AMOC and North Atlantic Ocean Decadal Variability: A Review
Abstract
1. Introduction
1.1. Climate Normals
1.2. Research Activities
1.3. Global Ocean Circulation and AMOC
2. North Atlantic Circulation: An Overview
2.1. North Atlantic Circulation System
2.2. Gulf Stream System
2.3. North Atlantic General Circulation and AMOC
3. Internal and External Controls of AMOC
3.1. Primary Factors Influencing AMOC
3.2. Freshwater Exchange and Meltwater Impacts
4. Models
4.1. Early General Circulation Models
4.2. Freshwater (Salinity) Control of AMOC
4.3. Factors Affecting AMOC Dynamics
4.4. Paleoceanographic Modeling of Ocean Circulation
4.5. Coupled Ocean–Atmosphere Models
4.6. Climate Models
4.7. Inter-Basin Connections
4.8. Northern and Southern Hemisphere Interplay
4.9. AMOC Modus Operandi
4.10. Searching for Consensus
4.11. Model Conclusions
5. AMOC Monitoring, In Situ Observations, and Ocean Data Analyses
5.1. Monitoring and Data Analyses Versus Models
5.2. Monitoring Along Basin-Wide Sections
5.3. AMOC Tipping Point
5.4. Analyses of Gridded Ocean Climatologies
5.5. Gulf Stream Resilience
5.6. Ocean Heat Content and Eighteen Degree Water
5.7. Wind Stress Impact on AMOC
5.8. Decadal Averages of the In Situ Data
5.9. Decadal Variability of Water Transport in Upper Arm of the AMOC
5.10. Ocean Climate Data Analyses
5.11. AMOC Fingerprints and Stability Assessments
6. Discussion
6.1. Mechanisms Behind AMOC Weakening
6.2. A Comparison of the Present-Day and Glacial-Interglacial AMOC
6.3. Wind Stress as a Stabilizing Factor
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WMO. World Meteorological Organization: Guide to Climatological Practices; WMO: Geneva, Switzerland, 2018; Volume WMO, p. 139. [Google Scholar]
- Arguez, A.; Vose, R.S. The definition of the standard WMO climate normal: The key to deriving alternative climate normals. Bull. Am. Meteorol. Soc. 2011, 92, 699–704. [Google Scholar] [CrossRef]
- Yashayaev, I.; Seidov, D.; Demirov, E. A new collective view of oceanography of the Arctic and North Atlantic basins. Prog. Oceanogr. 2015, 132, 1–21. [Google Scholar] [CrossRef]
- Roemmich, D.; Owens, W.B. The ARGO project: Global ocean observations for understanding and prediction of climate variability. Oceanography 2002, 13, 45–50. [Google Scholar] [CrossRef]
- Roemmich, D.; Argo-Steering-Team. Argo: The challange of continuing 10 years of progress. Oceanography 2009, 22, 27–35. [Google Scholar] [CrossRef]
- Riser, S.C.; Freeland, H.J.; Roemmich, D.; Wijffels, S.; Troisi, A.; Belbeoch, M.; Gilbert, D.; Xu, J.; Pouliquen, S.; Thresher, A.; et al. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change 2016, 6, 145–153. [Google Scholar] [CrossRef]
- Steven, R.J.; Roemmich, D.; Zilberman, N.; Riser, S.C.; Johnson, K.S.; Johnson, G.C.; Piotrowicz, S.R. The Argo Program: Present and future. Oceanography 2017, 30, 18–28. [Google Scholar] [CrossRef]
- Johnson, G.C.; Hosoda, S.; Jayne, S.R.; Oke, P.R.; Riser, S.C.; Roemmich, D.; Suga, T.; Thierry, V.; Wijffels, S.E.; Xu, J. Argo–two decades: Global oceanography, revolutionized. Annu. Rev. Mar. Sci. 2022, 14, 379–403. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.L. Interocean exchange of thermocline water. J. Geophys. Res. 1986, 91, 5037–5046. [Google Scholar] [CrossRef]
- Broecker, W. The great ocean conveyor. Oceanography 1991, 1, 79–89. [Google Scholar] [CrossRef]
- Levitus, S.; Antonov, J.I.; Boyer, T.P.; Baranova, O.K.; Garcia, H.E.; Locarnini, R.A.; Mishonov, A.V.; Reagan, J.R.; Seidov, D.; Yarosh, E.S.; et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 2012, 39, L10603. [Google Scholar] [CrossRef]
- Johnson, G.C.; Lyman, J.M. Warming trends increasingly dominate global ocean. Nat. Clim. Change 2020, 10, 757–761. [Google Scholar] [CrossRef]
- Cheng, L.; von Schuckmann, K.; Abraham, J.P.; Trenberth, K.E.; Mann, M.E.; Zanna, L.; England, M.H.; Zika, J.D.; Fasullo, J.T.; Yu, Y.; et al. Past and future ocean warming. Nat. Rev. Earth Environ. 2022, 3, 776–794. [Google Scholar] [CrossRef]
- Stommel, H. The abyssal circulation. Deep Sea Res. 1958, 5, 80–82. [Google Scholar] [CrossRef]
- Stommel, H.; Arons, A.B. On the abyssal circulation of the world ocean, I, Stationary planetary flow patterns on a sphere. Deep Sea Res. 1959, 6, 140–154. [Google Scholar] [CrossRef]
- Stommel, H.; Arons, A.B. On the abyssal circulation of the world ocean—II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep Sea Res. 1959, 6, 217–233. [Google Scholar] [CrossRef]
- Bryden, H.L. Wind-driven and buoyancy-driven circulation in the subtropical North Atlantic Ocean. Proc. R. Soc. A 2021, 477, 20210172. [Google Scholar] [CrossRef]
- Crowley, T.J. Climate changes, causes. In Encyclopedia of Paleoclimatology and Ancient Environments; Gornitz, V., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 164–174. [Google Scholar]
- Buckley, M.W.; Marshall, J. Observations, inferences, and mechanisms of Atlantic Meridional Overturning Circulation variability: A review. Rev. Geophys. 2016, 54, 5–63. [Google Scholar] [CrossRef]
- Frajka-Williams, E.; Ansorge, I.J.; Baehr, J.; Bryden, H.L.; Chidichimo, M.P.; Cunningham, S.A.; Danabasoglu, G.; Dong, S.; Donohue, K.A.; Elipot, S.; et al. Atlantic Meridional Overturning Circulation: Observed transport and variability. Front. Mar. Sci. 2019, 6, 260. [Google Scholar] [CrossRef]
- Lozier, M.S. Overturning in the North Atlantic. Annu. Rev. Mar. Sci. 2012, 4, 291–315. [Google Scholar] [CrossRef]
- Kuhlbrodt, T.; Griesel, A.; Montoya, M.; Levermann, A.; Hofmann, M.; Rahmstorf, S. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys. 2007, 45, RG2001. [Google Scholar] [CrossRef]
- Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 2002, 419, 207–214. [Google Scholar] [CrossRef]
- Georgiou, S.; Ypma, S.L.; Brüggemann, N.; Sayol, J.-M.; van der Boog, C.G.; Spence, P.; Pietrzak, J.D.; Katsman, C.A. Direct and Indirect Pathways of Convected Water Masses and Their impacts on the Overturning Dynamics of the Labrador Sea. J. Geophys. Res. Ocean. 2021, 126, e2020JC016654. [Google Scholar] [CrossRef]
- Bower, A.; Lozier, S.; Biastoch, A.; Drouin, K.; Foukal, N.; Furey, H.; Lankhorst, M.; Rühs, S.; Zou, S. Lagrangian views of the pathways of the Atlantic Meridional Overturning Circulation. J. Geophys. Res. Ocean. 2019, 124, 5313–5335. [Google Scholar] [CrossRef]
- Jackson, L.C.; Biastoch, A.; Buckley, M.W.; Desbruyères, D.G.; Frajka-Williams, E.; Moat, B.; Robson, J. The evolution of the North Atlantic Meridional Overturning Circulation since 1980. Nat. Rev. Earth Environ. 2022, 3, 241–254. [Google Scholar] [CrossRef]
- Saba, V.S.; Griffies, S.M.; Anderson, W.G.; Winton, M.; Alexander, M.A.; Delworth, T.L.; Hare, J.A.; Harrison, M.J.; Rosati, A.; Vecchi, G.A.; et al. Enhanced warming of the Northwest Atlantic Ocean under climate change. J. Geophys. Res. Ocean. 2016, 121, 118–132. [Google Scholar] [CrossRef]
- Zhang, R.; Sutton, R.; Danabasoglu, G.; Kwon, Y.-O.; Marsh, R.; Yeager, S.G.; Amrhein, D.E.; Little, C.M. A review of the role of the Atlantic Meridional Overturning Circulation in Atlantic Multidecadal Variability and associated climate impacts. Rev. Geophys. 2019, 57, 316–375. [Google Scholar] [CrossRef]
- Srokosz, M.; Baringer, M.; Bryden, H.; Cunningham, S.; Delworth, T.; Lozier, S.; Marotzke, J.; Sutton, R. Past, present, and future changes in the Atlantic Meridional Overturning Circulation. Bull. Am. Meteorol. Soc. 2012, 93, 1663–1676. [Google Scholar] [CrossRef]
- Srokosz, M.A.; Holliday, N.P.; Bryden, H.L. Atlantic overturning: New observations and challenges. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2023, 381, 20220196. [Google Scholar] [CrossRef] [PubMed]
- Seidov, D.; Mishonov, A.; Reagan, J.; Parsons, R. Multidecadal variability and climate shift in the North Atlantic Ocean. Geophys. Res. Lett. 2017, 44, 4985–4993. [Google Scholar] [CrossRef]
- Schmitz, W.J., Jr.; McCartney, M.S. On the North Atlantic circulation. Rev. Geophys. 1993, 31, 29–49. [Google Scholar] [CrossRef]
- Rossby, T. On gyre interactions. Deep Sea Res. Part II Top. Stud. Oceanogr. 1999, 46, 139–164. [Google Scholar] [CrossRef]
- Richardson, P.L. Florida Current, Gulf Stream, and Labrador Current. In Encyclopedia of Ocean Sciences; Steele, J.H., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2001; pp. 1054–1064. [Google Scholar]
- Reverdin, G.; Niiler, P.P.; Valdimarsson, H. North Atlantic Ocean surface currents. J. Geophys. Res. Ocean. 2003, 108, 2-1–2-21. [Google Scholar] [CrossRef]
- Mishonov, A.; Seidov, D.; Reagan, J. Revisiting the multidecadal variability of North Atlantic Ocean circulation and climate. Front. Mar. Sci. 2024, 11, 1345426. [Google Scholar] [CrossRef]
