Ultrasound Assessment and Sexual Dimorphism of Thyroid Nodules: Bringing Gender Medicine to Clinical Practice
Abstract
:1. Introduction and Objectives
2. Materials and Methods
- Structure;
- Echogenicity;
- Margins;
- Punctuated endonodal hyperechoic spots or “foci” (PEF);
- Taller-than-wide nodular presentation in the longitudinal axis;
- Nodular vascularization pattern;
- Stiffness;
- Subcapsular extension;
- Side;
- Position;
- Nodular volume.
3. Results
3.1. Sample Demographic Characteristics
3.2. Categorical Ultrasound Element Assessment
3.3. Nodular Volume and AP/CC Ratio Assessment
3.4. Sonographic Risk Classification
- (1)
- Low-risk class (expected risk of malignancy 1%): cystic or spongiform structure;
- (2)
- Medium-risk class (expected risk of malignancy of 5–15%): mixed or solid structure, lack of strongly hypoechoic echogenicity, lack of PEF with microcalcifications, regular margins, missing taller-than-wide shape, lack of strongly intranodal vascular pattern, elastic or intermediate/in-band stiffness;
- (3)
- High-risk class (expected risk of malignancy of 50–90%): mixed or solid structure, strongly hypoechoic echogenicity, PEF with microcalcifications, irregular margins, taller-tan-wide shape, strongly intranodal vascular pattern, rigid stiffness.
3.5. Cytological Category Matches
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gender and Health. Available online: https://www.who.int/health-topics/gender (accessed on 16 December 2024).
- Lauretta, R.; Sansone, M.; Romanelli, F.; Appetecchia, M. Gender in endocrinological diseases: Biological and clinical differences. Ital. J. Gender-Specif. Med. 2017, 3, 109–116. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Suteau, V.; Munier, M.; Briet, C.; Rodien, P. Sex bias in differentiated thyroid cancer. Int. J. Mol. Sci. 2021, 22, 12992. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Trynda, J.; Williams, C.; Vold, J.A.; Nguyen, J.H.; Harnois, D.M.; Bagaria, S.P.; McLaughlin, S.A.; Li, Z. Sexual dimorphism in the incidence of human cancers. BMC Cancer 2019, 19, 684. [Google Scholar] [CrossRef] [PubMed]
- Remer, L.F.; Lee, C.I.; Picado, O.; Lew, J.I. Sex Differences in Papillary Thyroid Cancer. J. Surg. Res. 2022, 271, 163–170. [Google Scholar] [CrossRef]
- Shobab, L.; Burman, K.D.; Wartofsky, L. Sex differences in differentiated thyroid cancer. Thyroid 2022, 32, 224–235. [Google Scholar] [CrossRef] [PubMed]
- LeClair, K.; Bell, K.J.L.; Furuya-Kanamori, L.; Doi, S.A.; Francis, D.O.; Davies, L. Evaluation of gender inequity in thyroid cancer diagnosis: Differences by sex in US thyroid cancer incidence compared with a meta-analysis of subclinical thyroid cancer rates at autopsy. JAMA Intern. Med. 2021, 181, 1351–1358. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.; Lim, D.J.; Bae, J.S.; Kim, J.S. Male sex is not an independent risk factor for recurrence of differentiated thyroid cancer: A propensity score-matching study. Sci. Rep. 2021, 11, 14908. [Google Scholar] [CrossRef]
- Hirsch, D.; Levy, S.; Tsvetov, G.; Weinstein, R.; Lifshitz, A.; Singer, J.; Shraga-Slutzky, I.; Grozinski-Glasberg, S.; Shimon, I.; Benbassat, C. Impact of pregnancy on outcome and prognosis of survivors of papillary thyroid cancer. Thyroid 2010, 20, 1179–1185. [Google Scholar] [CrossRef]
- Moosa, M.; Mazzaferri, E.L. Outcome of differentiated thyroid cancer diagnosed in pregnant women. J. Clin. Endocrinol. Metab. 1997, 82, 2862–2866. [Google Scholar] [CrossRef]
