Decoding Mini-Puberty and Its Clinical Significance: A Narrative Review
Abstract
:1. Introduction
2. Hypothalamic–Pituitary–Gonadal Axis Activation During Fetal Life
3. Mini-Puberty in Males
4. Mini-Puberty in Females
5. Mini-Puberty in Premature and Small-for-Gestational-Age Infants
6. Mini-Puberty, Early Linear Growth, and Body Composition
7. Mini-Puberty and Neurodevelopment
8. Diagnosing Mini-Puberty Abnormalities
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMH | Anti-Mullerian hormone |
HPG | Hypothalamic–pituitary–gonadal |
FSH | Follicle-stimulating hormone |
LH | Luteinizing hormone |
SGA | Small for gestational age |
GnRH | Gonadotropin-releasing hormone |
KNDy | Kisspeptin-Neurokinin B-Dynorphin |
hCG | Human chorionic gonadotropin |
References
- Grinspon, R.P.; Bergadá, I.; Rey, R.A. Male Hypogonadism and Disorders of Sex Development. Front. Endocrinol. 2020, 11, 211. [Google Scholar] [CrossRef]
- Sheng, J.A.; Bales, N.J.; Myers, S.A.; Bautista, A.I.; Roueinfar, M.; Hale, T.M.; Handa, R.J. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front. Behav. Neurosci. 2020, 14, 601939. [Google Scholar] [CrossRef]
- Kuiri-Hänninen, T.; Sankilampi, U.; Dunkel, L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: Minipuberty. Horm. Res. Paediatr. 2014, 82, 73–80. [Google Scholar] [CrossRef]
- Becker, M.; Hesse, V. Minipuberty: Why Does it Happen? Horm. Res. Paediatr. 2020, 93, 76–84. [Google Scholar] [CrossRef]
- Lanciotti, L.; Cofini, M.; Leonardi, A.; Penta, L.; Esposito, S. Up-To-Date Review About Minipuberty and Overview on Hypothalamic-Pituitary-Gonadal Axis Activation in Fetal and Neonatal Life. Front. Endocrinol. 2018, 9, 410. [Google Scholar] [CrossRef]
- Kiviranta, P.; Kuiri-Hänninen, T.; Saari, A.; Lamidi, M.L.; Dunkel, L.; Sankilampi, U. Transient Postnatal Gonadal Activation and Growth Velocity in Infancy. Pediatrics 2016, 138, e20153561. [Google Scholar] [CrossRef]
- Hines, M.; Spencer, D.; Kung, K.T.; Browne, W.V.; Constantinescu, M.; Noorderhaven, R.M. The early postnatal period, mini-puberty, provides a window on the role of testosterone in human neurobehavioural development. Curr. Opin. Neurobiol. 2016, 38, 69–73. [Google Scholar] [CrossRef]
- Casoni, F.; Malone, S.A.; Belle, M.; Luzzati, F.; Collier, F.; Allet, C.; Hrabovszky, E.; Rasika, S.; Prevot, V.; Chédotal, A.; et al. Development of the neurons controlling fertility in humans: New insights from 3D imaging and transparent fetal brains. Development 2016, 143, 3969–3981. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Dwyer, A.; Seminara, S.B.; Pitteloud, N.; Kaiser, U.B.; Crowley, W.F., Jr. Human GnRH deficiency: A unique disease model to unravel the ontogeny of GnRH neurons. Neuroendocrinology 2010, 92, 81–99. [Google Scholar] [CrossRef]
- Schwanzel-Fukuda, M.; Crossin, K.L.; Pfaff, D.W.; Bouloux, P.M.; Hardelin, J.P.; Petit, C. Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J. Comp. Neurol. 1996, 366, 547–557. [Google Scholar] [CrossRef]
- Hrabovszky, E.; Molnár, C.S.; Nagy, R.; Vida, B.; Borsay, B.; Rácz, K.; Herczeg, L.; Watanabe, M.; Kalló, I.; Liposits, Z. Glutamatergic and GABAergic innervation of human gonadotropin-releasing hormone-I neurons. Endocrinology 2012, 153, 2766–2776. [Google Scholar] [CrossRef]
- Maeda, K.; Ohkura, S.; Uenoyama, Y.; Wakabayashi, Y.; Oka, Y.; Tsukamura, H.; Okamura, H. Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. Brain Res. 2010, 1364, 103–115. [Google Scholar] [CrossRef]