- Seidov, D.; Mishonov, A.; Reagan, J.; Baranova, O.; Cross, S.; Parsons, R. Regional climatology of the Northwest Atlantic Ocean: High-resolution mapping of ocean structure and change. Bull. Am. Meteorol. Soc. 2018, 99, 2129–2138. [Google Scholar] [CrossRef]
- Fuglister, F.C. Gulf Stream ‘60. Prog. Oceanogr. 1963, 1, 265–373. [Google Scholar] [CrossRef]
- Iselin, C.; Fuglister, F.C. Some recent developments in the study of the Gulf Stream. J. Mar. Res. 1948, 7, 317–329. [Google Scholar]
- Iselin, C. A study of the circulation of the western North Atlantic. Pap. Phys. Oceanogr. Meteorol. 1936, 4, 101. [Google Scholar]
- Stommel, H. The Gulf Stream: A Physical and Dynamical Description, 2nd ed.; University Of California Press: Berkeley, CA, USA, 1965; p. 248. [Google Scholar]
- Stommel, H. The westward intensification of the wind-driven ocean circulation. Trans. Am. Geophys. Union 1948, 29, 202–230. [Google Scholar]
- Hogg, N.G.; Johns, W.E. Western boundary currents. Rev. Geophys. 1995, 33, 1311–1334. [Google Scholar] [CrossRef]
- Munk, W.H. On the wind-driven ocean circulation. J. Meteorol. 1950, 7, 79–93. [Google Scholar] [CrossRef]
- Worthington, L.V. On the North Atlantic circulation; Johns Hopkins University Press: Baltimore, MD, USA, 1976; p. 110. [Google Scholar]
- Hogg, N.G.; Pickart, R.S.; Hendry, R.M.; Smethie, W.J., Jr. The northern recirculation gyre of the Gulf Stream. Deep Sea Res. Part A Oceanogr. Res. Pap. 1986, 33, 1139–1165. [Google Scholar] [CrossRef]
- Wunsch, C. The North Atlantic general circulation west of 50° W determined by inverse methods. Rev. Geophys. 1978, 16, 583–620. [Google Scholar] [CrossRef]
- Seidov, D.; Mishonov, A.; Reagan, J.; Parsons, R. Resilience of the Gulf Stream path on decadal and longer timescales. Sci. Rep. 2019, 9, 11549. [Google Scholar] [CrossRef]
- Seidov, D.; Mishonov, A.; Parsons, R. Recent warming and decadal variability of Gulf of Maine and Slope Water. Limnol. Oceanogr. 2021, 66, 3472–3488. [Google Scholar] [CrossRef]
- Gula, J.; Molemaker, M.J.; McWilliams, J.C. Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr. 2014, 44, 2617–2643. [Google Scholar] [CrossRef]
- Klymak, J.M.; Shearman, R.K.; Gula, J.; Lee, C.M.; D’Asaro, E.A.; Thomas, L.N.; Harcourt, R.R.; Shcherbina, A.Y.; Sundermeyer, M.A.; Molemaker, J.; et al. Submesoscale streamers exchange water on the north wall of the Gulf Stream. Geophys. Res. Lett. 2016, 43, 1226–1233. [Google Scholar] [CrossRef]
- Bryden, H.L.; Longworth, H.R.; Cunningham, S.A. Slowing of the Atlantic meridional overturning circulation at 25° N. Nature 2005, 438, 655–657. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.A.; Kanzow, T.; Rayner, D.; Baringer, M.O.; Johns, W.E.; Marotzke, J.; Longworth, H.R.; Grant, E.M.; Hirschi, J.J.M.; Beal, L.M.; et al. Temporal variability of the Atlantic Meridional Overturning Circulation at 26.5° N. Science 2007, 317, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Smeed, D.A.; McCarthy, G.; Cunningham, S.A.; Frajka-Williams, E.; Rayner, D.; Johns, W.E.; Meinen, C.S.; Baringer, M.O.; Moat, B.I.; Duchez, A.; et al. Observed decline of the Atlantic Meridional Overturning Circulation 2004 to 2012. Ocean Sci. 2014, 10, 29–38. [Google Scholar] [CrossRef]
- Li, K.-Y.; Liu, W. Weakened Atlantic Meridional Overturning Circulation causes the historical North Atlantic Warming Hole. Commun. Earth Environ. 2025, 6, 416. [Google Scholar] [CrossRef]
- Michel, S.L.L.; Dijkstra, H.A.; Guardamagna, F.; Jacques-Dumas, V.; van Westen, R.M.; von der Heydt, A.S. Deep learning based reconstructions of the Atlantic meridional overturning circulation confirm twenty-first century decline. Environ. Res. Lett. 2025, 20, 064036. [Google Scholar] [CrossRef]
- Daniault, N.; Mercier, H.; Lherminier, P.; Sarafanov, A.; Falina, A.; Zunino, P.; Pérez, F.F.; Ríos, A.F.; Ferron, B.; Huck, T.; et al. The northern North Atlantic Ocean mean circulation in the early 21st century. Prog. Oceanogr. 2016, 146, 142–158. [Google Scholar] [CrossRef]
- Smethie, W.M., Jr.; Fine, R.A.; Putzka, A.; Jones, E.P. Tracing the flow of North Atlantic Deep Water using chlorofluorocarbons. J. Geophys. Res. Ocean. 2000, 105, 14297–14323. [Google Scholar] [CrossRef]
- Talley, L.D.; McCartney, M.S. Distribution and circulation of Labrador Sea Water. J. Phys. Oceanogr. 1982, 12, 1189–1205. [Google Scholar] [CrossRef]
- Pickart, R.S.; Spall, M.A.; Ribergaard, M.H.; Moore, G.W.K.; Milliff, R.F. Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature 2003, 424, 152–156. [Google Scholar] [CrossRef]
- Le Bras, I.-A. Labrador sea water spreading and the Atlantic meridional overturning circulation. Philos. Trans. R. Soc. A 2023, 381, 20220189. [Google Scholar] [CrossRef]
- Gladyshev, S.V.; Gladyshev, V.S.; Falina, A.S.; Sarafanov, A.A. Winter convection in the Irminger Sea in 2004–2014. Oceanology 2016, 56, 326–335. [Google Scholar] [CrossRef]
- Petit, T.; Lozier, M.S.; Josey, S.A.; Cunningham, S.A. Atlantic Deep Water formation occurs primarily in the Iceland Basin and Irminger Sea by local buoyancy forcing. Geophys. Res. Lett. 2020, 47, e2020GL091028. [Google Scholar] [CrossRef]
- de Jong, M.F.; Oltmanns, M.; Karstensen, J.; de Steur, L. Deep convection in the Irminger Sea observed with a dense mooring array. Oceanography 2018, 31, 50–59. [Google Scholar] [CrossRef]
- Chafik, L.; Holliday, N.P.; Bacon, S.; Rossby, T. Irminger Sea Is the center of action for Subpolar AMOC Variability. Geophys. Res. Lett. 2022, 49, e2022GL099133. [Google Scholar] [CrossRef]
- Sanchez-Franks, A.; Holliday, N.P.; Evans, D.G.; Fried, N.; Tooth, O.; Chafik, L.; Fu, Y.; Li, F.; de Jong, M.F.; Johnson, H.L. The Irminger Gyre as a key driver of the Subpolar North Atlantic Overturning. Geophys. Res. Lett. 2024, 51, e2024GL108457. [Google Scholar] [CrossRef]
- Boyer, T.P.; Levitus, S.; Antonov, J.I.; Locarnini, R.A.; Garcia, H.E. Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Durack, P.J.; Wijffels, S.E. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 2010, 23, 4342–4362. [Google Scholar] [CrossRef]
- Hosoda, S.; Suga, T.; Shikama, N.; Mizuno, K. Global surface layer salinity change detected by argo and its implication for hydrological cycle intensification. J. Oceanogr. 2009, 65, 579–586. [Google Scholar] [CrossRef]
- Durack, P.J.; Wijffels, S.E.; Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 2012, 336, 455–458. [Google Scholar] [CrossRef]
- Skliris, N.; Marsh, R.; Josey, S.A.; Good, S.A.; Liu, C.; Allan, R.P. Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Clim. Dyn. 2014, 43, 709–736. [Google Scholar] [CrossRef]
- Singh, H.K.A.; Donohoe, A.; Bitz, C.M.; Nusbaumer, J.; Noone, D.C. Greater aerial moisture transport distances with warming amplify interbasin salinity contrasts. Geophys. Res. Lett. 2016, 43, 8677–8684. [Google Scholar] [CrossRef]
- Schmittner, A.; Silva, T.A.M.; Fraedrich, K.; Kirk, E.; Lunkeit, F. Effects of mountains and ice sheets on global ocean circulation. J. Clim. 2011, 24, 2814–2829. [Google Scholar] [CrossRef]
- Seidov, D.; Haupt, B.J. On the role of inter-basin surface salinity contrasts in global ocean circulation. Geophys. Res. Lett. 2002, 29, 1800. [Google Scholar] [CrossRef]
- Seidov, D.; Haupt, B.J. Freshwater teleconnections and ocean thermohaline circulation. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef]
- Marsh, R.; Hazeleger, W.; Yool, A.; Rohling, E.J. Stability of the thermohaline circulation under millennial CO2 forcing and two alternative controls on Atlantic salinity. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Reagan, J.; Seidov, D.; Boyer, T. Water vapor transfer and near-surface salinity contrasts in the North Atlantic Ocean. Sci. Rep. 2018, 8, 8830. [Google Scholar] [CrossRef]
- Li, L.; Schmitt, R.W.; Ummenhofer, C.C.; Karnauskas, K.B. North Atlantic salinity as a predictor of Sahel rainfall. Sci. Adv. 2016, 2, e1501588. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Schmitt, R.D.; Ummenhofer, C.C.; Karnauskas, K.B. Implications of North Atlantic sea surface salinity for summer precipitation over the U.S. Midwest: Mechanisms and predictive value. J. Clim. 2016, 29, 3143–3159. [Google Scholar] [CrossRef]
- Chang, E.K.M.; Lee, S.; Swanson, K.L. Storm track dynamics. J. Clim. 2002, 15, 2163–2183. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Hodges, K.I. New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci. 2002, 59, 1041–1061. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.I.; Roeckner, E. Storm tracks and climate change. J. Clim. 2006, 19, 3518–3543. [Google Scholar] [CrossRef]
- Shaw, T.A.; Baldwin, M.; Barnes, E.A.; Caballero, R.; Garfinkel, C.I.; Hwang, Y.T.; Li, C.; O’Gorman, P.A.; Riviere, G.; Simpson, I.R.; et al. Storm track processes and the opposing influences of climate change. Nat. Geosci. 2016, 9, 656–664. [Google Scholar] [CrossRef]
