Cholesterol and Bone Resorption: Yet Another Link Between the Bone and Cardiovascular Systems
Abstract
:1. Introduction and Purpose
2. Methods
3. Statins and Bisphosphonates
4. Epidemiologic Evidence for Bisphosphonate Reduction of All-Cause Mortality in Humans
5. Evidence Tying Cholesterol Metabolism to Osteoclasts and Their Hematopoietic Precursor Cells
6. How Is the Cholesterol Effect on Bone Resorption Manifested at the Level of Organ Systems?
Hypercholesterolemia
7. What About Osteoblasts?
The Effect of Statins on Osteoblasts
8. Cholesterol and Inflammation
9. Summary and Unanswered Questions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mundy, G.; Garrett, R.; Harris, S.; Chan, J.; Chen, D.; Rossini, G.; Boyce, B.; Zhao, M.; Gutierrez, G. Stimulation of bone formation in vitro and in rodents by statins. Science 1999, 286, 1946–1949. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.J.; Hart, D.J.; Spector, T.D. Oral statins and increased bone mineral density in post-menopausal women. Lancet 2000, 355, 2218–2219. [Google Scholar] [CrossRef]
- Chuengsamarn, S.; Rattanamongkoulgul SSuwanwalaikorn, S.; Wattanasinchaigoon, S.; Kaufman, L. Effects of statins versus non-statin lipid-lowering therapy on bone formation and bone mineal density biomarkers in patients with hyperlipidemia. Bone 2010, 46, 1011–1015. [Google Scholar] [CrossRef] [PubMed]
- Safaei, H.; Janghorbani, M.; Aminorroya, A.; Amini, M. Lovastatin effects on bone mineral density in post-menopausal women with type 2 diabetes mellitus. Acta Diabetol. 2007, 44, 76–82. [Google Scholar] [CrossRef]
- Kim, H.; Oh, B.; Park-Min, K.-H. Regulation of osteoclast differentiation and activity by lipid metabolism. Cells 2021, 10, 89. [Google Scholar] [CrossRef]
- Coxon, F.P.; Helfrich, M.H.; Van’t Hof, R.; Sebti, S.; Ralston, S.H.; Hamilton, A.; Rogers, M.J. Protein geranylgeranylation is required for osteoclast formation, function and survival: Inhibition by bisphosphonates and GGTI-298. J. Bone Miner. Res. 2000, 15, 1467–1476. [Google Scholar] [CrossRef]
- Ebetino, F.H.; Sun, S.; Cherian, P.; Roshandel, S.; Neighbors, J.D.; Hu, E.; Dunford, J.E.; Sedghizadeh, P.P.; McKenna, C.E.; Srinavasan, V.; et al. Bisphosphonates: The role of chemistry in understanding their biological actions and structural activity relationships, and new directions for their therapeutic use. Bone 2022, 156, 116289. [Google Scholar] [CrossRef] [PubMed]
- Tsubaki, M.; Takeda, T.; Sakamoto, K.; Shimaoka, H.; Fujita, A.; Itoh, T.; Imano, M.; Mashino, K.; Fujiwara, D.; Sakaguchi, K.; et al. Bisphosphonates and statins inhibit expression and secretion of MIP-1-alpha via suppression of Ras/MEK/ERK/AML-1A and Ras/PI3K/Akt/AML-1A pathways. Am. J. Cancer Res. 2014, 5, 168–179. [Google Scholar]
- De Jager, S.C.A.; Bot, I.; Kraaijeveld, A.O.; Korporaal, S.J.A.; Bot, M.; van Santbrink, P.J.; van Berkel, T.J.C.; Kulper, J.; Biessen, E.A.L. Leukocyte-specific CCL3 deficiency inhibits atherosclerotic lesion development by affecting neutrophil accumulation. Atheroscler. Thromb. Vasc. Biol. 2013, 33, e75–e83. [Google Scholar] [CrossRef]
- Klein, G.L. Is calcium a link between inflammatory bone resorption and heart disease? eLife 2022, 11, e83841. [Google Scholar] [CrossRef]
