State of the Art on Empirical and Numerical Methods for Cave Stability Analysis: Application in Al-Badia Lava Tube, Harrat Al-Shaam, Jordan
Abstract
1. Introduction
2. State of the Art
2.1. Empirical Methodologies for Cave Stability Analysis
2.1.1. Early Classification Systems (1950s and 1960s)
2.1.2. Development of Modern Indices (1970s and 1980s)
2.1.3. Adaptations for Mining Environments and Caves (1980s and 1990s)
2.1.4. Specific Methods for Natural Caves (2000s and 2010s)
2.1.5. Recent Advances (2020s)
2.1.6. Current Trends and Complementarity with Advanced Techniques
2.1.7. Representative Case Studies of the Application of Empirical Methodologies
2.2. Numerical Methodologies for Cave Stability Analysis
2.2.1. The Beginnings of Numerical Modeling (1960s)
2.2.2. Advances in Computational Capacity and 3D Modeling (1970s)
2.2.3. The Emergence of Discrete Methods (1980s)
2.2.4. Integration of Complex Phenomena and Applications in Caves (1990s)
2.2.5. Modeling of Karst Environments and Consolidation of FEM (2000s)
2.2.6. Integration of Advanced Technologies and Hybrid Approaches (2010s)
2.2.7. Present Day: Technological Revolution and Multifield Approaches
2.2.8. Representative Case Studies on Application of Numerical Methodologies
3. Materials and Methods
3.1. Geomechanical Stations and Empirical Classifications of the Rock Mass
- = Rock Quality Designation
- = Number of discontinuity families
- = Roughness number of discontinuities
- = Alteration number of discontinuities
- = Water reduction factor in discontinuities
- = Stress reduction factor
- = The thickness of the rock mass
- = The in situ horizontal stress
- = The dip of the foliation or underlying opening
- = The pillar width
- = The total length of the opening
- = The specific gravity of the rock mass
- = The groundwater pressure
- = Crown pillar span (m)
- = Specific gravity of rock mass (ton/m3)
- = Thickness of crown pillar (m)
- = Inclination of rock mass
- = Light ratio = (crown pillar span/crown pillar strike length)
3.2. Analysis Through Numerical Modeling
4. Results
4.1. Stability Assessment Using Empirical Methods
4.2. Stability Assessment Using Numerical Methods
5. Discussion of Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, E.L. Breakdown. Encycl. Caves 2012, 2, 68–74. [Google Scholar] [CrossRef]
- Jordá-Bordehore, L.; Martín-García, R.; Alonso-Zarza, A.M.; Jordá-Bordehore, R.; Romero-Crespo, P.L. Stability assessment of shallow limestone caves through an empirical approach: Application of the stability graph method to the Castañar Cave study site (Spain). Bull. Eng. Geol. Environ. 2016, 75, 1469–1483. [Google Scholar] [CrossRef]
- Parise, M.; Lollino, P. A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy. Geomorphology 2011, 134, 132–143. [Google Scholar] [CrossRef]
- Yan, W.; Liu, R.; Tian, S.; Tan, F.; Wen, H.; Lv, J. A Study on Karst Cave Collapse Based on Improved Terzaghi Theory and Upper Limit Analysis. Appl. Sci. 2024, 14, 8252. [Google Scholar] [CrossRef]
- Brandi, I.; Sebastião, C.S.; Ferreira, M.L.; de Lima, H.M.; Gama, M.F.P. Physical stability of iron ore caves: Geomechanical studies of a shallow underground cave in SE Brazil. Rev. Esc. Minas 2019, 72, 217–225. [Google Scholar] [CrossRef]
- Waltham, T.; Lu, Z. Natural and anthropogenic rock collapse over open caves. Geol. Soc. Spec. Publ. 2007, 279, 13–21. [Google Scholar] [CrossRef]