- Ramos, A.M.; Nieto, R.; Tomé, R.; Gimeno, L.; Trigo, R.M.; Liberato, M.L.R.; Lavers, D.A. Atmospheric rivers moisture sources from a Lagrangian perspective. Earth Syst. Dynam. 2016, 7, 371–384. [Google Scholar] [CrossRef]
- Eiras-Barca, J.; Brands, S.; Miguez-Macho, G. Seasonal variations in North Atlantic atmospheric river activity and associations with anomalous precipitation over the Iberian Atlantic Margin. J. Geophys. Res. Atmos. 2016, 121, 931–948. [Google Scholar] [CrossRef]
- Haine, T.W.; Siddiqui, A.H.; Jiang, W. Arctic freshwater impact on the Atlantic Meridional Overturning Circulation: Status and prospects. Philos. Trans. R. Soc. A 2023, 381, 20220185. [Google Scholar] [CrossRef]
- Seidov, D.; Sarnthein, M.; Stattegger, K.; Prien, R.; Weinelt, M. North Atlantic ocean circulation during the last glacial maximum and subsequent meltwater event: A numerical model. J. Geophys. Res. Ocean. 1996, 101, 16305–16332. [Google Scholar] [CrossRef]
- Manabe, S.; Stouffer, R. Coupled ocean-atmosphere model response to freshwater input: Comparison to Younger Dryas event. Paleoceanography 1997, 12, 321–336. [Google Scholar] [CrossRef]
- Bauer, E.; Ganapolski, A.; Montoya, M. Simulation of the cold climate event 8200 years ago by meltwater outburst from Lake Agassiz. Palaeogeography 2004, 19, 1–13. [Google Scholar] [CrossRef]
- Stanford, J.D.; Rohling, E.J.; Hunter, S.E.; Roberts, A.P.; Rasmussen, S.O.; Bard, E.; McManus, J.; Fairbanks, R.G. Timing of meltwater pulse 1a and climate responses to meltwater injections. Paleoceanography 2006, 21, 1–9. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Hewitt, C.D.; Marchitto, T.M.; Brady, E.; Abe-Ouchi, A.; Crucifix, M.; Murakami, S.; Weber, S.L. Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
- Carton, J.A.; Chepurin, G.A.; Chen, L. SODA3: A new ocean climate reanalysis. J. Clim. 2018, 31, 6967–6983. [Google Scholar] [CrossRef]
- Bryan, K. A numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 1969, 4, 347–376. [Google Scholar] [CrossRef]
- Bryan, K.; Cox, M.D. A nonlinear model of an ocean driven by wind and differential heating: Part I. Description of the three-dimensional velocity and density fields. J. Atmos. Sci. 1968, 25, 945–967. [Google Scholar] [CrossRef]
- Cox, M. A baroclinic numerical model of the world ocean: Preliminary results. In Numerical Models of Ocean Circulation; National Academy of Sciences: Washington, DC, USA, 1975; pp. 107–120. [Google Scholar]
- Bryan, K.; Manabe, S. Chapter 1 A Coupled Ocean-Atmosphere and the Response to Increasing Atmospheric CO2. In Elsevier Oceanography Series; Nihoul, J.C.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1985; Volume 40, pp. 1–6. [Google Scholar]
- Manabe, S.; Broccoli, A.J. Beyond Global Warming: How Numerical Models Revealed the Secrets of Climate Change; Princeton University Press: Princeton, NJ, USA, 2020. [Google Scholar]
- Bryan, F. High-latitude salinity effects and interhemispheric thermohaline circulations. Science 1986, 323, 301–304. [Google Scholar] [CrossRef]
- Manabe, S.; Stouffer, R.J. Two stable equilibria of a coupled ocean-atmosphere model. J. Clim. 1988, 1, 841–866. [Google Scholar] [CrossRef]
- Manabe, S.; Stouffer, R.J. The role of thermohaline circulation in climate. Tellus 1999, 51, 91–109. [Google Scholar] [CrossRef]
- Manabe, S.; Stouffer, R.J. Study of abrupt climate change by a coupled ocean-atmosphere model. Quat. Sci. Rev. 2000, 19, 285–299. [Google Scholar] [CrossRef]
- Richardson, P.L. On the history of meridional overturning circulation schematic diagrams. Prog. Oceanogr. 2008, 76, 466–486. [Google Scholar] [CrossRef]
- Warren, B.A. Why is no deep water formed in the North Pacific? J. Mar. Res. 1983, 41, 327–347. [Google Scholar] [CrossRef]
- Ferreira, D.; Marshall, J.; Rose, B. Climate determinism revisited: Multiple equilibria in a complex climate model. J. Clim. 2011, 24, 992–1012. [Google Scholar] [CrossRef]
- Dansgaard, W.; Clausen, H.B.; Gundestrup, N.; Hammer, C.U.; Johnsen, S.F.; Kristinsdottir, P.M.; Reeh, N. A New Greenland Deep Ice Core. Science 1982, 218, 1273–1277. [Google Scholar] [CrossRef]
- Dansgaard, W.; White, J.W.C.; Johnsen, S.J. The abrupt termination of the Younger Dryas climate event. Nature 1989, 339, 532–534. [Google Scholar] [CrossRef]
- Broecker, W.S.; Bond, G.; Klas, M.; Bonani, G.; Wolfli, W. A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography 1990, 5, 469–477. [Google Scholar] [CrossRef]
- Birchfield, G.E.; Broecker, W.S. A salt oscillator in the glacial Atlantic? 2. A “scale” analysis model. Paleoceanography 1990, 5, 835–843. [Google Scholar] [CrossRef]
- Rahmstorf, S. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn. 1996, 12, 799–811. [Google Scholar] [CrossRef]
- England, M.H.; Rahmstorf, S. Sensitivity of ventilation rates and radiocarbon uptake to subgrid-scale mixing in ocean models. J. Phys. Oceanogr. 1999, 29, 2802–2828. [Google Scholar] [CrossRef][Green Version]
- Maier-Reimer, E.; Mikolajewicz, U.; Hasselmann, K. On the Sensitivity of the Global Ocean Circulation to Changes in the Surface Heat Flux Forcing. 1991. Available online: https://www.osti.gov/etdeweb/biblio/7029326 (accessed on 31 August 2025).
- Delworth, T.L.; Manabe, S.; Stouffer, R. Multidecadal climate variability in the Greenland Sea and sorrounding regions: A couples model simulation. Geophys. Res. Let. 1997, 24, 257–260. [Google Scholar] [CrossRef]
- Seidov, D.; Haupt, B.J. Last glacial and meltwater interbasin water exchanges and sedimentation in the world ocean. Paleoceanography 1999, 14, 760–769. [Google Scholar] [CrossRef]
- Renssen, H.; Goosse, H.; Fichefet, T. Modeling the effect of freshwater pulses on the early Holocene climate: The influence of high-frequency climate variability. Paleoceanography 2002, 17, 10-1–10-16. [Google Scholar] [CrossRef]
- Schmittner, A.; Clement, A.C. Sensitivity of the thermohaline circulation to tropical and high latitude freshwater forcing during the last glacial-interglacial cycle. Paleoceanography 2002, 17, 7-1–7-12. [Google Scholar] [CrossRef]
- Wang, Z.; Mysak, L.A. Response of the thermohaline circulation to cold climates. Paleoceanography 2002, 17, 6-1–6-14. [Google Scholar] [CrossRef]
- Pontes, G.M.; Menviel, L. Weakening of the Atlantic Meridional Overturning Circulation driven by subarctic freshening since the mid-twentieth century. Nat. Geosci. 2024, 17, 1291–1298. [Google Scholar] [CrossRef]
- Haupt, B.J.; Seidov, D.; Barron, E.J. Glacial-to-interglacial changes of the ocean circulation and eolian sediment transport. In The Oceans and Rapid Climate Change: Past, Present, and Future; Seidov, D., Haupt, B.J., Maslin, M., Eds.; AGU: Washington, DC, USA, 2001; Volume 126, pp. 169–197. [Google Scholar]
- Clark, P.U.; Pisias, N.G.; Stocker, T.F.; Weaver, A.J. The role of the thermohaline circulation in abrupt climate change. Nature 2002, 415, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Stouffer, R.J.; Yin, J.; Gregory, J.M.; Dixon, K.W.; Spelman, M.J.; Hurlin, W.; Weaver, A.J.; Eby, M.; Flato, G.M.; Hasumi, H.; et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 2006, 19, 1365–1387. [Google Scholar] [CrossRef]
- Jackson, L.C.; Alastrué de Asenjo, E.; Bellomo, K.; Danabasoglu, G.; Haak, H.; Hu, A.; Jungclaus, J.; Lee, W.; Meccia, V.L.; Saenko, O.; et al. Understanding AMOC stability: The North Atlantic Hosing Model Intercomparison Project. Geosci. Model Dev. 2023, 16, 1975–1995. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Crucifix, M.; Ganopolski, A.; Goosse, H.; Kamenkovich, I.; Knutti, R.; Lohmann, G.; Marsh, R.; Mysak, L.A.; Wang, Z.; et al. Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Duplessy, J.-C.; Shackleton, N.J. Response of global deep-water circulation to Earth’s climatic change 135,000–107,000 years ago. Science 1985, 316, 500–507. [Google Scholar] [CrossRef]
- Boyle, E.A.; Keigwin, L.D. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 1987, 330, 35–40. [Google Scholar] [CrossRef]
- Bond, G.; Heinrich, H.; Broecker, W.; Labeyrie, L.; McManus, J.; Andrews, J.; Huon, S.; Jantschik, R.; Clasen, S.; Simet, C.; et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 1992, 360, 245–249. [Google Scholar] [CrossRef]
- Sarnthein, M.; Jansen, E.; Arnold, M.; Duplessy, J.C.; Erlenkeuser, H.; Flatoy, A.; Veum, T.; Vogelsang, E.; Weinelt, M.S. d18O Time-slice reconstruction of meltwater anomalies at Termination I in the North Atlantic between 50 and 80° N. In The Last Deglaciation: Absolute and Radiocarbon Chronologies; Bard, E., Broecker, W.S., Eds.; NATO ASI Series; Springer: Berlin/Heidelberg, Germany, 1992; Volume 12, pp. 183–200. [Google Scholar]