- Vini, L.; Hyer, S.; Pratt, B.; Harmer, C. Management of differentiated thyroid cancer diagnosed during pregnancy. Eur. J. Endocrinol. 1999, 140, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Fiore, E.; Rago, T.; Provenzale, M.A.; Scutari, M.; Ugolini, C.; Basolo, F.; Di Coscio, G.; Berti, P.; Grasso, L.; Elisei, R.; et al. Lower levels of TSH are associated with a lower risk of papillary thyroid cancer in patients with thyroid nodular disease: Thyroid autonomy may play a protective role. Endocr. Relat. Cancer 2009, 16, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Boi, F.; Minerba, L.; Lai, M.L.; Marziani, B.; Figus, B.; Spanu, F.; Borghero, A.; Mariotti, S. Both thyroid autoimmunity and increased serum TSH are independent risk factors for malignancy in patients with thyroid nodules. J. Endocrinol. Investig. 2013, 36, 313–320. [Google Scholar] [CrossRef]
- Yildirim Simsir, I.; Cetinkalp, S.; Kabalak, T. Review of factors contributing to nodular goiter and thyroid carcinoma. Med. Princ. Pract. 2020, 29, 1–5. [Google Scholar] [CrossRef]
- Altas, A.; Kuzu, F.; Arpaci, D.; Unal, M.; Can, M.; Barut, F.; Kokturk, F.; Ilikhan, S.U.; Bayraktaroglu, T. The clinical values of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 levels in blood and thyroid nodules. Int. J. Endocrinol. 2017, 2017, 3145234. [Google Scholar] [CrossRef]
- Liu, Y.J.; Qiang, W.; Shi, J.; Lv, S.Q.; Ji, M.J.; Shi, B.Y. Expression and significance of IGF-1 and IGF-1R in thyroid nodules. Endocrine 2013, 44, 158–164. [Google Scholar] [CrossRef]
- Weller, A.; Sharif, B.; Qarib, M.H.; St Leger, D.; De Silva, H.S.; Lingam, R.K. British thyroid association 2014 classification ultrasound scoring of thyroid nodules in predicting malignancy: Diagnostic performance and inter-observer agreement. Ultrasound 2020, 28, 4–13. [Google Scholar] [CrossRef]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR thyroid imaging, reporting and data system (TI-RADS): White paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef]
- Shinkov, A.; Borissova, A.M.; Vlahov, J.; Dakovska, L.; Blajeva, E. Male gender differences in the thyroid ultrasound features, thyroid peroxidase antibodies and thyroid hormone levels: A large population-based study. J. Endocrinol. Investig. 2014, 37, 269–276. [Google Scholar] [CrossRef]
- Le, Y.; Geng, C.; Gao, X.; Zhang, P. The risk of thyroid cancer and sex differences in Hashimoto’s thyroiditis, a meta-analysis. BMC Endocr. Disord. 2024, 24, 151. [Google Scholar] [CrossRef]
- Grani, G.; Calvanese, A.; Carbotta, G.; D’Alessandri, M.; Nesca, A.; Bianchini, M.; Del Sordo, M.; Vitale, M.; Fumarola, A. Thyroid autoimmunity and risk of malignancy in thyroid nodules submitted to fine-needle aspiration cytology. Head. Neck 2015, 37, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Rotondi, M.; Groppelli, G.; Croce, L.; Latrofa, F.; Ancona, G.; Coperchini, F.; Pasquali, D.; Cappelli, C.; Fugazza, A.; Guazzoni, V.; et al. Patients with chronic autoimmune thyroiditis are not at higher risk for developing clinically overt thyroid cancer: A 10-year follow-up study. Eur. J. Endocrinol. 2020, 183, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, P.; Montana Montana, C.; Cozzani, F.; Rossini, M.; Loderer, T.; Dall’Aglio, E.; Cataldo, S.; Marina, M.; Graziano, C. Is there a correlation between thyroiditis and thyroid cancer? Endocrine 2019, 66, 538–541. [Google Scholar] [CrossRef] [PubMed]
- Nardi, F.; Basolo, F.; Crescenzi, A.; Fadda, G.; Frasoldati, A.; Palombini, L.; Orlandi, F.; Papini, E.; Zini, M.; Pontecorvi, A.; et al. Italian consensus for the classification and reporting of thyroid cytology. J. Endocrinol. Investig. 2014, 37, 593–599. [Google Scholar] [CrossRef]
- Gharib, H.; Papini, E.; Garber, J.R.; Duick, D.S.; Harrell, R.M.; Hegedus, L.; Paschke, R.; Valcavi, R.; Vitti, P. AACE, ACE and AME medical guidelines for clinical practice for the diagnosis and management of thyroid nodules—2016 update appendix. Endocr. Pract. 2016, 22, 1–60. [Google Scholar] [CrossRef]
- R Foundation. The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 16 December 2024).
