Precocious Puberty in Boys with NR0B1 Variants
Highlights
- Although NR0B1 variants typically cause X-linked adrenal hypoplasia congenita, some cases are associated with precocious puberty (PP), with rare instances in which PP precedes adrenal insufficiency.
- Three underlying mechanisms (ACTH-dependent, gonadotropin-dependent, and ACTH- and gonadotropin-independent) have been proposed for PP associated with NR0B1 variants.
- The responsiveness to treatment of PP varies among cases, potentially depending on the underlying mechanisms.
- NR0B1 variants should be considered as a potential cause of PP, even in cases without clinical signs of adrenal insufficiency.
- Comprehensive endocrine evaluations are essential to determine the underlying pathophysiology in cases of PP associated with NR0B1 variants.
- Management strategies for PP should be tailored to the mechanisms contributing to the condition.
Abstract
:1. Introduction
2. NR0B1 and X-Linked Adrenal Hypoplasia Congenita (AHC)
3. Gonadal Functions of Boys with NR0B1 Variants
4. Clinical Manifestations of PP Cases with NR0B1 Variants
5. Proposed Mechanism of PP Associated with NR0B1 Variants
5.1. ACTH-Dependent Mechanism
5.2. Gonadotropin-Dependent Mechanism
5.3. Gonadotropin- and ACTH-Independent Mechanism
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Papathanasiou, A.; Hadjiathanasiou, C. Precocious Puberty. Pediatr. Endocrinol. Rev. 2006, 3 (Suppl. S1), 182–187. [Google Scholar]
- Carel, J.-C.; Léger, J. Clinical Practice. Precocious Puberty. N. Engl. J. Med. 2008, 358, 2366–2377. [Google Scholar] [CrossRef]
- Cassio, A.; Marescotti, G.; Aversa, T.; Salerno, M.; Tornese, G.; Stancampiano, M.; Tuli, G.; Faienza, M.F.; Cavarzere, P.; Fava, D.; et al. Physiopathology of Growth Processes and Puberty Study Group of the Italian Society for Pediatric Endocrinology and Diabetology. Central Precocious Puberty in Italian Boys: Data From a Large Nationwide Cohort. J. Clin. Endocrinol. Metab. 2024, 109, 2061–2070. [Google Scholar] [CrossRef]
- Macedo, D.B.; Silveira, L.F.G.; Bessa, D.S.; Brito, V.N.; Latronico, A.C. Sexual Precocity—Genetic Bases of Central Precocious Puberty and Autonomous Gonadal Activation. Endocr. Dev. 2016, 29, 50–71. [Google Scholar] [CrossRef]
- Moise-Silverman, J.; Silverman, L.A. A Review of the Genetics and Epigenetics of Central Precocious Puberty. Front. Endocrinol. 2022, 13, 1029137. [Google Scholar] [CrossRef]
- Tajima, T. Genetic Causes of Central Precocious Puberty. Clin. Pediatr. Endocrinol. 2022, 31, 101–109. [Google Scholar] [CrossRef]
- Ludbrook, L.M.; Harley, V.R. Sex Determination: A “window” of DAX1 Activity. Trends Endocrinol. Metab. 2004, 15, 116–121. [Google Scholar] [CrossRef]
- Suntharalingham, J.P.; Buonocore, F.; Duncan, A.J.; Achermann, J.C. DAX-1 (NR0B1) and Steroidogenic Factor-1 (SF-1, NR5A1) in Human Disease. Best. Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 607–619. [Google Scholar] [CrossRef]
- Hattori, A.; Fukami, M. Nuclear Receptor Gene Variants Underlying Disorders/Differences of Sex Development through Abnormal Testicular Development. Biomolecules 2023, 13, 691. [Google Scholar] [CrossRef]