- Uenoyama, Y.; Nagae, M.; Tsuchida, H.; Inoue, N.; Tsukamura, H. Role of KNDy Neurons Expressing Kisspeptin, Neurokinin B, and Dynorphin A as a GnRH Pulse Generator Controlling Mammalian Reproduction. Front. Endocrinol. 2021, 12, 724632. [Google Scholar] [CrossRef]
- Velasco, I.; Franssen, D.; Daza-Dueñas, S.; Skrapits, K.; Takács, S.; Torres, E.; Rodríguez-Vazquez, E.; Ruiz-Cruz, M.; León, S.; Kukoricza, K.; et al. Dissecting the KNDy hypothesis: KNDy neuron-derived kisspeptins are dispensable for puberty but essential for preserved female fertility and gonadotropin pulsatility. Metabolism 2023, 144, 155556. [Google Scholar] [CrossRef]
- Mills, E.G.; Dhillo, W.S. Invited review: Translating kisspeptin and neurokinin B biology into new therapies for reproductive health. J. Neuroendocrinol. 2022, 34, e13201. [Google Scholar] [CrossRef]
- Topaloglu, A.K.; Reimann, F.; Guclu, M.; Yalin, A.S.; Kotan, L.D.; Porter, K.M.; Serin, A.; Mungan, N.O.; Cook, J.R.; Imamoglu, S.; et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat. Genet. 2009, 41, 354–358. [Google Scholar] [CrossRef]
- Rometo, A.M.; Rance, N.E. Changes in prodynorphin gene expression and neuronal morphology in the hypothalamus of postmenopausal women. J. Neuroendocrinol. 2008, 20, 1376–1381. [Google Scholar] [CrossRef]
- Hrabovszky, E.; Sipos, M.T.; Molnár, C.S.; Ciofi, P.; Borsay, B.; Gergely, P.; Herczeg, L.; Bloom, S.R.; Ghatei, M.A.; Dhillo, W.S.; et al. Low degree of overlap between kisspeptin, neurokinin B, and dynorphin immunoreactivities in the infundibular nucleus of young male human subjects challenges the KNDy neuron concept. Endocrinology 2012, 153, 4978–4989. [Google Scholar] [CrossRef]
- Beltramo, M.; Dardente, H.; Cayla, X.; Caraty, A. Cellular mechanisms and integrative timing of neuroendocrine control of GnRH secretion by kisspeptin. Mol. Cell. Endocrinol. 2014, 382, 387–399. [Google Scholar] [CrossRef]
- Tena-Sempere, M. Hypothalamic KiSS-1: The missing link in gonadotropin feedback control? Endocrinology 2005, 146, 3683–3685. [Google Scholar] [CrossRef]
- Mittelman-Smith, M.A.; Williams, H.; Krajewski-Hall, S.J.; Lai, J.; Ciofi, P.; McMullen, N.T.; Rance, N.E. Arcuate kisspeptin/neurokinin B/dynorphin (KNDy) neurons mediate the estrogen suppression of gonadotropin secretion and body weight. Endocrinology 2012, 153, 2800–2812. [Google Scholar] [CrossRef]
- Clements, J.A.; Reyes, F.I.; Winter, J.S.; Faiman, C. Studies on human sexual development. III. Fetal pituitary and serum, and amniotic fluid concentrations of LH, CG, and FSH. J. Clin. Endocrinol. Metab. 1976, 42, 9–19. [Google Scholar] [CrossRef]
- Schwanzel-Fukuda, M.; Pfaff, D.W. Origin of luteinizing hormone-releasing hormone neurons. Nature 1989, 338, 161–164. [Google Scholar] [CrossRef]
- Pilavdzic, D.; Kovacs, K.; Asa, S.L. Pituitary morphology in anencephalic human fetuses. Neuroendocrinology 1997, 65, 164–172. [Google Scholar] [CrossRef]
- Guimiot, F.; Chevrier, L.; Dreux, S.; Chevenne, D.; Caraty, A.; Delezoide, A.L.; de Roux, N. Negative fetal FSH/LH regulation in late pregnancy is associated with declined kisspeptin/KISS1R expression in the tuberal hypothalamus. J. Clin. Endocrinol. Metab. 2012, 97, E2221–E2229. [Google Scholar] [CrossRef]
- Massa, G.; de Zegher, F.; Vanderschueren-Lodeweyckx, M. Serum levels of immunoreactive inhibin, FSH, and LH in human infants at preterm and term birth. Biol. Neonate 1992, 61, 150–155. [Google Scholar] [CrossRef]