- Thote, N.R.; Wajid, S.; Saharan, M.R. Effect of shape of opening on the stability of caverns: An experimental analysis. In Recent Advances in Rock Engineering (RARE 2016); Atlantis Press: Dordrecht, The Netherlands, 2016; pp. 570–574. [Google Scholar] [CrossRef]
- Su, S.; Stephansson, O. Effect of a fault on in situ stresses studied by the distinct element method. Int. J. Rock Mech. Min. Sci. 1999, 36, 1051–1056. [Google Scholar] [CrossRef]
- Al-Malabeh, A. Geochemistry of two volcanic cones from the intra-continental plateau basalt of Harra El-Jabban, NE-Jordan. Geochem. J. 1994, 28, 517–540. [Google Scholar] [CrossRef]
- Al-Malabeh, A.; Frehat, M.; Henschel, H.; Kempe, S. Al-Fahda Cave (Jordan): The Longest Lava Cave Yet Reported from the Arabian Plate. AMCS Bull. 2006, 19, 201–208. [Google Scholar]
- Jordá-Bordehore, L.; Al-Malabeh, A.; Abdelmadjid, B.; Jordá-Bordehore, R. Discusión sobre la aplicabilidad de metodologías empíricas “tuneleras” para análisis de estabilidad de cuevas: Caso del tubo de lava de Al-Badia, en Harrat Al-Shaam, Jordania. In Proceedings of the IX Congreso Español Sobre Cuevas y Minas Turísticas, Geología y Turismo: Realidades Complementarias, Karrantza, Spain, 22–25 October 2024; pp. 229–239. [Google Scholar]
- Rodríguez, G.; Mulas, M.; Loaiza, S.; Del Pilar Villalta Echeverria, M.; Yanez Vinueza, A.A.; Larreta, E.; Jordá Bordehore, L. Stability Analysis of the Volcanic Cave El Mirador (Galápagos Islands, Ecuador) Combining Numerical, Empirical and Remote Techniques. Remote Sens. 2023, 15, 732. [Google Scholar] [CrossRef]
- Detay, M.; Hróarsson, B. Túneles de lava. Investig. Cienc. 2011, 420, 62–67. [Google Scholar]
- Bieniawski, Z.T. Engineering Classification of Jointed Rock Masses. Civ. Eng. S. Afr. 1973, 15, 335–343. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Classification of rock masses for engineering: The RMR system and future trends. Compr. Rock Eng. 1993, 3, 553–573. [Google Scholar] [CrossRef]
- Laubscher, H.; Atr, J.S. Geomechanics classification system for the rating of rock mass in mine design. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1991, 28, A228. [Google Scholar] [CrossRef]
- Naithani, A.K. Rock Mass Classification and Support Design using the Q-System. J. Geol. Soc. India 2019, 94, 443. [Google Scholar] [CrossRef]
- Singh, B.; Goel, R.K. Engineering Rock Mass Classification; Butterworth-Heinemann: Oxford, UK, 2011; ISBN 9780123858788. [Google Scholar]
- Parise, M.; Trisciuzzi, M.A. Geomechanical characterization of carbonate rock masses in underground karst systems: A case study from Castellana-Grotte (Italy) The karst system at Castellana-Grotte. Engineering 2007, 45, 227–236. [Google Scholar]
- Jordá-Bordehore, L. Stability Assessment of Natural Caves Using Empirical Approaches and Rock Mass Classifications. Rock Mech. Rock Eng. 2017, 50, 2143–2154. [Google Scholar] [CrossRef]
- Brandi, I.V.; Barbosa, M.R.; da Silva, A.B.; De Paula, R.G.; Correa, T.; de Lima, H.M.; Osborne, R.A. Cave Geomechanical Index (CGI). Classification and Contribution to the Conservation of Natural Caves in the Iron Mines. Geoconservation Res. 2020, 3, 134–161. [Google Scholar] [CrossRef]
- Benrabah, A.; Senent Domínguez, S.; Collado Giraldo, H.; Chaves Rodríguez, C.; Jorda Bordehore, L. Stability Assessment of the Maltravieso Cave (Caceres, Spain) Through Engineering Rock Mass Classification, Empirical, Numerical and Remote Techniques. Remote Sens. 2024, 16, 3883. [Google Scholar] [CrossRef]