- Veyt, N.; Van Buggenhout, G.; Devriendt, K.; Van Den Bogaert, K.; Brison, N. Expanding the Phenotype of Copy Number Variations Involving NR0B1 (DAX1). Eur. J. Hum. Genet. 2024, 32, 421–425. [Google Scholar] [CrossRef]
- Jadhav, U.; Harris, R.M.; Jameson, J.L. Hypogonadotropic Hypogonadism in Subjects with DAX1 Mutations. Mol. Cell Endocrinol. 2011, 346, 65–73. [Google Scholar] [CrossRef]
- Miclea, D.; Alkhzouz, C.; Bucerzan, S.; Grigorescu-Sido, P.; Popp, R.A.; Pascanu, I.M.; Cret, V.; Ghervan, C.; Blaga, L.; Zaharie, G. Molecular and Cytogenetic Analysis of Romanian Patients with Differences in Sex Development. Diagnostics 2021, 11, 2107. [Google Scholar] [CrossRef]
- Rohayem, J.; Alexander, E.C.; Heger, S.; Nordenström, A.; Howard, S.R. Mini-Puberty, Physiological and Disordered: Consequences, and Potential for Therapeutic Replacement. Endocr. Rev. 2024, 45, 460–492. [Google Scholar] [CrossRef]
- Kaiserman, K.B.; Nakamoto, J.M.; Geffner, M.E.; McCabe, E.R. Minipuberty of Infancy and Adolescent Pubertal Function in Adrenal Hypoplasia Congenita. J. Pediatr. 1998, 133, 300–302. [Google Scholar] [CrossRef]
- Peter, M.; Viemann, M.; Partsch, C.J.; Sippell, W.G. Congenital Adrenal Hypoplasia: Clinical Spectrum, Experience with Hormonal Diagnosis, and Report on New Point Mutations of the DAX-1 Gene. J. Clin. Endocrinol. Metab. 1998, 83, 2666–2674. [Google Scholar] [CrossRef]
- Takahashi, T.; Shoji, Y.; Shoji, Y.; Haraguchi, N.; Takahashi, I.; Takada, G. Active Hypothalamic-Pituitary-Gonadal Axis in an Infant with X-Linked Adrenal Hypoplasia Congenita. J. Pediatr. 1997, 130, 485–488. [Google Scholar] [CrossRef]
- Takahashi, I.; Takahashi, T.; Shoji, Y.; Takada, G. Prolonged Activation of the Hypothalamus-Pituitary-Gonadal Axis in a Child with X-Linked Adrenal Hypoplasia Congenita. Clin. Endocrinol. 2000, 53, 127–129. [Google Scholar] [CrossRef]
- Katsumata, N.; Tanae, A.; Shinagawa, T.; Nishimura, A.; Horikawa, R.; Tanaka, T. Precocious Puberty in Patient with Adrenal Hypoplasia Congenita (Abstract P02-512). In Proceedings of the 79th Annual Meeting of the Endocrine Society, Minneapolis, MI, USA, 11–14 June 1997. [Google Scholar]
- Domenice, S.; Latronico, A.C.; Brito, V.N.; Arnhold, I.J.; Kok, F.; Mendonca, B.B. Adrenocorticotropin-Dependent Precocious Puberty of Testicular Origin in a Boy with X-Linked Adrenal Hypoplasia Congenita Due to a Novel Mutation in the DAX1 Gene. J. Clin. Endocrinol. Metab. 2001, 86, 4068–4071. [Google Scholar] [CrossRef]
- Yeste, D.; González-Niño, C.; Pérez de Nanclares, G.; Pérez-Nanclares, G.; Audi, L.; Castaño, L.; Carrascosa, A. ACTH-Dependent Precocious Pseudopuberty in an Infant with DAX1 Gene Mutation. Eur. J. Pediatr. 2009, 168, 65–69. [Google Scholar] [CrossRef]
- Loke, K.-Y.; Poh, L.K.-S.; Lee, W.W.-R.; Lai, P.-S. A Case of X-Linked Adrenal Hypoplasia Congenita, Central Precocious Puberty and Absence of the DAX-1 Gene: Implications for Pubertal Regulation. Horm. Res. 2009, 71, 298–304. [Google Scholar] [CrossRef]
