports/qsr-2023/other-assessments/ocean-acidification/ (accessed on 20 March 2025).
- Ríos, A.F.; Resplandy, L.; García-Ibáñez, M.I.; Fajar, N.M.; Velo, A.; Padin, X.A.; Wanninkhof, R.; Steinfeldt, R.; Rosón, G.; Pérez, F.F. Decadal acidification in the water masses of the Atlantic Ocean. Proc. Natl. Acad. Sci. USA 2015, 112, 9950–9955. [Google Scholar] [CrossRef] [PubMed]
- Lozier, M.S.; Srokosz, M.A. The north Atlantic overturning: Past, present, and future. Annu. Rev. Mar. Sci. 2022, 14, 469–495. [Google Scholar]
- Landschützer, P.; Gruber, N.; Bakker, D.C.E.; Schuster, U. Recent variability of the global ocean carbon sink. Glob. Biogeochem. Cycles 2014, 28, 927–949. [Google Scholar] [CrossRef]
- Pitcher, T.J.; Morato, T.; Briones-Fourzán, P.K.; Ralston, N.V.C.; Reynolds, J.D.; Clark, M.R. Seamounts: Ecology, Fisheries & Conservation; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Lavelle, J.W.; Mohn, C. Motion, commotion, and biophysical connections at deep ocean seamounts. Oceanography 2010, 23, 90–103. [Google Scholar] [CrossRef]
- Morato, T.; Hoyle, S.D.; Allain, V.; Nicol, S.J. Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc. Natl. Acad. Sci. USA 2010, 107, 9707–9711. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.R.; Schlacher, A.N.; Branch, T.A.; Brown, B.A.; Consalvey, D.J.; Dunstan, P.V.; O’Hara, R.J.; Schlacher-Hoenlinger, A.M.; Williams, R. The ecology of seamounts: Structure, function, and human impacts. Annu. Rev. Mar. Sci. 2010, 2, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Beaufort, L.; Probert, I.; de Garidel-Thoron, T.; Bendif, E.M.; Ruiz-Pino, D.; Metzl, N.; Goyet, C.; Buchet, N.; Coupel, P.; Grelaud, M.; et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 2011, 476, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Rost, B.; Riebesell, U. Coccolithophores and the biological carbon pump: Responses to environmental changes. Geophys. Monogr. Ser. 2004, 119, 99–125. [Google Scholar] [CrossRef]
- Geldmacher, J.; Hoernle, K.; Klügel, A.; Bogaard, P.v.d.; Wombacher, F.; Berning, B. Origin and Geochemical Evolution of the Madeira-Tore Rise (Eastern North Atlantic). J. Geophys. Res. 2006, 111, B09206. [Google Scholar] [CrossRef]
- Geldmacher, J.; Hoernle, K. The 72 Ma geochemical evolution of the Madeira hotspot (eastern North Atlantic): Recycling of Paleozoic (≤ 500 Ma) oceanic lithosphere. Earth Planet. Sci. Lett. 2000, 183, 73–92. [Google Scholar] [CrossRef]
- Lima, M.J.; Sala, I.; Caldeira, R.M.A. Physical Connectivity Between the NE Atlantic Seamounts. Front. Mar. Sci. 2020, 7, 238. [Google Scholar] [CrossRef]
- Geldmacher, J.; Bogaard, P.v.d.; Hoernle, K.; Schmincke, H.U. The 40Ar/39Ar Age Dating of the Madeira Archipelago and Hotspot Track (Eastern North Atlantic). Geochem. Geophys. Geosyst. 2000, 1, 1008. [Google Scholar] [CrossRef]
- Geldmacher, J.; Hoernle, K.; Bogaard, P.; Duggen, S.; Werner, R. New 40Ar/39Ar Age and Geochemical Data from Seamounts in the Canary and Madeira Volcanic Provinces: Support for the Mantle Plume Hypothesis. Earth Planet. Sci. Lett. 2005, 237, 85–101. [Google Scholar] [CrossRef]
- Barton, E.; Arístegui, J.; Tett, P.; Cantón, M.; García-Braun, J.; Hernández-León, S.; Nykjaer, L.; Almeida, C.; Almunia, J.; Ballesteros, S.; et al. The transition zone of the Canary Current upwelling region. Prog. Oceanogr. 1998, 41, 457–503. [Google Scholar] [CrossRef]
- Aristegui, J.; Gasol, J.M.; Duarte, C.M.; Herndld, G.J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 2009, 54, 1501–1529. [Google Scholar] [CrossRef]
- Benazzouz, B.; Orbi, A.; Gohin, A.; Loisel, H.; Bentamy, A. On the use of satellite data to estimate the turbidity maximum zone in the gironde plume (Bay of Biscay). Cont. Shelf Res. 2014, 81, 38–54. [Google Scholar] [CrossRef]
- Marine Conservation Institue. MPA Guide—Gorringe Bank. Available online: https://mpatlas.org/zones/2375/ (accessed on 14 March 2025).
