Fractional CO2 Laser for Pediatric Hypertrophic Scars: Lessons Learned from a Prematurely Terminated Split-Scar Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Laser Treatments and Study Protocol
2.4. Outcome Measures
2.5. Data Analysis
2.6. Publication Bias Assessment
3. Results
3.1. Patient Demographics
3.2. Assessment of the AFCO2L Effect Using VSS
3.3. Assessment of the AFCO2L Effect Using a Cutometer
3.4. Assessment of the Cluster-Specific Effects of AFCO2L Using Scar-Q
3.5. Publication Bias in Studies Reporting AFCO2L for Pediatric HTS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabriel, V. Hypertrophic scar. Phys. Med. Rehabil. Clin. 2011, 22, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Gabriel, V.A.; Arora, R.K.; Shin, W.; Scott, J.; Bharadia, S.K.; Verly, M.; Rahmani, W.M.; Nickerson, D.A.; Fraulin, F.O.G.; et al. Interventions for postburn pruritus. Cochrane Database Syst. Rev. 2024, 6, CD013468. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, C.C.; Jeschke, M.G.; Branski, L.K.; Barret, J.P.; Dziewulski, P.; Herndon, D.N. Hypertrophic scarring: The greatest unmet challenge after burn injury. Lancet 2016, 388, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Engrav, L.H.; Garner, W.L.; Tredget, E.E. Hypertrophic scar, wound contraction and hyper-hypopigmentation. J. Burn Care Res. 2007, 28, 593–597. [Google Scholar] [CrossRef]
- Gangemi, E.N.; Gregori, D.; Berchialla, P.; Zingarelli, E.; Cairo, M.; Bollero, D.; Ganem, J.; Capocelli, R.; Cuccuru, F.; Cassano, P. Epidemiology and risk factors for pathologic scarring after burn wounds. Arch. Facial Plast. Surg. 2008, 10, 93–102. [Google Scholar] [CrossRef]
- Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair. Regen. 2009, 17, 763–771. [Google Scholar] [CrossRef]
- Tretti Clementoni, M.; Azzopardi, E. Minimally Invasive Technologies for Treatment of HTS and Keloids: Fractional Laser. In Textbook on Scar Management: State of the Art Management and Emerging Technologies; Springer: Berlin/Heidelberg, Germany, 2020; pp. 279–285. [Google Scholar]
- Qu, L.; Liu, A.; Zhou, L.; He, C.; Grossman, P.H.; Moy, R.L.; Mi, Q.S.; Ozog, D. Clinical and molecular effects on mature burn scars after treatment with a fractional CO2 laser. Lasers Surg. Med. 2012, 44, 517–524. [Google Scholar] [CrossRef]
- Khandelwal, A.; Yelvington, M.; Tang, X.; Brown, S. Ablative fractional photothermolysis for the treatment of hypertrophic burn scars in adult and pediatric patients: A single surgeon’s experience. J. Burn Care Res. 2014, 35, 455–463. [Google Scholar] [CrossRef]
- Anderson, R.R.; Donelan, M.B.; Hivnor, C.; Greeson, E.; Ross, E.V.; Shumaker, P.R.; Uebelhoer, N.S.; Waibel, J.S. Laser treatment of traumatic scars with an emphasis on ablative fractional laser resurfacing: Consensus report. JAMA Dermatol. 2014, 150, 187–193. [Google Scholar] [CrossRef]
- Waibel, J.S.; Gianatasio, C.; Rudnick, A. Randomized, controlled early intervention of dynamic mode fractional ablative CO2 laser on acute burn injuries for prevention of pathological scarring. Lasers Surg. Med. 2020, 52, 117–124. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, W.; Li, X. Clinical efficacy of CO2 fractional laser in treating post-burn hypertrophic scars in children: A meta-analysis: CO2 fractional laser in treating post-burn hypertrophic scars in children. Ski. Res. Technol. 2024, 30, e13605. [Google Scholar] [CrossRef] [PubMed]