- Sarnthein, M.; Winn, K.; Jung, S.J.A.; Duplessy, J.C.; Labeyrie, L.; Erlenkeuser, H.; Ganssen, G. Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight Time Slice Reconstructions. Paleoceanography 1994, 9, 209–267. [Google Scholar] [CrossRef]
- Bond, G.; Lotti, R. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 1995, 267, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Bond, G.C. Climate and conveyor. Nature 1995, 377, 383–384. [Google Scholar] [CrossRef]
- Street-Perrott, F.A.; Perrott, R.A. Abrupt climate fluctuations in the tropics: The influence of Atlantic Ocean circulation. Nature 1990, 343, 607–611. [Google Scholar] [CrossRef]
- Keigwin, L.D.; Jones, G.; Lehman, S.J. Deglacial meltwater discharge, North Atlantic Deep Circulation, and Abrupt Climate Change. J. Geophys. Res. 1991, 96, 16811–16826. [Google Scholar] [CrossRef]
- Karpuz, N.K.; Jansen, E. A high resolution diatom record of the last deglaciation from the SE Norwegian Sea: Documentation of rapid climatic changes. Paleoceanography 1992, 7, 499–520. [Google Scholar] [CrossRef]
- Lehman, S.J.; Keigwin, L.D. Sudden changes in North Atlantic circulation during the last deglaciation. Nature 1992, 356, 757–762. [Google Scholar] [CrossRef]
- Keigwin, L.D.; Curry, W.B.; Lehman, S.J.; Johnsen, S. The role of the deep ocean in North Atlantic climate change between 60 and 130 kyr ago. Nature 1994, 371, 323–326. [Google Scholar] [CrossRef]
- Dickson, R.R.; Meincke, J.; Malmberg, S.-A.; Lee, A.J. The “great salinity anomaly” in the Northern North Atlantic 1968–1982. Prog. Oceanogr. 1988, 20, 103–151. [Google Scholar] [CrossRef]
- Broecker, W.S. Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography 1998, 13, 119–121. [Google Scholar] [CrossRef]
- Davtian, N.; Bard, E. A new view on abrupt climate changes and the bipolar seesaw based on paleotemperatures from Iberian Margin sediments. Proc. Natl. Acad. Sci. USA 2023, 120, e2209558120. [Google Scholar] [CrossRef] [PubMed]
- Pedro, J.B.; Jochum, M.; Buizert, C.; He, F.; Barker, S.; Rasmussen, S.O. Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling. Quat. Sci. Rev. 2018, 192, 27–46. [Google Scholar] [CrossRef]
- Knutti, R.; Fluckiger, J.; Stocker, T.F.; Timmermann, A. Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature 2004, 430, 851–856. [Google Scholar] [CrossRef]
- Stocker, T.F.; Johnsen, S.J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 2003, 18, 11-11–11-19. [Google Scholar] [CrossRef]
- Severinghaus, J.P. Climate change: Southern see-saw seen. Nature 2009, 457, 1093–1094. [Google Scholar] [CrossRef]
- Marotzke, J.; Willebrand, J. Multiple equlibria of the global thermohaline circulation. J. Phys. Oceanogr. 1991, 21, 1372–1385. [Google Scholar] [CrossRef]
- Weaver, A.J.; Sarachik, E.S.; Marotzke, J. Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature 1991, 353, 836–838. [Google Scholar] [CrossRef]
- Aagaard, K.; Fahrbach, E.; Meincke, J.; Swift, J.H. Saline outflow from the Arctic Ocean: Its contribution to the deep waters of the Greenland, Norwegian, and Iceland seas. J. Geophys. Res. 1991, 96, 20433–20441. [Google Scholar] [CrossRef]
- Maier-Reimer, E.; Mikolajewicz, U.; Hasselmann, K. Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. J. Phys. Oceanogr. 1993, 23, 731–757. [Google Scholar] [CrossRef]
- Weaver, A.J.; Marotzke, J.; Cummins, P.F.; Sarachik, E.S. Stability and variability of the thermohaline circulation. J. Phys. Oceanogr. 1993, 23, 39–60. [Google Scholar] [CrossRef][Green Version]
- Fichefet, T.; Hovine, S.; Duplessy, J.-C. A model study of the Atlantic thermohaline circulation during the Last Glacial Maximum. Nature 1994, 372, 252–255. [Google Scholar] [CrossRef]
- Rahmstorf, S. Rapid climate transitions in a coupled ocean-atmosphere model. Nature 1994, 372, 82–85. [Google Scholar] [CrossRef]
- Stocker, T.F. The variable ocean. Nature 1994, 367, 221–222. [Google Scholar] [CrossRef]
- Weaver, A.J.; Hughes, T.M.C. Rapid interglacial climate fluctuations driven by North Atlantic ocean circulation. Nature 1994, 367, 447–450. [Google Scholar] [CrossRef]
- Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 1995, 378, 145–149. [Google Scholar] [CrossRef]
- Sakai, K.; Peltier, W.R. A simple model of the Atlantic thermohaline circulation: Internal and forced variability with paleclimatological implications. J. Geophys. Res. 1995, 100, 13455–13479. [Google Scholar] [CrossRef]
- Zhou, Y.; McManus, J.F. Heinrich event ice discharge and the fate of the Atlantic Meridional Overturning Circulation. Science 2024, 384, 983–986. [Google Scholar] [CrossRef]
- Duplessy, J.-C.; Labeyrie, L.; Julliet-Lerclerc, A.; Duprat, J.; Sarnthein, M. Surface salinity reconstruction of the North Atlantic Ocean during the Last Glacial Maximum. Oceanol. Acta 1991, 14, 311–324. [Google Scholar]
- Sarnthein, M.; Jansen, E.; Weinelt, M.; Arnold, M.; Duplessy, J.-C.; Erlenkeuser, H.; Flatoy, A.; Johannessen, G.; Johannessen, T.; Jung, S.; et al. Variations in Atlantic Ocean paleoceanography, 50–85° N: A time-slice record of the last 30,000 years. Paleoceanography 1995, 10, 1063–1094. [Google Scholar] [CrossRef]
- Levitus, S. Climatological Atlas of the World Ocean. NOAA Professional Paper 13; U.S. Government Publishing Office: Princeton, NJ, USA, 1982; p. 173.
- CLIMAP. CLIMAP Project members: The surface of the ice-age Earth. Science 1976, 191, 1131–1137. [Google Scholar] [CrossRef]
- Schulz, H. Meeresoberflächentemperaturen im Frühen Holozän 10,000 Jahre vor Heute. Ph.D. Thesis, Universität Kiel, Kiel, Germany, 1994. [Google Scholar]
- Hellerman, S.; Rosenstein, M. Normal monthly wind stress over the World Ocean with error estimates. J. Phys. Oceanogr. 1983, 13, 1093–1104. [Google Scholar] [CrossRef]
- Lautenschlager, M.; Herterich, K. Atmospheric response to ice age conditions—Climatology near the earth’s surface. J. Geophys. Res. 1990, 95, 22547–22557. [Google Scholar] [CrossRef]
- Lautenschlager, M.; Herterich, K. Simulation of the ice age atmosphere—January and July means. Geol. Rdsch. 1991, 80, 513–534. [Google Scholar] [CrossRef]
- Gregory, J.M.; Dixon, K.W.; Stouffer, R.J.; Weaver, A.J.; Driesschaert, E.; Eby, M.; Fichefet, T.; Hasumi, H.; Hu, A.; Jungclaus, J.H.; et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Bakker, P.; Schmittner, A.; Lenaerts, J.T.M.; Abe-Ouchi, A.; Bi, D.; van den Broeke, M.R.; Chan, W.L.; Hu, A.; Beadling, R.L.; Marsland, S.J.; et al. Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting. Geophys. Res. Lett. 2016, 43, 12252–12260. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Rose, B.E.J.; Hwang, Y.-T. Mean state AMOC affects AMOC weakening through subsurface warming in the Labrador Sea. J. Clim. 2023, 36, 3895–3915. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, Z.; Zhang, S.; Wu, L. Likely accelerated weakening of Atlantic overturning circulation emerges in optimal salinity fingerprint. Nat. Commun. 2023, 14, 1245. [Google Scholar] [CrossRef]
- Madan, G.; Gjermundsen, A.; Iversen, S.C.; LaCasce, J.H. The weakening AMOC under extreme climate change. Clim. Dyn. 2024, 62, 1291–1309. [Google Scholar] [CrossRef]
- Manabe, S.; Stouffer, R.J. Century-scale effects of incrased atmospheric CO2 on the ocean-atmosphere system. Nature 1993, 364, 215–218. [Google Scholar] [CrossRef]
- Delworth, T.; Manabe, S.; Stouffer, R.J. Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J. Clim. 1993, 6, 1993–2011. [Google Scholar] [CrossRef]
- Manabe, S.; Stouffer, R.J. Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. J. Clim. 1994, 7, 5–23. [Google Scholar] [CrossRef]
- Rind, D.; deMenocal, P.; Russell, G.; Sheth, S.; Collins, D.; Schmidt, G.; Teller, J. Effects of glacial meltwater in the GISS coupled atmosphere-ocean model: 1. North Atlantic Deep Water response. J. Geophys. Res. 2001, 106, 27335–27353. [Google Scholar] [CrossRef]
- Kleinen, T.; Osborn, T.J.; Briffa, K.R. Sensitivity of climate response to variations in freshwater hosing location. Ocean Dyn. 2009, 59, 509–521. [Google Scholar] [CrossRef][Green Version]
- Schmittner, A.; Latif, M.; Schneider, B. Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Sgubin, G.; Swingedouw, D.; Drijfhout, S.; Mary, Y.; Bennabi, A. Abrupt cooling over the North Atlantic in modern climate models. Nat. Commun. 2017, 8, 14375. [Google Scholar] [CrossRef]
- Vellinga, M.; Wood, R. Impacts of thermohaline circulation shutdown in the twenty-first century. Clim. Change 2007, 91, 43–63. [Google Scholar] [CrossRef]
- Weaver, A.J.; Sedláček, J.; Eby, M.; Alexander, K.; Crespin, E.; Fichefet, T.; Philippon-Berthier, G.; Joos, F.; Kawamiya, M.; Matsumoto, K.; et al. Stability of the Atlantic Meridional Overturning Circulation: A model intercomparison. Geophys. Res. Lett. 2012, 39, L20709. [Google Scholar] [CrossRef]