- Millero, F.J.; Lee, K.; Roche, M. Distribution of alkalinity in the surface waters of the major oceans. Mar. Chem. 1998, 60, 111–130. [Google Scholar] [CrossRef]
- González-Dávila, M.; Santana-Casiano, J.M.; Rueda, M.J.; Llinás, O. The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004. Biogeosciences 2010, 7, 3067–3081. [Google Scholar] [CrossRef]
- González-Dávila, M.; Santana-Casiano, J.M.; González-Dávila, E.F. Interannual variability of the upper ocean carbon cycle in the northeast Atlantic Ocean. Geophys. Res. Lett. 2007, 34, L07608. [Google Scholar] [CrossRef]
- Aminot, S.I.; Chaussepied, M. Manuel Des Analyses Chimiques en Milieu Marin; CNEXO: Brest, France, 1983; 395p. [Google Scholar]
- Benson, B.B.; Krause., D., Jr. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol. Oceanogr. 1984, 29, 620–632. [Google Scholar] [CrossRef]
- Strickland, J.D.H.; Parsons, T.R. A practical handbook of seawater analysis. In Bulletin Fisheries Research Board of Canada; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972; 310p. [Google Scholar]
- Edler, L.; Elbrächter, M. The Utermöhl method for quantitative phytoplankton analysis. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis; Karlson, B., Cusack, C., Bresnan, E., Eds.; UNESCO, Intergovernmental Oceanographic Commission (IOC): Paris, France, 2010; IOC Manuals and Guides, no. 55; IOC/2010/MG/55. [Google Scholar]
- Dickson, A.G.; Sabine, C.L.; Christian, J.R. Guide to Best Practices for Ocean CO2 Measurements, PICES Special Publication 3: Sidney, BC, Canada, 2007. PICES Special Publication 3; North Pacific Marine Science Organization: North Saanich, BC, Canada, 2007; 191p. [Google Scholar]
- Pierrot, D.; Epitalon, J.-M.; Orr, J.C.; Lewis, E.; Wallace, D.W.R. MS Excel Program Developed for CO2 System Calculations—Version 3.0, (2021), GitHub Repository. Available online: https://github.com/dpierrot/co2sys_xl (accessed on 7 January 2025).
- Lueker, T.J.; Dickson, A.G.; Keeling, C.D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and dissolved inorganic phosphate. Mar. Chem. 2000, 70, 105–119. [Google Scholar] [CrossRef]
- Dickson, A.G. Standard potential of the carbonate system in seawater. Mar. Chem. 1990, 44, 131–142. [Google Scholar] [CrossRef]
- Lee, K.; Kim, T.W.; Byrne, R.H.; Millero, F.J.; Feely, R.A.; Liu, Y.M. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim. Cosmochim. Acta 2010, 74, 1801–1811. [Google Scholar] [CrossRef]
- Clayton, T.D.; Byrne, R.H. Spectrophotometric seawater pH measurements: Total hydrogen results. Deep. Sea Res. I Oceanogr. Res. Pap. 1993, 40, 2115–2129. [Google Scholar] [CrossRef]
- Lan, X.; Mund, J.W.; Crotwell, A.M.; Thoning, K.W.; Moglia, E.; Madronich, M.; Baugh, K.; Petron, G.; Crotwell, M.J.; Neff, D.; et al. Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1968–2024, Version: 2025-03-13. Available online. Available online: https://gml.noaa.gov/ccgg/arc/?id=132 (accessed on 21 March 2025). [CrossRef]
- NOAA/National Weather Service; National Centers for Environmental Prediction; Climate Prediction Center. n.d. Available online: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml#current (accessed on 20 March 2025).
- Weiss, R.F. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 1974, 2, 203–215. [Google Scholar] [CrossRef]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 2014, 12, 351–362. [Google Scholar] [CrossRef]
- Jiang, Z.-P.; Tyrrell, T.; Hydes, D.J.; Dai, M.; Hartman, S.E. Variability of alkalinity and the alkalinity-salinity relationship in the tropical and subtropical surface ocean. Glob. Biogeochem. Cycles 2014, 28, 729–742. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 7 January 2025).