- Won, T.; Ma, Q.; Chen, Z.; Gao, Z.; Wu, X.; Zhang, R. The efficacy and safety of low-energy carbon dioxide fractional laser use in the treatment of early-stage pediatric hypertrophic scars: A prospective, randomized, split-scar study. Lasers Surg. Med. 2022, 54, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.S.; Xing, F.X.; Fu, Q.Y.; Zhang, X.Z.; Li, Y.; Xu, D.W. Evaluation of fractional carbon dioxide laser in the treatment of early hypertrophic scars after deep burns in children. Chin. J. Gen. Pract. 2023, 21, 250–254. [Google Scholar] [CrossRef]
- Shao, K.; Taylor, L.; Miller, C.J.; Etzkorn, J.R.; Shin, T.M.; Higgins, H.W.; Giordano, C.N.; Sobanko, J.F. The natural evolution of facial surgical scars: A retrospective study of physician-assessed scars using the patient and observer scar assessment scale over two time points. Facial Plast. Surg. Aesthetic Med. 2021, 23, 330–338. [Google Scholar] [CrossRef]
- Mahdavian Delavary, B.; Van der Veer, W.M.; Ferreira, J.A.; Niessen, F.B. Formation of hypertrophic scars: Evolution and susceptibility. J. Plast. Surg. Hand Surg. 2012, 46, 95–101. [Google Scholar] [CrossRef]
- Khansa, I.; Harrison, B.; Janis, J.E. Evidence-based scar management: How to improve results with technique and technology. Plast. Reconstr. Surg. 2016, 138, 165S–178S. [Google Scholar] [CrossRef]
- Baryza, M.J.; Baryza, G.A. The Vancouver Scar Scale: An administration tool and its interrater reliability. J. Burn Care Rehabil. 1995, 16, 535–538. [Google Scholar] [CrossRef]
- Theodorou, A.; Jedig, A.; Manekeller, S.; Willms, A.; Pantelis, D.; Matthaei, H.; Schäfer, N.; Kalff, J.C.; von Websky, M.W. Long term outcome after open abdomen treatment: Function and quality of life. Front. Surg. 2021, 8, 590245. [Google Scholar] [CrossRef]
- Abbas, D.B.; Lavin, C.V.; Fahy, E.J.; Griffin, M.; Guardino, N.; King, M.; Chen, K.; Lorenz, P.H.; Gurtner, G.C.; Longaker, M.T. Standardizing dimensionless cutometer parameters to determine in vivo elasticity of human skin. Adv. Wound Care 2022, 11, 297–310. [Google Scholar] [CrossRef]
- Ud-Din, S.; Bayat, A. Noninvasive objective tools for quantitative assessment of skin scarring. Adv. Wound Care 2022, 11, 132–149. [Google Scholar] [CrossRef]
- Nedelec, B.; Correa, J.A.; Rachelska, G.; Armour, A.; LaSalle, L. Quantitative measurement of hypertrophic scar: Intrarater reliability, sensitivity, and specificity. J. Burn Care Res. 2008, 29, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Klassen, A.F.; Ziolkowski, N.; Mundy, L.R.; Miller, H.C.; McIlvride, A.; DiLaura, A.; Fish, J.; Pusic, A.L. Development of a new patient-reported outcome instrument to evaluate treatments for scars: The SCAR-Q. Plast. Reconstr. Surg.–Glob. Open 2018, 6, e1672. [Google Scholar] [CrossRef]
- Majid, I.; Imran, S. Fractional carbon dioxide laser resurfacing in combination with potent topical corticosteroids for hypertrophic burn scars in the pediatric age group: An open label study. Dermatol. Surg. 2018, 44, 1102–1108. [Google Scholar] [CrossRef]
- Elrod, J.; Schiestl, C.; Neuhaus, D.; Mohr, C.; Neuhaus, K. Patient-and physician-reported outcome of combined fractional CO2 and pulse dye laser treatment for hypertrophic scars in children. Ann. Plast. Surg. 2020, 85, 237–244. [Google Scholar] [CrossRef]