- Landau, Z.; Hanukoglu, A.; Sack, J.; Goldstein, N.; Weintrob, N.; Eliakim, A.; Gillis, D.; Sagi, M.; Shomrat, R.; Kosinovsky, E.B.; et al. Clinical and Genetic Heterogeneity of Congenital Adrenal Hypoplasia Due to NR0B1 Gene Mutations. Clin. Endocrinol. 2010, 72, 448–454. [Google Scholar] [CrossRef]
- Darcan, S.; Goksen, D.; Ozen, S.; Ozkinay, F.; Durmaz, B.; Lalli, E. Gonadotropin-Dependent Precocious Puberty in a Patient with X-Linked Adrenal Hypoplasia Congenita Caused by a Novel DAX-1 Mutation. Horm. Res. Paediatr. 2011, 75, 153–156. [Google Scholar] [CrossRef]
- Koh, J.W.; Kang, S.Y.; Kim, G.H.; Yoo, H.W.; Yu, J. Central Precocious Puberty in a Patient with X-Linked Adrenal Hypoplasia Congenita and Xp21 Contiguous Gene Deletion Syndrome. Ann. Pediatr. Endocrinol. Metab. 2013, 18, 90–94. [Google Scholar] [CrossRef]
- Durmaz, E.; Turkkahraman, D.; Berdeli, A.; Atan, M.; Karaguzel, G.; Akcurin, S.; Bircan, I. A Novel DAX-1 Mutation Presented with Precocious Puberty and Hypogonadotropic Hypogonadism in Different Members of a Large Pedigree. J. Pediatr. Endocrinol. Metab. 2013, 26, 551–555. [Google Scholar] [CrossRef]
- Shima, H.; Yatsuga, S.; Nakamura, A.; Sano, S.; Sasaki, T.; Katsumata, N.; Suzuki, E.; Hata, K.; Nakabayashi, K.; Momozawa, Y.; et al. NR0B1 Frameshift Mutation in a Boy with Idiopathic Central Precocious Puberty. Sex. Dev. 2016, 10, 205–209. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, J.; Zhang, H.; Jiang, Y.; Qin, G. A Novel DAX-1 Mutation in Two Male Siblings Presenting with Precocious Puberty and Late-Onset Hypogonadotropic Hypogonadism. J. Pediatr. Endocrinol. Metab. 2017, 30, 349–353. [Google Scholar] [CrossRef]
- Suthiworachai, C.; Tammachote, R.; Srichomthong, C.; Ittiwut, R.; Suphapeetiporn, K.; Sahakitrungruang, T.; Shotelersuk, V. Identification and Functional Analysis of Six DAX1 Mutations in Patients With X-Linked Adrenal Hypoplasia Congenita. J. Endocr. Soc. 2019, 3, 171–180. [Google Scholar] [CrossRef]
- Guzzetti, C.; Bizzarri, C.; Pisaneschi, E.; Mucciolo, M.; Bellacchio, E.; Ibba, A.; Casula, L.; Novelli, A.; Loche, S.; Cappa, M. Next-Generation Sequencing Identifies Different Genetic Defects in 2 Patients with Primary Adrenal Insufficiency and Gonadotropin-Independent Precocious Puberty. Horm. Res. Paediatr. 2018, 90, 203–211. [Google Scholar] [CrossRef]
- Nagel, S.A.; Hartmann, M.F.; Riepe, F.G.; Wudy, S.A.; Wabitsch, M. Gonadotropin- and Adrenocorticotropic Hormone-Independent Precocious Puberty of Gonadal Origin in a Patient with Adrenal Hypoplasia Congenita Due to DAX1 Gene Mutation—A Case Report and Review of the Literature: Implications for the Pathomechanism. Horm. Res. Paediatr. 2019, 91, 336–345. [Google Scholar] [CrossRef]
- Gupta, S.; Joshi, K.; Zaidi, G.; Sarangi, A.N.; Mandal, K.; Bhavani, N.; Pavithran, P.V.; Pillai, M.G.; Singh, S.K.; Godbole, T.; et al. Novel Mutations and Spectrum of the Disease of NR0B1 (DAX1)-Related Adrenal Insufficiency in Indian Children. J. Pediatr. Endocrinol. Metab. 2019, 32, 863–869. [Google Scholar] [CrossRef]