- Pagano, M.; Gauvreau, K.; Mattie, H. Principles of Biostatistics; Chapman & Hall/CRC: New York, NY, USA, 2022. [Google Scholar]
- Fernandes-Taylor, S.; Bowles, E.J.A.; Venkatesh, M.; Doud, R.; Krebsbach, C.; Arroyo, N.; Hanlon, B.; Chen, A.Y.; Davies, L.; Francis, D.O. Differential ultrasound rates mirror sex disparities in thyroid cancer. Thyroid 2024, 34, 1531–1539. [Google Scholar] [CrossRef]
- Fleury, Y.; Van Melle, G.; Woringer, V.; Gaillard, R.C.; Portmann, L. Sex-dependent variations and timing of thyroid growth during puberty. J. Clin. Endocrinol. Metab. 2001, 86, 750–754. [Google Scholar] [CrossRef]
- Jasim, S.; Baranski, T.J.; Teefey, S.A.; Middleton, W.D. Investigating the effect of thyroid nodule location on the risk of thyroid cancer. Thyroid 2020, 30, 401–407. [Google Scholar] [CrossRef]
- Fortunato, R.S.; Ferreira, A.C.F.; Hecht, F.; Dupuy, C.; Carvalho, D.P. Sexual dimorphism and thyroid dysfunction: A matter of oxidative stress? J. Endocrinol. 2014, 221, R31–R40. [Google Scholar] [CrossRef]
Variable | Index | Men | Women (All) | Women (Age < 46) | Women (Age > 45) |
---|---|---|---|---|---|
NV (cm3) | Mean (μ) | 108 | 62.78 | 61.58 | 63.22 |
Standard deviation (σ) | 157.45 | 82.79 | 78.06 | 87.14 | |
Median (M) | 49.56 | 31.83 | 35.21 | 31.2 | |
Interquartile range (IRQ) | 118.37 | 69.01 | 75.04 | 66 | |
AP/CC | Mean (μ) | 0.69 | 0.65 | 0.64 | 0.65 |
Standard deviation (σ) | 0.18 | 0.18 | 0.19 | 0.17 | |
Median (M) | 0.68 | 0.63 | 0.61 | 0.64 | |
Interquartile range (IRQ) | 0.22 | 0.19 | 0.19 | 0.19 |
Men | Women (All) | Women < 46 | Women > 45 | |
---|---|---|---|---|
NV normal distribution | no (p << 0.01) | no (p << 0.01) | no (p << 0.01) | no (p << 0.01) |
AP/CC normal distribution | no (p << 0.01) | no (p << 0.01) | no (p << 0.01) | no (p << 0.01) |
Element | Value | Men | Women (All) | Women (Age < 46) | Women (Age > 45) |
---|---|---|---|---|---|
Structure | cystic | 7.87 | 5.73 | 5.53 | 5.81 |
spongiform | 3.75 | 5.17 | 4.26 | 5.5 | |
mixed | 19.85 | 22.59 | 23.83 | 22.13 | |
solid | 68.53 | 66.51 | 66.38 | 66.56 | |
Echogenicity | iso/hyperechoic | 58.43 | 62.59 | 62.13 | 62.75 |
hypoechoic | 30.71 | 29.21 | 29.79 | 29 | |
strongly hypoechoic | 3.37 | 2.81 | 2.98 | 2.75 | |
anechoic | 7.49 | 5.39 | 5.11 | 5.5 | |
Margins | regular | 91.39 | 89.33 | 85.53 | 90.69 |
indistinct or lobulated | 8.61 | 10.67 | 14.47 | 9.31 | |
PEF | none/macrocalcification | 96.25 | 93.48 | 91.92 | 94.05 |
yes (microcalcification) | 3.75 | 6.52 | 8.08 | 5.95 | |
Taller than wide | no | 93.26 | 96.4 | 95.74 | 96.64 |
yes | 6.74 | 3.6 | 4.26 | 3.36 | |
Vascular pattern | none | 8 | 5.98 | 6.64 | 5.74 |
peripheral | 44 | 43.02 | 37.61 | 44.98 | |
peripheral and intranodal | 42 | 44.43 | 46.9 | 43.54 | |
strongly intranodal | 6 | 6.57 | 8.85 | 5.74 | |
Stiffness | intermediate/in-band | 79.52 | 78.53 | 72.73 | 80.74 |
rigid | 19.28 | 20.75 | 27.27 | 18.27 | |
elastic | 1.2 | 0.72 | 0 | 0.99 | |
Extension | extra-thyroid extension | 0.37 | 0.45 | 0.85 | 0.31 |
subcapsular | 11.99 | 13.93 | 14.47 | 13.74 | |
none | 87.64 | 85.62 | 84.68 | 85.95 | |
Side | left | 45.42 | 46.83 | 46.81 | 46.84 |
right | 54.58 | 53.17 | 53.19 | 53.16 | |
Position | isthmus | 10.15 | 16.1 | 19.15 | 15.01 |