- Sangrà, P.; Pascual, A.; Rodríguez-Santana, Á.; Machín, F.; Mason, E.; McWilliams, J.C.; Pelegrí, J.L.; Dong, C.; Rubio, A.; Arístegui, J.; et al. The Canary Eddy Corridor: A Major Pathway for Long-Lived Eddies in the Subtropical North Atlantic. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 2100–2114. [Google Scholar] [CrossRef]
- Aguiar, A.C.; Barbosa, A.J.; Peliz, A.; Cordeiro Pires, A.; Le Cann, B. Zonal Structure of the Mean Flow and Eddies in the Azores Current System. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Tuerena, R.E.; Williams, R.G.; Mahaffey, C.; Vic, C.; Green, J.A.M.; Naveira-Garabato, A.; Forryan, A.; Sharples, J. Internal tides drive nutrient fluxes into the deep chlorophyll maximum over mid-ocean ridges. Glob. Biogeochem. Cycles 2019, 33, 995–1009. [Google Scholar] [CrossRef]
- Levy, M.; Bopp, L.; Karleskind, P.; Resplandy, L.; Ethe, C.; Pinsard, F. Physical pathways for carbon transfers between the surface mixed layer and the ocean interior. Global Biogeochem. Cycles 2013, 27, 1001–1012. [Google Scholar] [CrossRef]
- McClelland, H.; Barbarin, N.; Beaufort, L.; Hermoso, M.; Ferretti, P.; Greaves, M.; Rickaby, R.E.M. Calcification response of a key phytoplankton family to millennial-scale environmental change. Sci. Rep. 2016, 6, 34263. [Google Scholar] [CrossRef] [PubMed]
- Krumhardt, K.M.; Lovenduski, N.S.; Freeman, N.M.; Bates, N.R. Apparent Increase in coccolithophore abundance in the subtropical north atlantic from 1990 to 2014. Biogeosciences 2016, 13, 1163–1177. [Google Scholar] [CrossRef]
- Reinfelder, J.R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu. Rev. Mar. Sci. 2011, 3, 291–315. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Brotas, V.; Valente, A.; Diniz, T.; Sá, C.; Patarra, R.F.; Álvaro, N.V.; Neto, A.I. Coccolithophore species as indicators of surface oceanographic conditions in the vicinity of Azores islands. Estuar. Coast. Shelf Sci. 2013, 118, 50–59. [Google Scholar] [CrossRef]
- Guerreiro, C.A.V. Paleoecology of Coccolithophores in the Submarine Canyons of the Central Portuguese Continental Margin: Environmental, Sedimentary and Oceanographic Implications. Ph.D. Thesis, Universidade de Lisboa, Lisbon, Portugal, 2013. Available online: https://repositorio.ulisboa.pt/handle/10451/9680 (accessed on 26 March 2025).
- Tilstone, G.H.; Míguez, B.M.; Figueiras, F.G.; Fermín, E.G. Diatom dynamics in a coastal ecosystem affected by upwelling: Coupling between species succession, circulation and biogeochemical processes. Mar. Ecol. Prog. Ser. 2000, 205, 23–41. [Google Scholar] [CrossRef]
- Prend, C.J.; Hunt, J.M.; Mazloff, M.R.; Gille, S.T.; Talley, L.D. Controls on the boundary between thermally and non-thermally driven pCO2 regimes in the South Pacific. Geophys. Res. Lett. 2022, 49, e2021GL095797. [Google Scholar] [CrossRef]
- Curbelo-Hernández, M.; González-Dávila, M.; González, A.G.; González, D.; Santana-Casiano, J.M. CO2 fluxes in the northeast atlantic ocean based on measurements from a surface ocean observation platform. Sci. Total Environ. 2021, 775, 145804. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Yang, X.; Li, Y.; Li, L.; Jiang, L.Q.; Xin, M.; Wang, Z.; Sun, X.; Wei, Q. Processes controlling sea surface ph and aragonite saturation state in a large northern temperate bay: Contrasting temperature effects. J. Geophys. Res. Biogeosciences 2020, 125, e2020JG005805. [Google Scholar] [CrossRef]