- Andriani, G.F.; Parise, M. Applying rock mass classifications to carbonate rocks for engineering purposes with a new approach using the rock engineering system. J. Rock Mech. Geotech. Eng. 2017, 9, 364–369. [Google Scholar] [CrossRef]
- Jordá-Bordehore, L.; Riquelme, A.; Tomás, R.; Cano, M. Análisis estructural y geomecánico en zonas inaccesibles de cavernas naturales mediante técnicas fotogramétricas: Aplicación en la entrada de la cueva de Artá (Mallorca). In El Karst y el Hombre: Las Cuevas Como Patrimonio; Andreo, B., Durán, J.J., Eds.; Asociación Cuevas Turísticas Españolas: Madrid, Spain, 2017; pp. 255–266. (In Spanish) [Google Scholar]
- Benrabah, A.; Senent Domínguez, S.; Jorda Bordehore, L.; Alvares Alonzo, D.; Diez Herrero, A.; de Andrés Herrero, M. Preliminary Assessment of Badajo Cave (Segovia, Spain) Stability Using Empirical, Numerical and Remote Techniques. IOP Conf. Ser. Earth Environ. Sci. 2024, 1295, 012011. [Google Scholar] [CrossRef]
- Waltham, T. The engineering classification of karst with respect to the role and influence of caves. Int. J. Speleol. 2002, 31, 19–35. [Google Scholar] [CrossRef]
- Sánchez, M.A.; Foyo, A.; Tomillo, C.; Iriarte, E. Geological risk assessment of the area surrounding Altamira Cave: A proposed Natural Risk Index and Safety Factor for protection of prehistoric caves. Eng. Geol. 2007, 94, 180–200. [Google Scholar] [CrossRef]
- Geniş, M.; Çolak, B. Stability Assessment of the Gökgöl Karstic Cave (Zonguldak, Turkey) by Analytical and Numerical Methods. Rock Mech. Rock Eng. 2015, 48, 2383–2403. [Google Scholar] [CrossRef]
- Bastidas, G.; Soria, O.; Mulas, M.; Loaiza, S.; Bordehore, L.J. Stability Analysis of Lava Tunnels on Santa Cruz Island (Galapagos Islands, Ecuador) Using Rock Mass Classifications: Empirical Approach and Numerical Modeling. Geosciences 2022, 12, 380. [Google Scholar] [CrossRef]
- De Paula, A.; Brandi, I. Natural caves empirical stability assessments-application of Laubscher’s diagram and Barton’s support graph. In Proceedings of the ISRM VIII Brazilian Symposium on Rock Mechanics—SBMR 2018, Salvador, Brazil, 28 August–1 September 2018; Available online: https://www.researchgate.net/publication/328150371 (accessed on 19 June 2025).
- Oliveira, P.L.; de Lima, H.M. Correlations of rock mass classifications applied to ferruginous caves. REM Int. Eng. J. 2020, 73, 267–272. [Google Scholar] [CrossRef]
- Goh, A.T.C.; Zhang, W. Reliability assessment of stability of underground rock caverns. Int. J. Rock Mech. Min. Sci. 2012, 55, 157–163. [Google Scholar] [CrossRef]
- Jing, L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. Sci. 2003, 40, 283–353. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Emeritus, F. The finite element method. Fifth edition (O. C. Zienkiewicz, R.L. Taylor). Bautechnik 2002, 79, 122–123. [Google Scholar] [CrossRef]
- Jing, L.; Hudson, J.A. Numerical methods in rock mechanics. Int. J. Rock Mech. Min. Sci. 2002, 39, 409–427. [Google Scholar] [CrossRef]
- Jing, L. Numerical modeling of jointed rock masses by distinct element method for two- and three-dimensional problems. Lulea Univ. Technol. 2017, 63, 228–243. Available online: http://www.sciencedirect.com/science/article/pii/S0886779816301316 (accessed on 19 June 2025).