upper third | 6.39 | 10.02 | 10.64 | 9.8 | |
middle third | 57.89 | 53.28 | 50.21 | 54.52 | |
lower third | 25.57 | 20.5 | 20 | 20.67 | |
Thyroiditis | yes | 50.94 | 60.34 | 48.51 | 64.58 |
no | 49.06 | 39.66 | 51.49 | 35.42 |
Element | Men–Women (All) | Men–Women < 46 | Men–Women > 45 |
---|---|---|---|
Structure | no (p = 0.52) | no (p = 0.72) | no (p = 0.55) |
Echogenicity | no (p = 0.47) | no (p = 0.68) | no (p = 0.52) |
Margins | no (p = 0.33) | yes (p = 0.04) | no (p = 0.73) |
PEF | no (p = 0.23) | no (p = 0.06) | no (p = 0.39) |
Taller than wide | yes (p = 0.027) | no (p = 0.22) | yes (p = 0.02) |
Vascularity | no (p = 0.65) | no (p = 0.33) | no (p = 0.66) |
Stiffness | no (p = 0.67) | no (p = 0.09) | no (p = 0.77) |
Extension | no (p = 0.41) | no (p = 0.39) | no (p = 0.47) |
Side | no (p = 0.68) | no (p = 0.75) | no (p = 0.70) |
Position | yes (p = 0.011) | yes (p = 0.005) | yes (p = 0.04) |
Thyroiditis | yes (p = 0.006) | no (p = 0.58) | yes (p << 0.01) |
Nodular malignity risk class | no (p = 0.90) | no (p = 0.38) | no (p = 0.68) |
Cytology (all TIR classes) | yes (p = 0.02) | no (p = 0.09) | yes (p << 0.01) |
Cytology (TIR2, 4, 5 only) | yes (p = 0.01) | no (p = 0.94) | yes (p << 0.01) |
Variable | H | Men–Women (All) | Men–Women < 46 | Men–Women > 45 |
---|---|---|---|---|
Nodular volume | H1 | yes (p << 0.01) | yes (p = 0.0012) | yes (p << 0.01) |
H2 | yes (p << 0.01) | yes (p = 0.006) | yes (p << 0.01) | |
AP/CC ratio | H1 | yes (p << 0.01) | yes (p << 0.01) | yes (p = 0.0012) |
H2 | yes (p << 0.01) | yes (p << 0.01) | yes (p << 0.006) |
Malignity Risk Class | Men | Women (All) | Women (Age < 46) | Women (Age > 45) |
---|---|---|---|---|
Low | 11.61 | 10.90 | 9.79 | 11.30 |
Intermediate | 60.30 | 61.46 | 56.60 | 63.21 |
High | 28.09 | 27.64 | 33.62 | 25.50 |
Category | Whole Sample | Men | Women (All) | Women (Age < 46) | Women (Age > 45) |
---|---|---|---|---|---|
TIR1/1C | 24.13 | 28.84 | 22.72 | 18.38 | 24.27 |
TIR2 | 41 | 32.96 | 43.42 | 40.17 | 44.58 |
TIR3A + TIR3B | 28.55 | 29.59 | 28.23 | 31.2 | 27.18 |
TIR4 | 1.99 | 2.62 | 1.81 | 2.99 | 1.37 |
TIR5 | 4.33 | 5.99 | 3.82 | 7.26 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzano, M.; Giaccherino, R.R.; Pagano, L.; Garberoglio, S.; Garberoglio, R. Ultrasound Assessment and Sexual Dimorphism of Thyroid Nodules: Bringing Gender Medicine to Clinical Practice. Endocrines 2025, 6, 15. https://doi.org/10.3390/endocrines6020015
Valenzano M, Giaccherino RR, Pagano L, Garberoglio S, Garberoglio R. Ultrasound Assessment and Sexual Dimorphism of Thyroid Nodules: Bringing Gender Medicine to Clinical Practice. Endocrines. 2025; 6(2):15. https://doi.org/10.3390/endocrines6020015
Chicago/Turabian StyleValenzano, Marina, Ruth Rossetto Giaccherino, Loredana Pagano, Sara Garberoglio, and Roberto Garberoglio. 2025. "Ultrasound Assessment and Sexual Dimorphism of Thyroid Nodules: Bringing Gender Medicine to Clinical Practice" Endocrines 6, no. 2: 15. https://doi.org/10.3390/endocrines6020015
APA StyleValenzano, M., Giaccherino, R. R., Pagano, L., Garberoglio, S., & Garberoglio, R. (2025). Ultrasound Assessment and Sexual Dimorphism of Thyroid Nodules: Bringing Gender Medicine to Clinical Practice. Endocrines, 6(2), 15. https://doi.org/10.3390/endocrines6020015