- Kim, H.-C.; Lee, K.; Choi, W.Y. Contribution of phytoplankton and bacterial cells to the measured alkalinity of seawater. Limnol. Oceanogr. 2006, 51, 331–338. [Google Scholar] [CrossRef]
- Keller, K.M.; Joos, F.; Raible, C.C.; Cocco, V.; Frölicher, T.L.; Dunne, J.P.; Gehlen, M.; Bopp, L.; Orr, J.C.; Tjiputr, J.; et al. Variability of the ocean carbon cycle in response to the north atlantic oscillation. Tellus B 2012, 1, 1–25. [Google Scholar] [CrossRef]
- Schuster, U.; Watson, A.J. A variable and decreasing sink for atmospheric CO2 in the North Atlantic. J. Geophys. Res. 2007, 112, C11006. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Wanninkhof, R.; Sweeney, C.; Feely, R.A.; Chipman, D.W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C.; et al. Climatological Mean and Decadal Change in Surface Ocean pCO2, and Net Sea-Air CO2 Flux over the Global Oceans. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 554–577. [Google Scholar] [CrossRef]
- Padin, X.A.; Vázquez-Rodríguez, M.; Castaño, M.; Velo, A.; Alonso-Pérez, F.; Gago, J.; Gilcoto, M.; Álvarez, M.; Pardo, P.C.; de la Paz, M.; et al. Air-Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn. Biogeosciences 2010, 7, 1587–1606. [Google Scholar] [CrossRef]
- Burgos, M.; Sendra, M.; Ortega, T.; Ponce, R.; Gómez-Parra, A.; Forja, J.M. Ocean-Atmosphere CO2 Fluxes in the North Atlantic Subtropical Gyre: Association with Biochemical and Physical Factors during Spring. J. Mar. Sci. Eng. 2015, 3, 891–905. [Google Scholar] [CrossRef]
- Curbelo-Hernández, D.; González-Dávila, M.; Santana-Casiano, J.M. The Carbonate System and Air-Sea CO2 Fluxes in Coastal and Open-Ocean Waters of the Macaronesia. Front. Mar. Sci. 2023, 10, 1094250. [Google Scholar] [CrossRef]
Stations | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Seamount | Josephine | Josephine | Josephine | Lion | Lio | Lion | Madeira–Ampère | Ampère | Ampère | Gettysburg Peak | Gettysburg Peak |
Location | Mid-slope W | Summit | Mid-slope E | Summit 2 | Mid-slope W | Summit 1 | OpenOcean | Mid-slope W | Summit | Mid-slope W | Summit |
Latitude | 36.601 | 36.630 | 36.659 | 35.27 | 35.31 | 35.22 | 34.417 | 35.040 | 35.054 | 36.560 | 36.528 |
Longitude | −14.28 | −14.25 | −14.15 | −15.65 | −15.69 | −15.49 | −14.10 | −13.04 | −12.87 | −11.66 | −11.58 |
Bottom depth [m] | 1410 | 216 | 1404 | 699 | 1457 | 726 | 4180 | 1496 | 66 | 1386 | 64 |
T [°C] | 22.04 | 22.14 | 22.47 | 22.63 | 23.00 | 22.94 | 23.14 | 22.68 | 22.74 | 21.86 | 21.98 |
S | 36.28 | 36.21 | 36.22 | 36.54 | 36.56 | 36.57 | 36.67 | 36.74 | 36.69 | 36.57 | 36.61 |
DO [µmol Kg−1] | 238 | 247 | 242 | 251 | 237 | 239 | 228 | 228 | 228 | 233 | 231 |
AOU [µmol Kg−1] | −22.69 | −31.54 | −27.92 | −38.03 | −25.42 | −27.02 | −16.61 | −15.26 | −15.51 | −16.58 | −15.51 |
Chla [mg m−3] | 0.038 | 0.008 | 0.025 | 0.041 | 0.028 | 0.036 | 0.035 | 0.022 | 0.025 | 0.008 | 0.012 |
Total phytoplankton (cells L−1) | 8640 | 1813 | 1067 | 920 | 3573 | 47,387 | 22,293 | 7467 | 8587 | 3253 | 4800 |
Coccolithophores | 7360 | 1493 | 747 | 600 | 2773 | 32,907 | 15,093 | 2667 | 2027 | 2933 | 3520 |
Dinoflagellates | 800 | 0 | 320 | 0 | 800 | 4320 | 2720 | 3840 | 6080 | 320 | 800 |