- Xing FX, L.J. Efficacy evaluation of intense pulsed light combined with lattice CO2 laser in the treatment of hypertrophic scar after burn of the lower limb in children. Chin. Med. Cosmetol. 2021, 11, 61–65. [Google Scholar] [CrossRef]
- Zuccaro, J.; Muser, I.; Singh, M.; Yu, J.; Kelly, C.; Fish, J. Laser therapy for pediatric burn scars: Focusing on a combined treatment approach. J. Burn Care Res. 2018, 39, 457–462. [Google Scholar] [CrossRef]
- Sinha, S.; Arora, R.; Chockalingam, K.; van der Vyver, M.; Ponich, B.; Ambikkumar, A.; Verly, M.; Turk, M.; Bharadia, S.; Biernaskie, J. Plastic Surgery Clinical Trials: A Systematic Review of Characteristics, Research Themes, and Predictors of Publication and Discontinuation. Plast. Reconstr. Surg.–Glob. Open 2023, 12, e5478. [Google Scholar] [CrossRef]
- Sinha, S.; Yoon, G.; Shin, W.; Biernaskie, J.A.; Nickerson, D.; Gabriel, V.A. Burn clinical trials: A systematic review of registration and publications. Burns 2018, 44, 263–271. [Google Scholar] [CrossRef]
- Raby, E.; Gittings, P.; Litton, E.; Berghuber, A.; Edgar, D.W.; Camilleri, J.; Owen, K.; Kendell, R.; Manning, L.; Fear, M. Celecoxib to improve scar quality following acute burn injury: Lessons learned after premature termination of a randomised trial. Burn Open 2024, 8, 128–135. [Google Scholar] [CrossRef]
- Patel, S.P.; Nguyen, H.V.; Mannschreck, D.; Redett, R.J.; Puttgen, K.B.; Stewart, F.D. Fractional CO2 laser treatment outcomes for pediatric hypertrophic burn scars. J. Burn Care Res. 2019, 40, 386–391. [Google Scholar] [CrossRef]
- Blome-Eberwein, S.; Gogal, C.; Weiss, M.J.; Boorse, D.; Pagella, P. Prospective evaluation of fractional CO2 laser treatment of mature burn scars. J. Burn Care Res. 2016, 37, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.C.; Liang, Y.Y.; Li, W. Quantitative simulation of photothermal effect in laser therapy of hypertrophic scar. Ski. Res. Technol. 2023, 29, e13305. [Google Scholar] [CrossRef] [PubMed]
- Klifto, K.M.; Asif, M.; Hultman, C.S. Laser management of hypertrophic burn scars: A comprehensive review. Burn Trauma 2020, 8, tkz002. [Google Scholar] [CrossRef] [PubMed]
- Zadkowski, T.; Nachulewicz, P.; Mazgaj, M.; Wozniak, M.; Cielecki, C.; Wieczorek, A.P.; Ben-Skowronek, I. A new CO2 laser technique for the treatment of pediatric hypertrophic burn scars: An observational study. Medicine 2016, 95, e5168. [Google Scholar] [CrossRef]
- Karmisholt, K.E.; Taudorf, E.H.; Wulff, C.B.; Wenande, E.; Philipsen, P.A.; Haedersdal, M. Fractional CO2 laser treatment of caesarean section scars—A randomized controlled split-scar trial with long term follow-up assessment. Lasers Surg. Med. 2017, 49, 189–197. [Google Scholar] [CrossRef]
- Su, S.; Sinha, S.; Gabriel, V. Evaluating accuracy and reliability of active stereophotogrammetry using MAVIS III Wound Camera for three-dimensional assessment of hypertrophic scars. Burns 2017, 43, 1263–1270. [Google Scholar] [CrossRef]
- Agabalyan, N.A.; Su, S.; Sinha, S.; Gabriel, V. Comparison between high-frequency ultrasonography and histological assessment reveals weak correlation for measurements of scar tissue thickness. Burns 2017, 43, 531–538. [Google Scholar] [CrossRef]