- Domitrović, D.; Korman, T.; Klanfar, M.; Herceg, V. Advancements and Applications of the Discrete Element Method in Mining and Geotechnical Engineering. Gategory Rev. Sci. Pap. 2023, 622, 139–149. [Google Scholar]
- Bićanić, N. Chapter 11: Discrete Element Methods. In Encyclopedia of Computational Mechanics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; Volume 1. [Google Scholar] [CrossRef]
- Choi, S.K. Application of the distinct element method for rock mechanics problems. Eng. Comput. 1992, 9, 225–233. [Google Scholar] [CrossRef]
- Hart, R.D. An Introduction to Distinct Element Modeling for Rock Engineering; Pergamon Press Ltd.: Elmsford, NY, USA, 1993. [Google Scholar]
- Chuhan, Z.; Pekau, O.A.; Feng, J.; Guanglun, W. Application of distinct element method in dynamic analysis of high rock slopes and blocky structures. Soil Dyn. Earthq. Eng. 1997, 16, 385–394. [Google Scholar] [CrossRef]
- Kaufmann, G. Modelling karst aquifer evolution in fractured, porous rocks. J. Hydrol. 2016, 543, 796–807. [Google Scholar] [CrossRef]
- Bisetti, A.; Tendon, D.; Zimmermann, T.; Commend, S. Finite element stability analyses of natural caves. Rock Mech. A Chall. Soc. 2001, 2001, 409–414. [Google Scholar]
- Hamdi, P.; Stead, D.; Elmo, D.; Töyrä, J. Use of an integrated finite/discrete element method-discrete fracture network approach to characterize surface subsidence associated with sub-level caving. Int. J. Rock Mech. Min. Sci. 2018, 103, 55–67. [Google Scholar] [CrossRef]
- Heidarzadeh, S.; Saeidi, A.; Lavoie, C.; Rouleau, A. Geomechanical characterization of a heterogenous rock mass using geological and laboratory test results: A case study of the Niobec Mine, Quebec (Canada). SN Appl. Sci. 2021, 3, 640. [Google Scholar] [CrossRef] [PubMed]
- Fener, M.; Varol, N. Quantitative Risk Assessment of Rock Instabilities Threatening Manazan Caves, Karaman, Türkiye. Geoheritage 2024, 16, 49. [Google Scholar] [CrossRef]
- Domej, G. High-Resolution 3D FEM Stability Analysis of the Sabereebi Cave. Rock. Mech. Rock Eng. 2022, 55, 5139–5162. [Google Scholar] [CrossRef]
- Potyondy, D.O. The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions. Geosystem Eng. 2015, 18, 1–28. [Google Scholar] [CrossRef]
- Sun, J.; Wang, S. Rock mechanics and rock engineering in China: Developments and current state-of-the-art. Int. J. Rock Mech. Min. Sci. 2000, 37, 447–465. [Google Scholar] [CrossRef]
- Perrotti, M.; Lollino, P.; Fazio, N.L.; Parise, M. FEM-based stability charts for underground cavities in soft carbonate rocks: Validation through case-study applications. Nat. Hazards Earth Syst. Sci. 2015, 55, 1–26. [Google Scholar]
- Alemdag, S.; Zeybek, H.I.; Kulekci, G. Stability evaluation of the Gümüşhane-Akçakale cave by numerical analysis method. J. Mt. Sci. 2019, 16, 2150–2158. [Google Scholar] [CrossRef]
- Milne, D.M. Underground Desing and Deformation Based on Surface Geometry. Ph.D. Thesis, University of British Columbia, Columbia, UK, 1997. [Google Scholar]
- Carter, T.G. Guidelines for use of the Scaled Span Method for Surface Crown Pillar Stability Assessment. In Proceedings of the 1st International Conference on Applied Empirical Design Methods in Mining, Lima, Perú, 9–11 June 2014; 34p. [Google Scholar]