- Wu, C.-H.; Li, C.-C.; Hsu, Y.-H.; Liang, F.-W.; Chang, Y.-F.; Hwang, J.-S. Comparisons between different anti-osteoporosis medications on post-fracture mortality: A population based study. J. Clin. Endocrinol. Metab. 2023, 108, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Henney, A.E.; Riley, D.R.; O’Connor, B.; Hydes, T.J.; Anson, M.; Zhao, S.S.; Alam, U.; Cuthbertson, D.J. Denosumab, for osteoporosis, reduces the incidence of type 2 diabetes, risk of foot ulceration and all-cause mortality in adults, compared with bisphosphonates: An analysis of real-world cohort data, with a systematic review and meta-analysis. Diabetes Obes. Metab. 2024, 26, 3673–3683. [Google Scholar] [CrossRef]
- Alarkawi, D.; Tran, T.; Chen, W.; March, L.M.; Blyth, F.M.; Blank, R.D.; Bliuc, D.; Center, J.R. Denosumab and mortality in a real-world setting: A comparative study. J. Bone Miner. Res. 2023, 38, 1757–1770. [Google Scholar] [CrossRef]
- Wu, S.T.; Chen, J.F.; Tsai, C.J. The impact of bisphosphonates on mortality and cardiovascular risk among osteoporosis patients with cardiovascular disease. J. Formos. Med. Assoc. 2021, 20, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Luegmayr, E.; Glantschnig, H.; Wesoloski, G.A.; Gentile, M.A.; Fisher, J.E.; Rodan, G.A.; Reszka, A.A. Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. Cell Death Differ. 2004, 11 (Suppl. S1), S108–S118. [Google Scholar] [CrossRef]
- Sjogren, U.; Mukohyama, H.; Roth, C.; Sundquist, G.; Lerner, U.H. Bone resorbing activity from cholesterol-exposed macrophages due to enhanced expression of interleukin-1-alpha. J. Dent. Res. 2002, 81, 11–16. [Google Scholar] [CrossRef]
- Huang, X.; Lv, Y.; He, P.; Wang, Z.; Xiong, F.; Zhang, D.; Cao, Q.; Tang, C. HDL impairs osteoclastogenesis and induces osteoclast apoptosis via up-regulation of ABCG1 expression. Acta Biochim. Biophys. Sin. 2018, 50, 853–861. [Google Scholar] [CrossRef]
- Wei, W.; Schwaid, A.G.; Wang, X.; Wang, X.; Chen, S.; Chu, Q.; Saghatelian, A.; Wan, Y. Ligand activation of ERR alpha by cholesterol mediates statin and bisphosphonate effects. Cell Metab. 2016, 23, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Wang, X.; Yang, M.; Smith, L.C.; Dechow, P.C.; Sonoda, J.; Evans, R.M.; Wan, Y. PGC1 beta mediates PPAR gamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab. 2010, 11, 503–516. [Google Scholar] [CrossRef]
- Nevius, E.; Pinho, F.; Dhodapkar, M.; Jin, H.; Nadrah, K.; Horowitz, M.C.; Kikukta, J.; Ishii, M.; Pereira, J.P. Oxysterols and EBI2 promote osteoclast precursor migration to bone surfaces and regulate bone mass homeostasis. J. Exp. Med. 2015, 212, 1931–1946. [Google Scholar] [CrossRef]
- Zelcer, N.; Tontonoz, P. Liver X receptors as integrators of metabolic and inflammatory signaling. J. Clin. Investig. 2006, 116, 607–614. [Google Scholar] [CrossRef]
- Robertson, K.M.; Norgard, M.; Windahl, S.H.; Hultenby, K.; Ohlsson, C.; Andersson, G.; Gustafsoson, J.A. Cholesterol sensing receptors, liver X receptors alpha and beta, have novel and distinct roles in osteoclast differentiation and activation. J. Bone Miner. Res. 2006, 21, 1276–1287. [Google Scholar] [CrossRef]