- Yang, H.; Wei, H.; Shen, L.; Kumar, C.S.; Chen, Q.; Chen, Y.; Kumar, S.A. A Novel Stop-Loss DAX1 Variant Affecting Its Protein-Interaction with SF1 Precedes the Adrenal Hypoplasia Congenital with Rare Spontaneous Precocious Puberty and Elevated Hypothalamic-Pituitary-Gonadal/Adrenal Axis Responses. Eur. J. Med. Genet. 2021, 64, 104192. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Sharma, R.; Jain, V. Adrenal Hypoplasia Congenita-Hypogonadotropic Hypogonadism Syndrome Due to NR0B1 Gene Mutations. Indian. J. Pediatr. 2022, 89, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, Q.; Guo, S.; Li, Y.; Ma, H.; Zheng, R.; Du, M. Pleomorphism of the HPG Axis with NR0B1 Gene Mutation—A Case Report of Longitudinal Follow-up of a Proband with Central Precocious Puberty. J. Pediatr. Endocrinol. Metab. 2022, 35, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Tabarin, A.; Achermann, J.C.; Recan, D.; Bex, V.; Bertagna, X.; Christin-Maitre, S.; Ito, M.; Jameson, J.L.; Bouchard, P. A Novel Mutation in DAX1 Causes Delayed-Onset Adrenal Insufficiency and Incomplete Hypogonadotropic Hypogonadism. J. Clin. Investig. 2000, 105, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, G.; Ozisik, G.; Achermann, J.C.; Romoli, R.; Borretta, G.; Persani, L.; Spada, A.; Jameson, J.L.; Beck-Peccoz, P. Hypogonadotropic Hypogonadism as a Presenting Feature of Late-Onset X-Linked Adrenal Hypoplasia Congenita. J. Clin. Endocrinol. Metab. 2002, 87, 44–48. [Google Scholar] [CrossRef]
- Seminara, S.B.; Achermann, J.C.; Genel, M.; Jameson, J.L.; Crowley, W.F. X-Linked Adrenal Hypoplasia Congenita: A Mutation in DAX1 Expands the Phenotypic Spectrum in Males and Females. J. Clin. Endocrinol. Metab. 1999, 84, 4501–4509. [Google Scholar] [CrossRef]
- Ozisik, G.; Mantovani, G.; Achermann, J.C.; Persani, L.; Spada, A.; Weiss, J.; Beck-Peccoz, P.; Jameson, J.L. An Alternate Translation Initiation Site Circumvents an Amino-Terminal DAX1 Nonsense Mutation Leading to a Mild Form of X-Linked Adrenal Hypoplasia Congenita. J. Clin. Endocrinol. Metab. 2003, 88, 417–423. [Google Scholar] [CrossRef]
- Teilmann, G.; Pedersen, C.B.; Jensen, T.K.; Skakkebaek, N.E.; Juul, A. Prevalence and Incidence of Precocious Pubertal Development in Denmark: An Epidemiologic Study Based on National Registries. Pediatrics 2005, 116, 1323–1328. [Google Scholar] [CrossRef]
- Bessa, D.S.; Macedo, D.B.; Brito, V.N.; França, M.M.; Montenegro, L.R.; Cunha-Silva, M.; Silveira, L.G.; Hummel, T.; Bergadá, I.; Braslavsky, D.; et al. High Frequency of MKRN3 Mutations in Male Central Precocious Puberty Previously Classified as Idiopathic. Neuroendocrinology 2017, 105, 17–25. [Google Scholar] [CrossRef]
- Madsen, A.; Oehme, N.B.; Roelants, M.; Bruserud, I.S.; Eide, G.E.; Viste, K.; Bjerknes, R.; Almås, B.; Rosendahl, K.; Sagen, J.V.; et al. Testicular Ultrasound to Stratify Hormone References in a Cross-Sectional Norwegian Study of Male Puberty. J. Clin. Endocrinol. Metab. 2020, 105, dgz094. [Google Scholar] [CrossRef]