- Norwegian Geotechnical Institute. Using the Q-System; Norwegian Geotechnical Institute: Oslo, Norway, 2015; 57p. [Google Scholar]
- Barton, N.; Lien, R.; Lunde, J. Engineering Classification of Rock Masses for the Design of Tunnel Support. Rock Mech. 1974, 6, 189–236. [Google Scholar] [CrossRef]
Cave Type | Author and Year | Place of Study | Methodology Applied | Main Contributions |
---|---|---|---|---|
Karst caves | Waltham, 2002 [26] | Not applicable | Geomorphological mapping | Classify karst caves into categories according to geotechnical interest for surface foundations. |
Sánchez, 2007 [27] | Cantabria, Spain | Geological and structural mapping | The level of risk of structural instability of the cave is evaluated using the NRI and SF indices. | |
Parise, 2007 [19] | Apulia, Italy | Geological and structural mapping | They describe the mechanisms of rock block collapse inside caves. | |
Geniş, 2015 [28] | Zonguldak, Turkey | RMR, Q index, RMi, GSI | They correlate empirical methodologies, analytical methods, and numerical methods. | |
Jordá-Bordehore, 2016 [2] | Castañar, Spain | Mathews-Potvin stability graph | Adapt a mining stability graphic method geometrically for caves. | |
Jordá-Bordehore, 2016 [24] | Mallorca, Spain | SfM, Kinematic assesment | Use photogrammetric techniques and structural data collection to understand the kinematic behavior of the rock mass. | |
Andriani, 2017 [23] | Not applicable | RES | Characterize the rock mass using a new empirical methodology with better applicability to carbonate rocks. | |
Benrabah, 2024 [25] | Segovia, Spain | CGI, RMR, Q index | Complement the stability analysis of empirical indices with block theory (wedge kinematics) in the caves. | |
Benrabah, 2024 [22] | Maltravieso, Spain | |||
Lava caves | Jordá-Bordehore, 2016 [2] | Galápagos, Ecuador | Mining method of scaled width | They determine the safety factors of cave ceiling pillars. |
Bastidas, 2022 [29] | CGI, RMR, Q index | They identify stability, transition, and collapse zones using an empirical support graph for caves. | ||
Rodríguez, 2023 [12] | They use photogrammetric techniques to define the geometry of caves. | |||
Iron caves | De Paula, 2018 [30] | Carajás, Brazil | MRMR and Q index | They use empirical support graphs in different safety factor scenarios. |
Brandi, 2019 [5] | MRMR | They determine the stability conditions of caves using Laubscher’s empirical support graph. | ||
Brandi, 2020 [21] | CGI, RMR, and Q index | They describe the CGI methodology and establish a classification of susceptibility to structural instability in caves. | ||
Oliveira, 2020 [31] | They establish statistical correlations between RMR and Q with cave data. | |||
Others | White, 2012 [1] | Not applicable | Geomorphological mapping | They describe the collapse mechanisms of cave ceilings. |
Jordá-Bordehore, 2017 [20] | Spain and Galápagos–Ecuador | Q index | They propose an adjusted empirical Q index graph specifically for its application in caves. |
Cave Type | Author and Year | Place of Study | Methodology Applied | Main Contributions |
---|---|---|---|---|
Karst caves | Parise, 2011 [3] | Apulia, Italy | FEM, DEM | Analyze the evolution of failure mechanisms in caves through numerical modeling. |