- Joseph, S.B.; Laffitte, B.A.; Patel, P.H.; Watson, M.A.; Matsukama, K.E.; Walczak, R.; Collins, J.L.; Osborne, T.; Tontonoz, P. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem. 2002, 277, 11019–11025. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Yoon, K.A.; Yoon, H.J.; Hong, J.M.; Lee, M.J.; Lee, K.; Kim, S.Y.; Liver, X. receptor activation inhibits osteoclastogenesis by suppressing NFkB activity and c-Fos induction and jprevents inflammatory bone loss in mice. J. Leukoc. Biol. 2013, 94, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Menendez-Gutierrez, M.P.; Roszer, T.; Fuentes, L.; Nunez, V.; Escolano, A.; Redondo, J.M.; DeClerck, N.; Metzger, D.; Valledor, A.F.; Ricote, M. Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling. J. Clin. Investig. 2015, 125, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Deng, T.; Zhang, H.; Guan, Q.; Zhao, H.; Yu, C.; Shao, S.; Zhao, M.; Xu, J. Hypercholesterolemia increases the risk of high turnover osteoporosis in men. Mol. Med. Rep. 2019, 19, 4603–4612. [Google Scholar] [CrossRef]
- Pelton, K.; Krieder, J.; Joiner, D.; Freeman, M.R.; Goldstein, S.A.; Solomon, K.R. Hypercholesterolemia promotes an osteoporotic phenotype. Am. J. Pathol. 2012, 181, 928–936. [Google Scholar] [CrossRef]
- Syed, F.A.; Oursler, M.J.; Hefferanm, T.E.; Peterson, J.M.; Riggs, B.L.; Khosla, S. Effects of estrogen therapy on bone marrow adipocytes in post-menopausal osteoporotic women. Osteoporos. Int. 2008, 19, 1323–1330. [Google Scholar] [CrossRef]
- Zhao, L.J.; Liu, Y.J.; Hamilton, J.; Recker, R.R.; Deng, H.W. Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 2007, 92, 1640–1646. [Google Scholar] [CrossRef]
- Akhmetshina, A.; Kratky, D.; Rendina-Ruedy, E. Influence of cholesterol on the regulation of osteoblast function. Metabolites 2023, 13, 578. [Google Scholar] [CrossRef]
- Parhami, F.; Mody, N.; Gharavi, N.; Ballard, A.J.; Tintut, Y.; Demer, L.I. Role of cholesterol biosynthetic pathway on osteoblastic differentiation of marrow stromal cells. J. Bone Miner. Res. 2002, 17, 1997–2003. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guo, H.; Li, H. Cholesterol loading affects differentiation of mouse mesenchymal cells. Steroids 2013, 78, 426–433. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Sheng, Z.Y.; Tang, C.L.; Chen, L.; Pan, L.; Chen, J.Y. High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats. Acta Pharmacol. Sin. 2011, 32, 1498–1504. [Google Scholar] [CrossRef]
- Maziere, C.; Salle, V.; Gomila, C.; Maziere, J.C. Oxidized low density lipoproteins enhanced RANKL expression in human osteoblast-like cells: Involvement of ERK, NF kappa B and NFAT. Biochim. Biophys. Acta 2013, 1832, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Maziere, C.; Savitsky, V.; Galmiche, A.; Gomila, C.; Massy, Z.; Maziere, J.C. Oxidized low density lipoprotein inhibits phosphate signaling and phosphate-induced mineralization in osteoblasts: Involvement of oxidative stress. Biochim. Biophys. Acta 2010, 1802, 1013–1019. [Google Scholar] [CrossRef]
- Blair, H.C.; Kalyviot, E.; Papachristou, N.I.; Tourkova, I.L.; Syggelos, S.A.; Deligianni, D.; Orkula, M.G.; Kontyannis, C.G.; Karavia, E.A.; Kypreos, K.E.; et al. Apolipoprotein A-1 regulates osteoblast and lipoblast precursor cells in mice. Lab. Investig. 2016, 96, 763–772. [Google Scholar] [CrossRef]
- Bergstrom, J.D.; Bostedor, R.G.; Masarachia, P.J.; Reszka, A.A.; Rodan, G. Alendronate is a specific nanomolar inhibitor of farnesyl diphosphate synthase. Arch. Biochem. Biophys. 2000, 373, 231–241. [Google Scholar] [CrossRef]