- Wu, P.; Jackson, L.; Pardaens, A.; Schaller, N. Extended warming of the northern high latitudes due to an overshoot of the Atlantic meridional overturning circulation. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Nobre, P.; Veiga, S.F.; Giarolla, E.; Marquez, A.L.; da Silva, M.B.; Capistrano, V.B.; Malagutti, M.; Fernandez, J.P.R.; Soares, H.C.; Bottino, M.J.; et al. AMOC decline and recovery in a warmer climate. Sci. Rep. 2023, 13, 15928. [Google Scholar] [CrossRef]
- Curtis, P.E.; Fedorov, A.V. Collapse and slow recovery of the Atlantic Meridional Overturning Circulation (AMOC) under abrupt greenhouse gas forcing. Clim. Dyn. 2024, 62, 5949–5970. [Google Scholar] [CrossRef]
- Dima, M.; Lohmann, G. Evidence for two distinct modes of large-scale ocean circulation changes over the last century. J. Clim. 2010, 23, 5–16. [Google Scholar] [CrossRef]
- Armstrong, E.; Valdes, P.; House, J.; Singarayer, J. Investigating the feedbacks between CO2, vegetation and the AMOC in a coupled climate model. Clim. Dyn. 2019, 53, 2485–2500. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Z.; Zhang, J.; Liu, W. AMOC response to global warming: Dependence on the background climate and response timescale. Clim. Dyn. 2015, 44, 3449–3468. [Google Scholar] [CrossRef]
- Caesar, L.; Rahmstorf, S.; Robinson, A.; Feulner, G.; Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 2018, 556, 191–196. [Google Scholar] [CrossRef] [PubMed]
- van Westen, R.M.; Kliphuis, M.; Dijkstra, H.A. Physics-based early warning signal shows that AMOC is on tipping course. Sci. Adv. 2024, 10, eadk1189. [Google Scholar] [CrossRef] [PubMed]
- Romanou, A.; Rind, D.; Jonas, J.; Miller, R.; Kelley, M.; Russell, G.; Orbe, C.; Nazarenko, L.; Latto, R.; Schmidt, G.A. Stochastic Bifurcation of the North Atlantic Circulation under a Midrange Future Climate Scenario with the NASA-GISS ModelE. J. Clim. 2023, 36, 6141–6161. [Google Scholar] [CrossRef]
- Hankel, C. The effect of CO2 ramping rate on the transient weakening of the Atlantic Meridional Overturning Circulation. Proc. Natl. Acad. Sci. USA 2025, 122, e2411357121. [Google Scholar] [CrossRef]
- Vanderborght, E.; van Westen, R.M.; Dijkstra, H.A. Feedback Processes causing an AMOC Collapse in the Community Earth System Model. J. Clim. 2025, 38, 5083–5102. [Google Scholar] [CrossRef]
- Stommel, H. Thermohaline Convection with Two Stable Regimes of Flow. Tellus 1961, 13, 224–230. [Google Scholar] [CrossRef]
- Weijer, W.; Cheng, W.; Drijfhout, S.S.; Fedorov, A.V.; Hu, A.; Jackson, L.C.; Liu, W.; McDonagh, E.L.; Mecking, J.V.; Zhang, J. Stability of the Atlantic Meridional Overturning Circulation: A Review and Synthesis. J. Geophys. Res. Ocean. 2019, 124, 5336–5375. [Google Scholar] [CrossRef]
- Dijkstra, H.A. The role of conceptual models in climate research. Phys. D Nonlinear Phenom. 2024, 457, 133984. [Google Scholar] [CrossRef]
- Mecking, J.V.; Drijfhout, S.S.; Jackson, L.C.; Andrews, M.B. The effect of model bias on Atlantic freshwater transport and implications for AMOC bi-stability. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1299910. [Google Scholar] [CrossRef]
- Bellomo, K.; Mehling, O. Impacts and state-dependence of AMOC weakening in a warming climate. Geophys. Res. Lett. 2024, 51, e2023GL107624. [Google Scholar] [CrossRef]
- Needham, M.R.; Falter, D.D.; Randall, D.A. Changes in External Forcings Drive Divergent AMOC Responses Across CESM Generations. Geophys. Res. Lett. 2024, 51, e2023GL106410. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Yeh, S.-W.; Wang, G.; An, S.-I.; Song, H.; Son, S.-W.; Yang, Y.-M. Early or delayed Northern Hemisphere warming driven by the AMOC in a net-zero CO2 world. NPJ Clim. Atmos. Sci. 2025, 8, 291. [Google Scholar] [CrossRef]
- van Westen, R.M.; Dijkstra, H.A. Asymmetry of AMOC Hysteresis in a State-Of-The-Art Global Climate Model. Geophys. Res. Lett. 2023, 50, e2023GL106088. [Google Scholar] [CrossRef]
- Gu, Q.; Gervais, M.; Danabasoglu, G.; Kim, W.M.; Castruccio, F.; Maroon, E.; Xie, S.-P. Wide range of possible trajectories of North Atlantic climate in a warming world. Nat. Commun. 2024, 15, 4221. [Google Scholar] [CrossRef]
- McMonigal, K.; Larson, S.M.; Gervais, M.; Klavans, J.M.; He, C.; Cane, M.A.; Corti, S.; Bellomo, K. Fingerprints of AMOC Decline Are Sensitive to External and Mechanistic Forcing. Geophys. Res. Lett. 2025, 52, e2025GL116307. [Google Scholar] [CrossRef]
- Wu, L.; Li, C.; Yang, C.; Xie, S.-P. Global teleconnections in response to a shutdown of the Atlantic Meridional Overturning Circulation. J. Clim. 2008, 21, 3002–3019. [Google Scholar] [CrossRef]
- Timmermann, A.; Okumura, Y.; An, S.I.; Clement, A.; Dong, B.; Guilyardi, E.; Hu, A.; Jungclaus, J.H.; Renold, M.; Stocker, T.F.; et al. The influence of a weakening of the Atlantic Meridional Overturning Circulation on ENSO. J. Clim. 2007, 20, 4899–4919. [Google Scholar] [CrossRef]
- Stocker, T.F.; Timmermann, A.; Renold, M.; Timm, O. Effects of salt compensation on the climate model response in simulations of large changes of the Atlantic Meridional Overturning Circulation. J. Clim. 2007, 20, 5912–5928. [Google Scholar] [CrossRef]
- Seidov, D.; Haupt, B.J. How to run a minimalist’s global ocean conveyor. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Seidov, D.; Haupt, B.J. Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean. J. Clim. 2007, 20, 436–448. [Google Scholar] [CrossRef]
- Beal, L.M.; De Ruijter, W.P.M.; Biastoch, A.; Zahn, R.; Cronin, M.; Hermes, J.; Lutjeharms, J.; Quartly, G.; Tozuka, T.; Baker-Yeboah, S.; et al. On the role of the Agulhas system in ocean circulation and climate. Nature 2011, 472, 429–436. [Google Scholar] [CrossRef]
- Caley, T.; Giraudeau, J.; Malaizé, B.; Rossignol, L.; Pierre, C. Agulhas leakage as a key process in the modes of Quaternary climate changes. Proc. Natl. Acad. Sci. USA 2012, 109, 6835–6839. [Google Scholar] [CrossRef]
- Tim, N.; Zorita, E.; Schwarzkopf, F.U.; Rühs, S.; Emeis, K.-C.; Biastoch, A. The Impact of Agulhas Leakage on the Central Water Masses in the Benguela Upwelling System from a high-resolution ocean simulation. J. Geophys. Res. 2018, 123, 9416–9428. [Google Scholar] [CrossRef]
- Lutjerharms, J.R.E.; Cooper, J. Interbasin leakage through Agulhas current filaments. Deep Sea Res. 1996, 43, 213–238. [Google Scholar] [CrossRef]
- Xu, G.; Chang, P.; Ramachandran, S.; Danabasoglu, G.; Yeager, S.; Small, J.; Zhang, Q.; Jing, Z.; Wu, L. Impacts of model horizontal resolution on mean sea surface temperature biases in the Community Earth System Model. J. Geophys. Res. Ocean. 2022, 127, e2022JC019065. [Google Scholar] [CrossRef]
- Nuber, S.; Rae, J.W.B.; Zhang, X.; Andersen, M.B.; Dumont, M.D.; Mithan, H.T.; Sun, Y.; de Boer, B.; Hall, I.R.; Barker, S. Indian Ocean salinity build-up primes deglacial ocean circulation recovery. Nature 2023, 617, 306–311. [Google Scholar] [CrossRef]
- Saenko, O.A.; Schmittner, A.; Weaver, A.J. The Atlantic-Pacific seesaw. J. Clim. 2004, 17, 2033–2038. [Google Scholar] [CrossRef]
- Hu, A.; Meehl, G.A.; Han, W.; Timmermann, A.; Otto-Bliesner, B.; Liu, Z.; Washington, W.M.; Large, W.; Abe-Ouchi, A.; Kimoto, M.; et al. Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proc. Natl. Acad. Sci. USA 2012, 109, 6417–6422. [Google Scholar] [CrossRef]
- Hu, A.; Meehl, G.A. Bering Strait throughflow and the thermohaline circulation. Geophys. Res. Lett. 2005, 32, L24610. [Google Scholar] [CrossRef]
- Orihuela-Pinto, B.; England, M.H.; Taschetto, A.S. Interbasin and interhemispheric impacts of a collapsed Atlantic Overturning Circulation. Nat. Clim. Change 2022, 12, 558–565. [Google Scholar] [CrossRef]
- Seidov, D.; Stouffer, R.J.; Haupt, B.J. Is there a simple bi-polar ocean seesaw? Glob. Planet. Change 2005, 49, 19–27. [Google Scholar] [CrossRef]
- Berglund, S.; Döös, K.; Groeskamp, S.; McDougall, T.J. The downward spiralling nature of the North Atlantic Subtropical Gyre. Nat. Commun. 2022, 13, 2000. [Google Scholar] [CrossRef] [PubMed]
- Kostov, Y.; Messias, M.-J.; Mercier, H.; Johnson, H.L.; Marshall, D.P. Fast mechanisms linking the Labrador Sea with subtropical Atlantic overturning. Clim. Dyn. 2022, 60, 2687–2712. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Lin, P.; Cheng, L.; Ge, K.; Liu, H.; Duan, J.; Wang, F. North Atlantic–Pacific salinity contrast enhanced by wind and ocean warming. Nat. Clim. Change 2024, 14, 723–731. [Google Scholar] [CrossRef]
- Lohmann, K.; Putrasahan, D.A.; von Storch, J.-S.; Gutjahr, O.; Jungclaus, J.H.; Haak, H. Response of Northern North Atlantic and Atlantic Meridional Overturning Circulation to Reduced and Enhanced Wind Stress Forcing. J. Geophys. Res. Ocean. 2021, 126, e2021JC017902. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Caron, J.M. Estimates of meridional atmosphere and ocean heat transports. J. Clim. 2001, 14, 3433–3443. [Google Scholar] [CrossRef]