Perrotti, 2015 [50] | FEM | Use numerical simulations to understand how rock degradation and stress redistribution can lead to cave collapse. | ||
Geniş, 2015 [28] | Zonguldak, Turkey | FEM | Develop numerical models using geotechnical parameters of caves obtained from laboratory tests and empirical equations. | |
Alemdag, 2019 [51] | Gümüşhane, Turkey | Use numerical models with deformation vectors to define boundaries where cave collapses are inevitable. | ||
Lava caves | Bastidas, 2022 [29] | Galápagos, Ecuador | FDM, BEM | Analyze the stability of the cave using numerical models that incorporate geometry, induced stress, and the Hoek-Brown strength criterion. |
Iron caves | Brandi, 2019 [5] | Carajás, Brazil | FEM | Compare deformation scenarios before and after the formation of the cave. |
Others | Thote, 2016 [7] | Not applicable | FEM | Analyze the changes in the stress regime of caves with different shapes in an elastoplastic rock mass and their impact on stability. |
Score | 100–81 | 80–61 | 60–41 | 40–21 | <20 |
Category | I | II | III | IV | V |
Description | Very Good | Good | Fair | Poor | Very Poor |
Susceptibility to Structural Instability | Very Low | Low | Moderate | High | Very High |
---|---|---|---|---|---|
Category | CGI > 80 | 60 < CGI < 80 | 40 < CGI < 60 | 20 < CGI < 40 | CGI < 20 |
Roof Shape | Arch | Planar | Inverted Arch |
---|---|---|---|
Shape | |||
Description | Best class | Regular class | Worst class |
Natural Risk Index | Very High | High | Medium | Low |
---|---|---|---|---|
Safety Factor | SF < 0.50 | 0.50 < SF < 0.80 | 0.80 < SF < 1.20 | SF > 1.20 |
Parameters * | Geomechanical Station 1 | Geomechanical Station 2 | Geomechanical Station 3 | ||||
---|---|---|---|---|---|---|---|
Value | Score | Value | Score | Value | Score | ||
RMR 1 | UCS | 42 MPa | 4 | 42 MPa | 4 | 42 MPa | 4 |
RMR 2 | RQD | 80% | 15 | 95% | 20 | 80% | 15 |
RMR 3 | Spacing | 0.2 m | 9 | 0.4 m | 10 | 0.2 m | 9 |
RMR 4 | Continuity | 10–20 m | 1 | 10–20 m | 1 | >20 m | 0 |
Opening | >5 mm | 0 | >5 mm | 0 | >5 mm | 0 | |
Roughness | Very rough | 6 | Very rough | 6 | Very rough | 6 | |
Alteration | Grade II–III | 4 | Grade II | 5 | Grade I–II | 5 | |
Filling | Silt | 0 | Hard fill | 2 | No fill | 6 | |
RMR 5 | Water | Slightly wet | 10 | Slightly wet | 10 | Dry | 15 |
RMRb (1989) | 49 | 58 | 60 | ||||
Class | III–Regular | III–Regular | III–Regular |
Parameters | Geomechanical Station 1 | Geomechanical Station 2 | Geomechanical Station 3 | |||
---|---|---|---|---|---|---|
Value | Score | Value | Score | Value | Score | |
RQD | 80% | 80 | 95% | 95 | 80% | 80 |
3 families | 9 | 4 families | 15 | 3 families | 9 | |
Wavy rough | 3 | Wavy rough | 3 | Wavy rough | 3 | |
Clayey fill | 4 | Slightly altered | 2 | Slightly altered | 2 | |
Slightly wet | 1 | Slightly wet | 1 | Dry | 1 | |
Low stresses | 2.5 | Span > overburden | 5 | Span > overburden | 5 | |
Q index | 2.7 | 1.9 | 2.7 | |||
Actual Span | 12 m | 16 m | 16 m | |||
ESR | 0.8 | 0.8 | 0.8 | |||
Span/ESR | 15 m | 20 m | 20 m |
Parameters | Geomechanical Station 1 | Geomechanical Station 2 | Geomechanical Station 3 | |
---|---|---|---|---|