- Sinha, S.; Agabalyan, N.A.; Gabriel, V.A. RE: “Ultrasound is a reproducible and valid tool for measuring scar height in children with burn scars: A cross-sectional study of the psychometric properties and utility of the ultrasound and 3D camera” by M. Simons, E. Gee Kee, R. Kimble, Z. Tyack [Burns 43 (2017) 993–1001]. Burn J. Int. Soc. Burn Inj. 2017, 43, 1137–1138. [Google Scholar]
- Simons, M.; Kee, E.G.; Kimble, R.; Tyack, Z. Ultrasound is a reproducible and valid tool for measuring scar height in children with burn scars: A cross-sectional study of the psychometric properties and utility of the ultrasound and 3D camera. Burns 2017, 43, 993–1001. [Google Scholar] [CrossRef]
- Chen, S.X.; Cheng, J.; Watchmaker, J.; Dover, J.S.; Chung, H.J. Review of lasers and energy-based devices for skin rejuvenation and scar treatment with histologic correlations. Dermatol. Surg. 2022, 48, 441–448. [Google Scholar] [CrossRef]
Patient | Age (y) | Scar Age (y) | Location | TBSA | Grafted | TBSA Grafted | Mechanism | Skin Type |
---|---|---|---|---|---|---|---|---|
1 | 5 | 1.1 | Back, L shoulder | 14% | Yes | 5% | Scald | VI |
2 | 14.3 | 13.5 | L/R palms | 2% | Yes | 2% | Contact | II |
3 | 17.3 | 15.4 | R arm | 4% | No | 0% | Contact | V |
4 | 5.8 | 3.9 | R arm | 14% | Yes | 4% | Scald | III |
5 | 8.7 | 6.7 | L arm | 4% | No | 0% | Scald | IV |
6 | 6.4 | 0.5 | Pubic area | 2% | No | 0% | Scald | V |
Baseline | After 1st Treatment | After 3rd Treatment | Change (After 1st Treatment) | Change (After All Treatment) | |
---|---|---|---|---|---|
Control | 7.00 (2.06) | 6.11 (1.62) | 5.22 (2.54) | −0.89 | −1.78 |
Laser | 7.00 (2.18) | 6.33 (1.80) | 7.33 (2.29) | −0.67 | +0.33 |
Baseline | After 1st Treatment | After 3rd Treatment | Change (After 1st Treatment) | Change (After All Treatment) | |
---|---|---|---|---|---|
R0 (Control) | 0.130 | 0.112 | 0.098 | −0.018 | −0.032 |
R0 (Laser) | 0.132 | 0.148 | 0.111 | +0.018 | −0.021 |
R1 (Control) | 0.028 | 0.018 | 0.018 | −0.010 | −0.010 |
R1 (Laser) | 0.031 | 0.032 | 0.013 | +0.001 | −0.018 |
R2 (Control) | 0.758 | 0.833 | 0.790 | +0.075 | +0.022 |
R2 (Laser) | 0.770 | 0.789 | 0.787 | +0.019 | +0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the European Burns Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, S.; Baykan, A.; Hulin, K.; Baron, D.; Gabriel, V.; Fraulin, F.O.G. Fractional CO2 Laser for Pediatric Hypertrophic Scars: Lessons Learned from a Prematurely Terminated Split-Scar Trial. Eur. Burn J. 2025, 6, 10. https://doi.org/10.3390/ebj6010010
Sinha S, Baykan A, Hulin K, Baron D, Gabriel V, Fraulin FOG. Fractional CO2 Laser for Pediatric Hypertrophic Scars: Lessons Learned from a Prematurely Terminated Split-Scar Trial. European Burn Journal. 2025; 6(1):10. https://doi.org/10.3390/ebj6010010
Chicago/Turabian StyleSinha, Sarthak, Altay Baykan, Karen Hulin, Doug Baron, Vincent Gabriel, and Frankie O. G. Fraulin. 2025. "Fractional CO2 Laser for Pediatric Hypertrophic Scars: Lessons Learned from a Prematurely Terminated Split-Scar Trial" European Burn Journal 6, no. 1: 10. https://doi.org/10.3390/ebj6010010
APA StyleSinha, S., Baykan, A., Hulin, K., Baron, D., Gabriel, V., & Fraulin, F. O. G. (2025). Fractional CO2 Laser for Pediatric Hypertrophic Scars: Lessons Learned from a Prematurely Terminated Split-Scar Trial. European Burn Journal, 6(1), 10. https://doi.org/10.3390/ebj6010010