Diatoms | 0 | 0 | 0 | 0 | 0 | 3040 | 960 | 0 | 0 | 0 | 0 |
Chlorophytes | 480 | 320 | 0 | 320 | 0 | 4240 | 800 | 0 | 480 | 0 | 480 |
Criptophytes | 0 | 0 | 0 | 0 | 0 | 0 | 1440 | 480 | 0 | 0 | 0 |
Ciliates | 0 | 0 | 0 | 0 | 0 | 2880 | 1280 | 480 | 0 | 0 | 0 |
TA [µmol Kg−1] | 2236 | 2310 | 2268 | 2407 | 2439 | 2467 | 2431 | 2452 | 2426 | 2437 | 2435 |
pHT | 7.951 | 7.987 | 7.970 | 7.988 | 7.971 | 8.001 | 7.984 | 7.979 | 7.993 | 7.999 | 7.995 |
DIC [µmol Kg−1] | 2006 | 2055 | 2022 | 2138 | 2174 | 2183 | 2158 | 2183 | 2151 | 2165 | 2164 |
pCO2 [µatm] | 498 | 467 | 479 | 485 | 515 | 479 | 494 | 506 | 482 | 477 | 481 |
ΩCa | 3.86 | 4.28 | 4.13 | 4.56 | 4.54 | 4.84 | 4.66 | 4.59 | 4.66 | 4.61 | 4.60 |
ΩAr | 2.53 | 2.80 | 2.70 | 2.99 | 2.98 | 3.18 | 3.06 | 3.01 | 3.06 | 3.02 | 3.01 |
CO2 flux [mmol m−2 d−1] | 4.70 | 2.76 | 3.51 | 6.75 | 10.01 | 4.96 | 6.20 | 11.47 | 8.16 | 5.80 | 6.23 |
Coccolithophores | Dinoflagellates | Diatoms | Green Algae |
---|---|---|---|
(Prymnesiophyceae) | (Dinophyceae) | (Bacillariophyceae) | (Chlorophyceae) |
Calyptrosphaera spp. | Azadinium spp. | Centrales | Pyramimonas spp. |
Coronosphaera mediterranea | Ceratium furca | Cocconeis spp. | |
Discosphaera tubifer | Ceratium fusus | Hemiaulus spp. | Cryptophyceae |
Emiliania huxleyi | Fragilidium spp. | Odontella spp. | |
Gephyrocapsa ericsonii | Gymnodinium spp. | Proboscia alata | Ciliates |
Gephyrocapsa muellerae | Gyrodinium spp. | Pennales | |
Gephyrocapsa oceanica | Heterocapsa spp. | Pseudonitzschia spp. seriata group | |
Holocococcoliths | Karlodinium spp. | ||
Ophyaster spp. | Oxytoxum spp. | ||
Rhabdosphaera clavigera | Scripsiella spp. | ||
Syracosphaera pulchra | |||
Syracosphaera spp. |
Period | Location | pCO2 (μatm) | SST (°C) | FCO2 (mmol m−2 d−1) | Reference |
---|---|---|---|---|---|
2002–2005 | Atl 20–50° N | 370 ± 10 | - | −1.2 ± 1.5 | Schuster & Watson (2007) [60] |
Spring 1970–2006 | Atl 14–50° N | 310 ± 30 | - | −2.7 ± 2.7 | Takahashi et al. (2009) [61] |
Autumn 2000–2008 | Atl 27–39° N | - | 18.6 ± 0.9 | 0.2 ± 0.4 | Padín et al. (2010) [62] |
Spring 2011 | SGTW (19.3–39.1° N, 66.9–30.7° W) | 343 ± 8 | 19.8 ± 4.1 | −5.5 ± 2.2 | Burgos et al. (2015) [63] |
Summer 2019–2020 | 28° N–36° N | - | 22.6 ± 1.1 | 2.15 ± 0.08 | Curbelo-Hernández et al. (2021) [64] |
Summer 2024 | 33.5° N–37.5°N | 487 ± 14 | 22.6 ± 0.4 | 6.4 ± 2.6 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, M.; Silva, A.D. Open-Ocean Carbonate System and Air–Sea CO2 Fluxes Across a NE Atlantic Seamount Complex (Madeira–Tore, August 2024). Oceans 2025, 6, 46. https://doi.org/10.3390/oceans6030046
Nogueira M, Silva AD. Open-Ocean Carbonate System and Air–Sea CO2 Fluxes Across a NE Atlantic Seamount Complex (Madeira–Tore, August 2024). Oceans. 2025; 6(3):46. https://doi.org/10.3390/oceans6030046
Chicago/Turabian StyleNogueira, Marta, and Alexandra D. Silva. 2025. "Open-Ocean Carbonate System and Air–Sea CO2 Fluxes Across a NE Atlantic Seamount Complex (Madeira–Tore, August 2024)" Oceans 6, no. 3: 46. https://doi.org/10.3390/oceans6030046
APA StyleNogueira, M., & Silva, A. D. (2025). Open-Ocean Carbonate System and Air–Sea CO2 Fluxes Across a NE Atlantic Seamount Complex (Madeira–Tore, August 2024). Oceans, 6(3), 46. https://doi.org/10.3390/oceans6030046