- Majima, T.; Komatsu, Y.; Fukao, A.; Ninomiya, K.; Matsumura, T.; Nakao, K. Short-term effects of atorvastatin on bone turnover im male patients with hypercholesterolemia. Endocr. J. 2007, 54, 145–151. [Google Scholar] [CrossRef]
- Majima, T.; Shimatsu, A.; Komatsu, Y.; Satoh, N.; Fukao, A.; Ninomiya, K.; Matsumura, T.; Nakao, K. Short-term effects of pitavastatin on biochemical markers of bone turnover in patients with hypercholesterolemia. Intern. Med. 2007, 46, 1967–1973. [Google Scholar] [CrossRef]
- Awan, Z.; Alwaili, K.; Alshahrani, A.; Langsetmo, L.; Goltzman, D.; Genest, J. Calcium homeostasis and skeletal integrity and individuals with familial hypercholesterolemia and aortic calcification. Clin. Chem. 2010, 56, 1599–1607. [Google Scholar] [CrossRef]
- Tsubaki, M.; Satou, T.; Itoh, T.; Imano, M.; Yanae, M.; Kato, C.; Tagoshi, R.; Komai, M.; Nishida, S. Bisphosphonate- and statin-induced enhancement of OPG expression and inhibition of CD9, M-CSF and RANKL expressions via inhibition of the Ras/MEK/ERK pathway and activation of p38 MAPK in mouse bone marrow stromal cell line ST2. Mol. Cell. Endocrinol. 2012, 361, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Ruan, F.; Zheng, Q.; Wang, J. Mechanisms of bone anabolism regulated by statins. Biosci. Rep. 2012, 32, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Bhatt, D.L.; Pradhan, A.; Glynn, R.J.; MacFadyen, J.G.; Nissen, S.E.; on behalf of the PROMINENT, REDUCE-IT and STRENGTH investigators. Inflammation and cholesterol as precitors of cardiovascular events among patients receiving statin therapy: A collaborative analysis of three randomized trials. Lancet 2023, 401, 1293–1301. [Google Scholar] [CrossRef]
- Lang, J.K.; Cimato, T.R. Cholesterol and hematopoietic stem cells: Inflammatory mediators and atherosclerosis. Stem Cells Transl. Med. 2014, 3, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, W.; Liang, H. Effects of statins on sepsis and inflammatory factors: A Mendelian randomization study. Eur. J. Clin. Investig. 2024, 54, e14164. [Google Scholar] [CrossRef]
- Pena, J.M.; Aspberg, S.; MacFadyen, J.; Glynn, R.J.; Solomon, D.H.; Ridker, P.M. Statin Therapy and Risk of Fractures. JAMA Int. Med. 2015, 175, 171–177. [Google Scholar] [CrossRef]
- Klein, G.L. Phosphate as an adjunct to calcium in promoting coronary vascular calcification in chronic inflammatory states. eLife 2024, 13, e91808. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klein, G.L. Cholesterol and Bone Resorption: Yet Another Link Between the Bone and Cardiovascular Systems. Endocrines 2025, 6, 19. https://doi.org/10.3390/endocrines6020019
Klein GL. Cholesterol and Bone Resorption: Yet Another Link Between the Bone and Cardiovascular Systems. Endocrines. 2025; 6(2):19. https://doi.org/10.3390/endocrines6020019
Chicago/Turabian StyleKlein, Gordon L. 2025. "Cholesterol and Bone Resorption: Yet Another Link Between the Bone and Cardiovascular Systems" Endocrines 6, no. 2: 19. https://doi.org/10.3390/endocrines6020019
APA StyleKlein, G. L. (2025). Cholesterol and Bone Resorption: Yet Another Link Between the Bone and Cardiovascular Systems. Endocrines, 6(2), 19. https://doi.org/10.3390/endocrines6020019