- Teoli, J.; Mezzarobba, V.; Renault, L.; Mallet, D.; Lejeune, H.; Chatelain, P.; Tixier, F.; Nicolino, M.; Peretti, N.; Giscard D’estaing, S.; et al. Effect of Recombinant Gonadotropin on Testicular Function and Testicular Sperm Extraction in Five Cases of NR0B1 (DAX1) Pathogenic Variants. Front. Endocrinol. 2022, 13, 855082. [Google Scholar] [CrossRef] [PubMed]
- Argente, J.; Ozisik, G.; Pozo, J.; Teresa Muñoz, M.; Soriano-Guillén, L.; Larry Jameson, J. A Novel Single Base Deletion at Codon 434 (1301delT) of the DAX1 Gene Associated with Prepubertal Testis Enlargement. Mol. Genet. Metab. 2003, 78, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Paterson, W.F.; Lin, L.; Adlard, P.; Duncan, P.; Tolmie, J.; Achermann, J.C.; Donaldson, M.D.C. A Novel Missense Mutation in DAX-1 with an Unusual Presentation of X-Linked Adrenal Hypoplasia Congenita. Horm. Res. 2007, 68, 32–37. [Google Scholar] [CrossRef]
- Wei, X.; Sasaki, M.; Huang, H.; Dawson, V.L.; Dawson, T.M. The Orphan Nuclear Receptor, Steroidogenic Factor 1, Regulates Neuronal Nitric Oxide Synthase Gene Expression in Pituitary Gonadotropes. Mol. Endocrinol. 2002, 16, 2828–2839. [Google Scholar] [CrossRef] [PubMed]
- Chachlaki, K.; Garthwaite, J.; Prevot, V. The Gentle Art of Saying NO: How Nitric Oxide Gets Things Done in the Hypothalamus. Nat. Rev. Endocrinol. 2017, 13, 521–535. [Google Scholar] [CrossRef]
- Lalli, E.; Melner, M.H.; Stocco, D.M.; Sassone-Corsi, P. DAX-1 Blocks Steroid Production at Multiple Levels. Endocrinology 1998, 139, 4237–4243. [Google Scholar] [CrossRef]
- Hanley, N.A.; Rainey, W.E.; Wilson, D.I.; Ball, S.G.; Parker, K.L. Expression Profiles of SF-1, DAX1, and CYP17 in the Human Fetal Adrenal Gland: Potential Interactions in Gene Regulation. Mol. Endocrinol. 2001, 15, 57–68. [Google Scholar] [CrossRef]
- Kumar, S.; Kim, H.J.; Lee, C.-H.; Choi, H.-S.; Lee, K. Leydig Cell-Specific DAX1-Deleted Mice Has Higher Testosterone Level in the Testis During Pubertal Development. Reprod. Sci. 2022, 29, 955–962. [Google Scholar] [CrossRef]
Case | Age at Onset | Physical Findings | Endocrinological Data (Age) | Putative Mechanism a | Variant | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
AI | PP | Gonadotropins | Testosterone | ACTH | |||||
1 | 3.2 y | 0.5 y | PG, TE, PH, frequent erection, hyperactivity | Prepubertal (2.3 y) | Elevated (2.3 y) | Elevated (2.3 y) | (1) | p.(Ser144Argfs*9) | [19] |
2 | 0.1 y | 0.8 y | PG, PH | Prepubertal (0.8 y) | Elevated (0.8 y) | Not elevated (0.8 y) | (1) | p.(Gly122Valfs*142) | [20] |
3 | <0.1 y | 6 y | PG, TE, PH | Pubertal (6 y) | Elevated (6 y) | NA | (2) | Deletion | [21] |
4-A2 | 6 d | 6 y | PG | NA | NA | NA | Unknown | Deletion | [22] |
4-B1 | 0.1 y | 0.5 y | PG, TE | Borderline (1.5 y) | Elevated (0.8 y) | Elevated (1.5 y) | Unknown | Deletion | [22] |
4-B3 | <0.1 y | 0.8 y | PG, TE | NA | Elevated (12 d) | Elevated (12 d) | Unknown | Deletion | [22] |
4-C1 | 0.1 y | 2.5 y | PG, TE | Prepubertal (9.8 y) | NA | NA | Unknown | p.(Ser153*) | [22] |
4-D1 | 0.2 y | 1.5 y | PG, TE | Borderline (1.0 y) | Elevated (1.0 y) | NA | Unknown | c.183-1G>C | [22] |