- Ganachaud, A.; Wunsch, C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 2000, 408, 453–457. [Google Scholar] [CrossRef]
- Gordon, C.; Cooper, C.; Senior, C.A.; Banks, H.; Gregory, J.M.; Johns, T.C.; Mitchell, J.F.B.; Wood, R.A. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dyn. 2000, 16, 147–168. [Google Scholar] [CrossRef]
- Yang, H.; Li, Q.; Wang, K.; Sun, Y.; Sun, D. Decomposing the meridional heat transport in the climate system. Clim. Dyn. 2015, 44, 2751–2768. [Google Scholar] [CrossRef]
- Seidov, D.; Maslin, M. Atlantic ocean heat piracy and the bipolar climate see-saw during Heinrich and Dansgaard–Oeschger events. J. Quat. Sci. 2001, 16, 321–328. [Google Scholar] [CrossRef]
- Hirschi, J.J.-M.; Barnier, B.; Böning, C.; Biastoch, A.; Blaker, A.T.; Coward, A.; Danilov, S.; Drijfhout, S.; Getzlaff, K.; Griffies, S.M.; et al. The Atlantic Meridional Overturning Circulation in High-Resolution Models. J. Geophys. Res. Ocean. 2020, 125, e2019JC015522. [Google Scholar] [CrossRef]
- Böning, C.W.; Behrens, E.; Biastoch, A.; Getzlaff, K.; Bamber, J.L. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci. 2016, 9, 523–527. [Google Scholar] [CrossRef]
- Moat, B.I.; Sinha, B.; Berry, D.I.; Drijfhout, S.S.; Fraser, N.; Hermanson, L.; Jones, D.C.; Josey, S.A.; King, B.; Macintosh, C.; et al. Ocean heat convergence and North Atlantic multidecadal heat content variability. J. Clim. 2024, 37, 4723–4742. [Google Scholar] [CrossRef]
- Sein, D.V.; Koldunov, N.V.; Danilov, S.; Sidorenko, D.; Wekerle, C.; Cabos, W.; Rackow, T.; Scholz, P.; Semmler, T.; Wang, Q.; et al. The relative influence of atmospheric and oceanic model resolution on the circulation of the North Atlantic Ocean in a coupled climate model. J. Adv. Model. Earth Syst. 2018, 10, 2026–2041. [Google Scholar] [CrossRef]
- Delworth, T.L.; Rosati, A.; Anderson, W.; Adcroft, A.J.; Balaji, V.; Benson, R.; Dixon, K.; Griffies, S.M.; Lee, H.-C.; Pacanowski, R.C.; et al. Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model. J. Clim. 2012, 25, 2755–2781. [Google Scholar] [CrossRef]
- Roberts, M.J.; Jackson, L.C.; Roberts, C.D.; Meccia, V.; Docquier, D.; Koenigk, T.; Ortega, P.; Moreno-Chamarro, E.; Bellucci, A.; Coward, A.; et al. Sensitivity of the Atlantic Meridional Overturning Circulation to Model resolution in CMIP6 HighResMIP simulations and implications for future changes. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002014. [Google Scholar] [CrossRef]
- Hewitt, H.T.; Roberts, M.J.; Hyder, P.; Graham, T.; Rae, J.; Belcher, S.E.; Bourdalle-Badie, R.; Copsey, D.; Coward, A.; Guiavarch, C.; et al. The impact of resolving the Rossby radius at mid-latitudes in the ocean: Results from a high-resolution version of the Met Office GC2 coupled model. Geosci. Model Dev. 2016, 9, 3655–3670. [Google Scholar] [CrossRef]
- Ortega, P.; Robson, J.I.; Menary, M.; Sutton, R.T.; Blaker, A.; Germe, A.; Hirschi, J.J.M.; Sinha, B.; Hermanson, L.; Yeager, S. Labrador Sea sub-surface density as a precursor of multi-decadal variability in the North Atlantic: A multi-model study. Earth Syst. Dynam. Discuss. 2020, 12, 1–25. [Google Scholar] [CrossRef]
- Yashayaev, I.; Bersch, M.; Aken, H.M.v. Spreading of the Labrador Sea Water to the Irminger and Iceland basins. Geophys. Res. Let. 2007, 34, 1–8. [Google Scholar] [CrossRef]
- Paquin, J.-P.; Lu, Y.; Higginson, S.; Dupont, F.; Garric, G. Modelled variations of deep convection in the Irminger Sea during 2003–2010. J. Phys. Oceanogr. 2016, 46, 179–196. [Google Scholar] [CrossRef]
- Xu, X.; Schmitz, W.J.; Hurlburt, H.E.; Hogan, P.J.; Chassignet, E.P. Transport of Nordic Seas overflow water into and within the Irminger Sea: An eddy-resolving simulation and observations. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef]
- Chen, Y.; Song, P.; Chen, X.; Lohmann, G. Mechanisms driving the extensive antarctic bottom water in the glacial Atlantic. Geophys. Res. Lett. 2025, 52, e2025GL114809. [Google Scholar] [CrossRef]
- Ganopolski, A.; Rahmstorf, S.; Petoukhov, V.; Claussen, M. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 1998, 391, 351–356. [Google Scholar] [CrossRef]
- Liu, Z. Evolution of Atlantic Meridional Overturning Circulation since the last glaciation: Model simulations and relevance to present and future. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2023, 381, 20220190. [Google Scholar] [CrossRef]
- Weijer, W.; Cheng, W.; Garuba, O.A.; Hu, A.; Nadiga, B.T. CMIP6 models predict significant 21st century decline of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 2020, 47, e2019GL086075. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Baker, J.A.; Bell, M.J.; Jackson, L.C.; Vallis, G.K.; Watson, A.J.; Wood, R.A. Continued Atlantic overturning circulation even under climate extremes. Nature 2025, 638, 987–994. [Google Scholar] [CrossRef]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The Community Climate System Model Version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef]
- Neale, R.B.; Richter, J.; Park, S.; Lauritzen, P.H.; Vavrus, S.J.; Rasch, P.J.; Zhang, M. The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Clim. 2013, 26, 5150–5168. [Google Scholar] [CrossRef]
- Liu, W.; Xie, S.-P.; Liu, Z.; Zhu, J. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci. Adv. 2017, 3, e1601666. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Kim, H.-J.; Dijkstra, H.A.; An, S.-I. Slow and soft passage through tipping point of the Atlantic Meridional Overturning Circulation in a changing climate. NPJ Clim. Atmos. Sci. 2022, 5, 13. [Google Scholar] [CrossRef]
- Ditlevsen, P.; Ditlevsen, S. Warning of a forthcoming collapse of the Atlantic meridional overturning circulation. Nat. Commun. 2023, 14, 4254–4265. [Google Scholar] [CrossRef]
- Ben-Yami, M.; Morr, A.; Bathiany, S.; Boers, N. Uncertainties too large to predict tipping times of major Earth system components from historical data. Sci. Adv. 2024, 10, eadl4841. [Google Scholar] [CrossRef]
- Terhaar, J.; Vogt, L.; Foukal, N.P. Atlantic overturning inferred from air-sea heat fluxes indicates no decline since the 1960s. Nat. Commun. 2025, 16, 222. [Google Scholar] [CrossRef] [PubMed]
- Frajka-Williams, E.; Foukal, N.; Danabasoglu, G. Should AMOC observations continue: How and why? Philos. Trans. R. Soc. A 2023, 381, 20220195. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, G.D.; Smeed, D.A.; Johns, W.E.; Frajka-Williams, E.; Moat, B.I.; Rayner, D.; Baringer, M.O.; Meinen, C.S.; Collins, J.; Bryden, H.L. Measuring the Atlantic Meridional Overturning Circulation at 26° N. Prog. Oceanogr. 2015, 130, 91–111. [Google Scholar] [CrossRef]
- McCarthy, G.D.; Brown, P.J.; Flagg, C.N.; Goni, G.; Houpert, L.; Hughes, C.W.; Hummels, R.; Inall, M.; Jochumsen, K.; Larsen, K.M.H.; et al. Sustainable observations of the AMOC: Methodology and technology. Rev. Geophys. 2020, 58, e2019RG000654. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Box, J.E.; Feulner, G.; Mann, M.E.; Robinson, A.; Rutherford, S.; Schaffernicht, E.J. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 2015, 5, 475–480. [Google Scholar] [CrossRef]
- Johns, W.E.; Baringer, M.O.; Beal, L.M.; Cunningham, S.A.; Kanzow, T.; Bryden, H.L.; Hirschi, J.J.M.; Marotzke, J.; Meinen, C.S.; Shaw, B.; et al. Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5° N. J. Clim. 2011, 24, 2429–2449. [Google Scholar] [CrossRef]
- Worthington, E.L.; Moat, B.I.; Smeed, D.A.; Mecking, J.V.; Marsh, R.; McCarthy, G.D. A 30-year reconstruction of the Atlantic meridional overturning circulation shows no decline. Ocean Sci. 2021, 17, 285–299. [Google Scholar] [CrossRef]
- Lozier, M.S.; Bacon, S.; Bower, A.S.; Cunningham, S.A.; Jong, M.F.d.; Steur, L.d.; deYoung, B.; Fischer, J.; Gary, S.F.; Greenan, B.J.W.; et al. Overturning in the Subpolar North Atlantic Program: A new international ocean observing system. Bull. Am. Meteorol. Soc. 2017, 98, 737–752. [Google Scholar] [CrossRef]
- Lozier, M.S. Overturning in the subpolar North Atlantic: A review. Philos. Trans. R. Soc. A 2023, 381, 20220191. [Google Scholar] [CrossRef]
- Koman, G.; Bower, A.S.; Holliday, N.P.; Furey, H.H.; Fu, Y.; Biló, T.C. Observed decrease in Deep Western Boundary Current transport in subpolar North Atlantic. Nat. Geosci. 2024, 17, 1148–1153. [Google Scholar] [CrossRef]
- Lee, S.-K.; Kim, D.; Gomez, F.A.; Lopez, H.; Volkov, D.L.; Dong, S.; Lumpkin, R.; Yeager, S. A pause in the weakening of the Atlantic meridional overturning circulation since the early 2010s. Nat. Commun. 2024, 15, 10642. [Google Scholar] [CrossRef]