RMR | RMR Bieniawski | 49 | 58 | 60 |
Description | Class III—Regular | Class III—Regular | Class III—Regular | |
CGI Weighting | 39 | 39 | 39 | |
HR | Hydraulic Radius | 1.60 | 1.84 | 2.04 |
Description | Regular | Large | Large | |
CGI Weighting | 15 | 0 | 0 | |
CS | Roof Shape | |||
Description | Arch | Arch | Arch | |
CGI Weighting | 10 | 10 | 10 | |
CT | Roof Thickness | 8 m | 5 m | 4 m |
Description | Regular | Regular | Regular | |
CGI Weighting | 5 | 3 | 3 | |
CGI Index | 69 | 53 | 53 | |
Structural Instability Susceptibility | Low | Moderate | Moderate |
Geomechanical Station | * Parameters of the Mining Scaled Span Method | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (tn/m3) | (m) | (m) | (%) | |||||||
GS-1 | 12 | 2.75 | 1 | 8 | 12 | 0 | 2.91 | 2.7 | 5.07 | 2.01 | 3.48 |
GS-2 | 16 | 2.75 | 1 | 5 | 16 | 0 | 5.01 | 1.9 | 4.36 | 0.87 | 58.23 |
GS-3 | 16 | 2.75 | 1 | 4 | 16 | 0 | 5.01 | 2.7 | 5.07 | 1.01 | 35.72 |
Geomechanical Station | * Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
(m) | (MN/m3) | (m) | (MPa) | GSI | mi | D | MR | EM (MPa) | ||
GS-1 | 12 | 0.027 | 8 | 42 | 55 | 25 | 0 | 350 | 6001 | 0.2 |
GS-2 | 16 | 0.027 | 5 | 42 | 50 | 25 | 0 | 350 | 4516 | 0.2 |
GS-3 | 16 | 0.027 | 4 | 42 | 60 | 25 | 0 | 350 | 7644 | 0.2 |
Geomechanical Station 1 | |
Total Displacements | Strength Factor |
Geomechanical Station 2 | |
Total Displacements | Strength Factor |
Geomechanical Station 3 | |
Total Displacements | Strength Factor |
Geomechanical Station | Empirical Methods | Numerical Method | Field Inspection | |||
---|---|---|---|---|---|---|
RMR | Q Index | CGI | Scaled Span | BEM | ||
Geomechanical Station 1 | Transition | Transition | Stable | Stable | Stable | Stable |
Geomechanical Station 2 | Transition | Transition | Transition | Unstable | Stable | Stable |
Geomechanical Station 3 | Transition | Transition | Transition | Transition | Stable | Stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, R.; Garcés, D.; Benrabah, A.; Al-Malabeh, A.; Jordá-Bordehore, R.; Jordá-Bordehore, L. State of the Art on Empirical and Numerical Methods for Cave Stability Analysis: Application in Al-Badia Lava Tube, Harrat Al-Shaam, Jordan. Appl. Mech. 2025, 6, 56. https://doi.org/10.3390/applmech6030056
Herrera R, Garcés D, Benrabah A, Al-Malabeh A, Jordá-Bordehore R, Jordá-Bordehore L. State of the Art on Empirical and Numerical Methods for Cave Stability Analysis: Application in Al-Badia Lava Tube, Harrat Al-Shaam, Jordan. Applied Mechanics. 2025; 6(3):56. https://doi.org/10.3390/applmech6030056
Chicago/Turabian StyleHerrera, Ronald, Daniel Garcés, Abdelmadjid Benrabah, Ahmad Al-Malabeh, Rafael Jordá-Bordehore, and Luis Jordá-Bordehore. 2025. "State of the Art on Empirical and Numerical Methods for Cave Stability Analysis: Application in Al-Badia Lava Tube, Harrat Al-Shaam, Jordan" Applied Mechanics 6, no. 3: 56. https://doi.org/10.3390/applmech6030056
APA StyleHerrera, R., Garcés, D., Benrabah, A., Al-Malabeh, A., Jordá-Bordehore, R., & Jordá-Bordehore, L. (2025). State of the Art on Empirical and Numerical Methods for Cave Stability Analysis: Application in Al-Badia Lava Tube, Harrat Al-Shaam, Jordan. Applied Mechanics, 6(3), 56. https://doi.org/10.3390/applmech6030056