5 | 0.1 y | 0.8 y | PG, PH, frequent erection, uneasy | Pubertal (0.8 y) | Elevated (0.1 y) | NA | (2) | p.(Gln155*) | [23] |
6 | 0.2 y | 3.8 y | TE, PH | Pubertal (3.8 y) | Elevated (1.2 y) | Elevated (2.1 y) | (2) | Deletion | [24] |
7 | 9 d | 0.8 y | PG, TE, PH | Pubertal (0.9 y) | Elevated (0.9 y) | Not elevated (0.8 y) | (2) | p.(Gln208*) | [25] |
8 | − | 4.7 y | TE, PH, LGA, BA | Pubertal (4.7 y) | Elevated (4.7 y) | Not elevated (4.7 y) | (2), (3) | p.(Glu3fsAla*16) | [26] |
9 | 0.8 y | 0.8 y | PG, TE, PH, frequent erection, hyperactivity | Prepubertal (13 y) | Elevated (0.8 y) | Elevated (0.8 y) | (1) or (3) | p.(Tyr64*) | [27] |
10 | 0.1 y | 0.8 y | PG, acne | Prepubertal (0.8 y) | Elevated (0.8 y) | NA | (1) | p.(Gly122Valfs*142) | [28] |
11 | 5.8 y | 1.9 y | PG, TE | Prepubertal (3 y) | Elevated (3 y) | Elevated (6 y) | (1) or (3) | p.(Phe364Cys) | [29] |
12 | 0.1 y | 4.5 y | PG, PH | Borderline (4.6 y) | Elevated (4.5 y) | Not elevated (4.5 y) | (3) | Nonsense variant | [30] |
13 | 16 d | 0.6 y | PG | Prepubertal (0.8 y) | Elevated (0.8 y) | Elevated (0.8 y) | (1) | p.(Trp291*) | [31,34] |
14 | 5.9 y | 5.9 y | PG, PH | Pubertal (5.9 y) | Elevated (5.9 y) | Elevated (5.9 y) | (2) | p.(*471Glnext*18) | [32] |
15 | 3 y | 3 y | PG, TE, PH | Prepubertal (3 y) | Elevated (3 y) | Elevated (3 y) | (1) or (3) | Deletion | [33] |
16 | 0.9 y | 0.3 y | PG, TE, PH, Frequent erection | Pubertal (0.9 y) | Elevated (0.9 y) | Elevated (0.9 y) | (2) | p.(Gln305*) | [34] |
Case | Age at Onset | Testicular Volume mL (Age) | Testosterone nmol/L (Age) | Reference Ranges Based on Testicular Sizes a | Putative Mechanism b | Ref. |
---|---|---|---|---|---|---|
2 | 0.8 y | 2 (0.8 y) | 8.1 (0.8 y) | 0.02–0.26 | (1) | [20] |
3 | 6 y | 4 (6 y) | 21.5 (6 y) | 0.10–3.87 | (2) | [21] |
7 | 0.8 y | 3–4 (0.8 y) | 18.4 (0.9 y) | 0.10–3.87 | (2) | [25] |
8 | 4.7 y | 6–8 (4.7 y) | 4.9 (4.7 y) | 0.89–16.7 | (2), (3) | [26] |
9 | 0.8 y | 5 (0.8 y) | 45.7 (0.8 y) | 0.21–6.07 | (1) or (3) | [27] |
10 | 0.8 y | 3 (0.8 y) | 11.1 (0.8 y) | 0.04–2.01 | (1) | [28] |
12 | 4.5 y | 2.5 (4.5 y) | 1.7 (4.5 y) | 0.04–2.01 | (3) | [30] |
13 | 0.6 y | 2 (0.6 y) | 19.1 (0.8 y) | 0.02–0.26 | (1) | [31] |
14 | 5.9 y | 3 (5.9 y) | 1.5 (5.9 y) | 0.04–2.01 | (2) | [32] |
15 | 3 y | 5 (3 y) | 1.4 (3 y) | 0.21–6.07 | (1) or (3) | [33] |
16 | 0.3 y | 2.5 (0.9 y) | 13.4 (0.9 y) | 0.04–2.01 | (2) | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hattori, A.; Fukami, M. Precocious Puberty in Boys with NR0B1 Variants. Endocrines 2024, 5, 529-537. https://doi.org/10.3390/endocrines5040038
Hattori A, Fukami M. Precocious Puberty in Boys with NR0B1 Variants. Endocrines. 2024; 5(4):529-537. https://doi.org/10.3390/endocrines5040038
Chicago/Turabian StyleHattori, Atsushi, and Maki Fukami. 2024. "Precocious Puberty in Boys with NR0B1 Variants" Endocrines 5, no. 4: 529-537. https://doi.org/10.3390/endocrines5040038
APA StyleHattori, A., & Fukami, M. (2024). Precocious Puberty in Boys with NR0B1 Variants. Endocrines, 5(4), 529-537. https://doi.org/10.3390/endocrines5040038