- Fraser, N.J.; Fox, A.D.; Cunningham, S.A. Impact of Ekman pumping on the meridional coherence of the AMOC. Geophys. Res. Lett. 2025, 52, e2024GL108846. [Google Scholar] [CrossRef]
- Falina, A.; Sarafanov, A.; Mercier, H.; Lherminier, P.; Sokov, A.; Daniault, N. On the cascading of Dense Shelf Waters in the Irminger Sea. J. Phys. Oceanogr. 2012, 42, 2254–2267. [Google Scholar] [CrossRef]
- Sarafanov, A.; Falina, A.; Mercier, H.; Sokov, A.; Lherminier, P.; Gourcuff, C.; Gladyshev, S.; Gaillard, F.; Daniault, N. Mean full-depth summer circulation and transports at the northern periphery of the Atlantic Ocean in the 2000s. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- Chafik, L.; Rossby, T. Volume, Heat, and Freshwater Divergences in the Subpolar North Atlantic Suggest the Nordic Seas as Key to the State of the Meridional Overturning Circulation. Geophys. Res. Lett. 2019, 46, 4799–4808. [Google Scholar] [CrossRef]
- Smeed, D.A.; Josey, S.A.; Beaulieu, C.; Johns, W.E.; Moat, B.I.; Frajka-Williams, E.; Rayner, D.; Meinen, C.S.; Baringer, M.O.; Bryden, H.L.; et al. The North Atlantic Ocean Is in a state of reduced overturning. Geophys. Res. Lett. 2018, 45, 1527–1533. [Google Scholar] [CrossRef]
- Rahmstorf, S. Is the Atlantic Overturning Circulation approaching a tipping point? Oceanography 2024, 37, 1–14. [Google Scholar] [CrossRef]
- Dima, M.; Nichita, D.R.; Lohmann, G.; Ionita, M.; Voiculescu, M. Early-onset of Atlantic Meridional Overturning Circulation weakening in response to atmospheric CO2 concentration. NPJ Clim. Atmos. Sci. 2021, 4, 27. [Google Scholar] [CrossRef]
- Drijfhout, S.; van Oldenborgh, G.J.; Cimatoribus, A. Is a decline of AMOC Causing the warming hole above the North Atlantic in Observed and modeled warming patterns? J. Clim. 2012, 25, 8373–8379. [Google Scholar] [CrossRef]
- Lenton, T.M.; Mckay, D.I.A.; Loriani, S.; Abrams, J.F.; Lade, S.J.; Donges, J.F.; Buxton, J.E.; Milkoreit, M.; Powell, T.; Smith, S.R. The Global Tipping Points Report 2023; University of Exeter: Exeter, UK, 2023. [Google Scholar]
- Locarnini, R.A.; Mishonov, A.V.; Baranova, O.K.; Boyer, T.P.; Zweng, M.M.; Garcia, H.E.; Reagan, J.R.; Seidov, D.; Weathers, K.; Paver, C.R.; et al. World Ocean Atlas 2018, Volume 1: Temperature; Mishonov, A., Ed.; NOAA Atlas NESDIS 81; NOAA/NESDIS: Silver Spring, MD, USA, 2018; p. 52.
- Zweng, M.M.; Reagan, J.R.; Seidov, D.; Boyer, T.P.; Locarnini, R.A.; Garcia, H.E.; Mishonov, A.V.; Baranova, O.K.; Weathers, K.; Paver, C.R.; et al. World Ocean Atlas 2018, Volume 2: Salinity; Mishonov, A., Ed.; NOAA Atlas NESDIS 82; NOAA/NESDIS: Silver Spring, MD, USA, 2018; p. 50.
- Seidov, D.; Mishonov, A.; Reagan, J.; Parsons, R. Eddy-resolving in situ ocean climatologies of temperature and salinity in the Northwest Atlantic Ocean. J. Geophys. Res. Ocean. 2019, 124, 41–58. [Google Scholar] [CrossRef]
- Locarnini, R.A.; Mishonov, A.V.; Antonov, J.I.; Boyer, T.P.; Garcia, H.E.; Baranova, O.K.; Zweng, M.M.; Paver, C.R.; Reagan, J.R.; Johnson, D.R.; et al. World Ocean Atlas 2013, Volume 1: Temperature; NOAA/NESDIS: Washington, DC, USA, 2013; p. 40.
- Cheng, L.; Trenberth, K.E.; Palmer, M.D.; Zhu, J.; Abraham, J.P. Observed and simulated full-depth ocean heat content changes for 1970-2005. Ocean Sci. Discuss. 2016, 12, 925–935. [Google Scholar] [CrossRef]
- Chafik, L.; Häkkinen, S.; England, M.H.; Carton, J.A.; Nigam, S.; Ruiz-Barradas, A.; Hannachi, A.; Miller, L. Global linkages originating from decadal oceanic variability in the subpolar North Atlantic. Geophys. Res. Lett. 2016, 43, 10–909. [Google Scholar] [CrossRef]
- Domingues, C.M.; Church, J.A.; White, N.J.; Gleckler, P.J.; Wijffels, S.E.; Barker, P.M.; Dunn, J.R. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 2008, 453, 1090–1093. [Google Scholar] [CrossRef] [PubMed]
- Giese, B.S.; Seidel, H.F.; Compo, G.P.; Sardeshmukh, P.D. An ensemble of ocean reanalyses for 1815–2013 with sparse observational input. J. Geophys. Res. Ocean. 2016, 121, 6891–6910. [Google Scholar] [CrossRef]
- Williams, R.G.; Roussenov, V.; Lozier, M.S.; Smith, D. Mechanisms of Heat Content and Thermocline Change in the Subtropical and Subpolar North Atlantic. J. Clim. 2015, 28, 9803–9815. [Google Scholar] [CrossRef]
- Willis, J.K.; Roemmich, D.; Cornuelle, B. Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res. 2004, 109, 1–13. [Google Scholar] [CrossRef]
- Lozier, M.S.; Leadbetter, S.; Williams, R.G.; Roussenov, V.; Reed, M.S.C.; Moore, N.J. The spatial pattern and mechanisms of heat-content change in the North Atlantic. Science 2008, 319, 800–803. [Google Scholar] [CrossRef]
- Lobelle, D.; Beaulieu, C.; Livina, V.; Sévellec, F.; Frajka-Williams, E. Detectability of an AMOC Decline in Current and Projected Climate Changes. Geophys. Res. Lett. 2020, 47, e2020GL089974. [Google Scholar] [CrossRef]
- Peña-Molino, B.; Joyce, T.M. Variability in the Slope Water and its relation to the Gulf Stream path. Geophys. Res. Lett. 2008, 35, L03606. [Google Scholar] [CrossRef]
- Sanchez-Franks, A.; Zhang, R. Impact of the Atlantic meridional overturning circulation on the decadal variability of the Gulf Stream path and regional chlorophyll and nutrient concentrations. Geophys. Res. Lett. 2015, 42, 9889-9887. [Google Scholar] [CrossRef]
- Cornillon, P.; Watts, R. Satellite thermal infrared and inverted echo sounder determinations of the Gulf Stream northern edge. J. Atmos. Ocean. Technol. 1987, 4, 712–723. [Google Scholar] [CrossRef]
- Fuglister, F.C.; Voorhis, A.D. A new method of tracking the Gulf Stream. Limnol. Oceanogr. 1965, 10, R115–R124. [Google Scholar] [CrossRef]
- Hansen, D.V.; Maul, G.A. A note on the use of sea surface temperature for observing ocean currents. Remote Sens. Environ. 1970, 1, 161–164. [Google Scholar] [CrossRef]
- Pedlosky, J. Ocean Circulation Theory; Springer: New York, NY, USA, 1996; p. 453. [Google Scholar]
- Marshall, J.; Plumb, R.A. Atmosphere, Ocean and Climate Dynamics: An Introductory Text; Academic Press: New York, NY, USA, 2007; p. 344. [Google Scholar]
- Mercier, H.; Lherminier, P.; Sarafanov, A.; Gaillard, F.; Daniault, N.; Desbruyères, D.; Falina, A.; Ferron, B.; Gourcuff, C.; Huck, T.; et al. Variability of the meridional overturning circulation at the Greenland–Portugal OVIDE section from 1993 to 2010. Prog. Oceanogr. 2015, 132, 250–261. [Google Scholar] [CrossRef]
- Balmaseda, M.A.; Trenberth, K.E.; Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 2013, 40, 1754–1759. [Google Scholar] [CrossRef]
- Carton, J.A.; Santorelli, A. Global decadal upper-ocean heat content as viewed in nine analyses. J. Clim. 2008, 21, 6015–6035. [Google Scholar] [CrossRef]
- Palmer, M.D.; Roberts, C.D.; Balmaseda, M.; Chang, Y.S.; Chepurin, G.; Ferry, N.; Fujii, Y.; Good, S.A.; Guinehut, S.; Haines, K.; et al. Ocean heat content variability and change in an ensemble of ocean reanalyses. Clim. Dyn. 2015, 49, 1–22. [Google Scholar] [CrossRef]
- Häkkinen, S.; Rhines, P.B.; Worthen, D.L. Warming of the Global Ocean: Spatial Structure and Water-Mass Trends. J. Climate 2016, 29, 4949–4963. [Google Scholar] [CrossRef]
- Hanawa, K.; Talley, L.D. Chapter 5.4 Mode waters. In Ocean Circulation and Climate, Observing and Modelling the Global Ocean, 2nd ed.; Siedler, G., Church, J., Gould, J., Eds.; Academic Press: New York, NY, USA, 2001; Volume 77, pp. 373–386. [Google Scholar]
- McCartney, M.S.; Talley, L.D. The Subpolar Mode Water of the North Atlantic Ocean. J. Phys. Oceanogr. 1982, 12, 1169–1188. [Google Scholar] [CrossRef]
- Joyce, T.M. New perspectives on eighteen-degree water formation in the North Atlantic. J. Oceanogr. 2012, 68, 45–52. [Google Scholar] [CrossRef]
- Huang, R.X. Heaving modes in the world oceans. Clim. Dyn. 2015, 45, 3563–3591. [Google Scholar] [CrossRef]
- Mishonov, A.; Seidov, D.; Reagan, J.; Parsons, A. Decadal Variability of the Eighteen Degree Water derived from the Northwest Atlantic Regional Climatology. ESS Open Archive, 2019. [Google Scholar] [CrossRef]
- Bindoff, N.L.; McDougall, T.J. Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr. 1994, 24, 1137–1152. [Google Scholar] [CrossRef]
- Häkkinen, S.; Rhines, P.B.; Worthen, D.L. Heat content variability in the North Atlantic Ocean in ocean reanalyses. Geophys. Res. Lett. 2015, 42, 2901–2909. [Google Scholar] [CrossRef] [PubMed]
- Zika, J.D.; Gregory, J.M.; McDonagh, E.L.; Marzocchi, A.; Cl?ment, L. Recent Water Mass Changes Reveal Mechanisms of Ocean Warming. J. Clim. 2021, 34, 3461–3479. [Google Scholar] [CrossRef]
- Boyer, T.P.; Garcia, H.E.; Locarnini, R.A.; Zweng, M.M.; Mishonov, A.V.; Reagan, J.R.; Weathers, K.A.; Baranova, O.K.; Seidov, D.; Smolyar, I.V. World Ocean Atlas 2018; NOAA/NESDIS: Silver Spring, MD, USA, 2018.
- Boers, N. Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 2021, 11, 680–688. [Google Scholar] [CrossRef]
- Bashmachnikov, I.L.; Fedorov, A.M.; Golubkin, P.A.; Vesman, A.V.; Selyuzhenok, V.V.; Gnatiuk, N.V.; Bobylev, L.P.; Hodges, K.I.; Dukhovskoy, D.S. Mechanisms of interannual variability of deep convection in the Greenland sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2021, 174, 103557. [Google Scholar] [CrossRef]
- Bryden, H.L.; Johns, W.E.; King, B.A.; McCarthy, G.; McDonagh, E.L.; Moat, B.I.; Smeed, D.A. Reduction in ocean heat transport at 26° N since 2008 cools the eastern subpolar gyre of the North Atlantic Ocean. J. Clim. 2020, 33, 1677–1689. [Google Scholar] [CrossRef]
- Chafik, L.; Penny Holliday, N.; Bacon, S.; Baker, J.A.; Desbruyères, D.; Frajka-Williams, E.; Jackson, L.C. Observed mechanisms activating the recent subpolar North Atlantic Warming since 2016. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2023, 381, 20220183. [Google Scholar] [CrossRef]
- Marsh, R.; Dey, D.; Lenn, Y.-D.; Roberts, E.M. Shifts from surface density compensation to projected warming, freshening and stronger stratification in the subpolar North Atlantic. Clim. Dyn. 2024, 62, 8227–8253. [Google Scholar] [CrossRef]
- Chafik, L.; Lozier, M.S. When simplification leads to ambiguity: A look at two ocean metrics for the Subpolar North Atlantic. Geophys. Res. Lett. 2025, 52, e2024GL112496. [Google Scholar] [CrossRef]
- Bellomo, K.; Meccia, V.L.; D’Agostino, R.; Fabiano, F.; Larson, S.M.; von Hardenberg, J.; Corti, S. Impacts of a weakened AMOC on precipitation over the Euro-Atlantic region in the EC-Earth3 climate model. Clim. Dyn. 2023, 61, 3397–3416. [Google Scholar] [CrossRef]
- Ben-Yami, M.; Good, P.; Jackson, L.C.; Crucifix, M.; Hu, A.; Saenko, O.; Swingedouw, D.; Boers, N. Impacts of AMOC Collapse on Monsoon Rainfall: A Multi-Model Comparison. Earth’s Future 2024, 12, e2023EF003959. [Google Scholar] [CrossRef]
- van Westen, R.M.; Baatsen, M.L.J. European Temperature Extremes Under Different AMOC Scenarios in the Community Earth System Model. Geophys. Res. Lett. 2025, 52, e2025GL114611. [Google Scholar] [CrossRef]
- Hays, J.D. CLIMAP. In Encyclopedia of Paleoclimatology and Ancient Environments; Gornitz, V., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 158–164. [Google Scholar]
- Trend-Staid, M.; Prell, W.L. Sea surface temperature at the Last Glacial Maximum: A reconstruction using the modern analog technique. Paleoceanography 2002, 17, 17-11–17-18. [Google Scholar] [CrossRef]
- Pflaumann, U.; Sarnthein, M.; Chapman, M.; de Abreu, L.; Funnell, B.; Huels, M.; Kiefer, T.; Maslin, M.; Schulz, H.; Swallow, J.; et al. Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000. Paleoceanography 2003, 18, 10–11. [Google Scholar] [CrossRef]
- CLIMAP. Seasonal reconstructions of the Earth’s surface at the last glacial maximum. Technical Report MC-36; Geological Society of America: Boulder, CO, USA, 1981. [Google Scholar]
- Sarnthein, M.; Gersonde, R.; Niebler, S.; Pflaumann, U.; Spielhagen, R.; Thiede, J.; Wefer, G.; Weinelt, M. Overview of Glacial Atlantic Ocean Mapping (GLAMAP 2000). Paleoceanography 2003, 18. [Google Scholar] [CrossRef]
- Kutzbach, J.E.; Guetter, P.J. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 years. J. Atmos. Sci. 1986, 43, 1726–1759. [Google Scholar] [CrossRef]
- Wharton, J.H.; Renoult, M.; Gebbie, G.; Keigwin, L.D.; Marchitto, T.M.; Maslin, M.A.; Oppo, D.W.; Thornalley, D.J.R. Deeper and stronger North Atlantic Gyre during the Last Glacial Maximum. Nature 2024, 632, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Ruddiman, W.F.; McIntyre, A. The North Atlantic Ocean during the last deglaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1981, 35, 145–214. [Google Scholar] [CrossRef]
- Skinner, L.C.; Freeman, E.; Hodell, D.; Waelbroeck, C.; Vazquez Riveiros, N.; Scrivner, A.E. Atlantic Ocean ventilation changes across the last deglaciation and their carbon cycle implications. Paleoceanogr. Paleoclimatol. 2021, 36, e2020PA004074. [Google Scholar] [CrossRef]
- Ayache, M.; Swingedouw, D.; Mary, Y.; Eynaud, F.; Colin, C. Multi-centennial variability of the AMOC over the Holocene: A new reconstruction based on multiple proxy-derived SST records. Glob. Planet. Change 2018, 170, 172–189. [Google Scholar] [CrossRef]
- Eynaud, F.; de Abreu, L.; Voelker, A.; Schönfeld, J.; Salgueiro, E.; Turon, J.-L.; Penaud, A.; Toucanne, S.; Naughton, F.; Sánchez Goñi, M.F.; et al. Position of the Polar Front along the western Iberian margin during key cold episodes of the last 45 ka. Geochem. Geophys. Geosyst. 2009, 10. [Google Scholar] [CrossRef]
- Repschläger, J.; Garbe-Schönberg, D.; Weinelt, M.; Schneider, R. Holocene evolution of the North Atlantic subsurface transport. Clim. Past 2017, 13, 333–344. [Google Scholar] [CrossRef]
- Hu, A. Atlantic circulation could be more resilient to global warming than was thought. Nature 2025, 638, 893–894. [Google Scholar] [CrossRef]
- Rossby, T.; Flagg, C.N.; Donohue, K.; Sanchez-Franks, A.; Lillibridge, J. On the long-term stability of Gulf Stream transport based on 20 years of direct measurements. Geophys. Res. Lett. 2014, 41, 2013GL058636. [Google Scholar] [CrossRef]
- Frazão, H.C.; Prien, R.D.; Schulz-Bull, D.E.; Seidov, D.; Waniek, J.J. The forgotten Azores Current: A long-term perspective. Front. Mar. Sci. 2022, 9, 842251. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seidov, D.; Mishonov, A.; Reagan, J. AMOC and North Atlantic Ocean Decadal Variability: A Review. Oceans 2025, 6, 59. https://doi.org/10.3390/oceans6030059
Seidov D, Mishonov A, Reagan J. AMOC and North Atlantic Ocean Decadal Variability: A Review. Oceans. 2025; 6(3):59. https://doi.org/10.3390/oceans6030059
Chicago/Turabian StyleSeidov, Dan, Alexey Mishonov, and James Reagan. 2025. "AMOC and North Atlantic Ocean Decadal Variability: A Review" Oceans 6, no. 3: 59. https://doi.org/10.3390/oceans6030059
APA StyleSeidov, D., Mishonov, A., & Reagan, J. (2025). AMOC and North Atlantic Ocean Decadal Variability: A Review. Oceans, 6(3), 59. https://doi.org/10.3390/oceans6030059