- Takagi, S.; Yoshida, T.; Tsubata, K.; Ozaki, H.; Fujii, T.K.; Nomura, Y.; Sawada, M. Sex differences in fetal gonadotropins and androgens. J. Steroid Biochem. 1977, 8, 609–620. [Google Scholar] [CrossRef]
- Debieve, F.; Beerlandt, S.; Hubinont, C.; Thomas, K. Gonadotropins, prolactin, inhibin A, inhibin B, and activin A in human fetal serum from midpregnancy and term pregnancy. J. Clin. Endocrinol. Metab. 2000, 85, 270–274. [Google Scholar] [CrossRef]
- Casarini, L.; Santi, D.; Brigante, G.; Simoni, M. Two Hormones for One Receptor: Evolution, Biochemistry, Actions, and Pathophysiology of LH and hCG. Endocr. Rev. 2018, 39, 549–592. [Google Scholar] [CrossRef]
- Pitetti, J.L.; Calvel, P.; Romero, Y.; Conne, B.; Truong, V.; Papaioannou, M.D.; Schaad, O.; Docquier, M.; Herrera, P.L.; Wilhelm, D.; et al. Insulin and IGF1 receptors are essential for XX and XY gonadal differentiation and adrenal development in mice. PLoS Genet. 2013, 9, e1003160. [Google Scholar] [CrossRef]
- O’Rahilly, R. The timing and sequence of events in the development of the human reproductive system during the embryonic period proper. Anat. Embryol. 1983, 166, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Reyes, F.I.; Boroditsky, R.S.; Winter, J.S.; Faiman, C. Studies on human sexual development. II. Fetal and maternal serum gonadotropin and sex steroid concentrations. J. Clin. Endocrinol. Metab. 1974, 38, 612–617. [Google Scholar] [CrossRef]
- O’Shaughnessy, P.J.; Baker, P.J.; Monteiro, A.; Cassie, S.; Bhattacharya, S.; Fowler, P.A. Developmental changes in human fetal testicular cell numbers and messenger ribonucleic acid levels during the second trimester. J. Clin. Endocrinol. Metab. 2007, 92, 4792–4801. [Google Scholar] [CrossRef] [PubMed]
- Kurilo, L.F. Oogenesis in antenatal development in man. Hum. Genet. 1981, 57, 86–92. [Google Scholar] [CrossRef]
- Cole, B.; Hensinger, K.; Maciel, G.A.; Chang, R.J.; Erickson, G.F. Human fetal ovary development involves the spatiotemporal expression of p450c17 protein. J. Clin. Endocrinol. Metab. 2006, 91, 3654–3661. [Google Scholar] [CrossRef]
- Forabosco, A.; Sforza, C. Establishment of ovarian reserve: A quantitative morphometric study of the developing human ovary. Fertil. Steril. 2007, 88, 675–683. [Google Scholar] [CrossRef]
- Baker, T.G.; Scrimgeour, J.B. Development of the gonad in normal and anencephalic human fetuses. J. Reprod. Fertil. 1980, 60, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Rohayem, J.; Alexander, E.C.; Heger, S.; Nordenström, A.; Howard, S.R. Mini-Puberty, Physiological and Disordered: Consequences, and Potential for Therapeutic Replacement. Endocr. Rev. 2024, 45, 460–492. [Google Scholar] [CrossRef]
- Forest, M.G.; Cathiard, A.M.; Bertrand, J.A. Evidence of testicular activity in early infancy. J. Clin. Endocrinol. Metab. 1973, 37, 148–151. [Google Scholar] [CrossRef]
- Corbier, P.; Dehennin, L.; Castanier, M.; Mebazaa, A.; Edwards, D.A.; Roffi, J. Sex differences in serum luteinizing hormone and testosterone in the human neonate during the first few hours after birth. J. Clin. Endocrinol. Metab. 1990, 71, 1344–1348. [Google Scholar] [CrossRef]
- Bergadá, I.; Milani, C.; Bedecarrás, P.; Andreone, L.; Ropelato, M.G.; Gottlieb, S.; Bergadá, C.; Campo, S.; Rey, R.A. Time course of the serum gonadotropin surge, inhibins, and anti-Müllerian hormone in normal newborn males during the first month of life. J. Clin. Endocrinol. Metab. 2006, 91, 4092–4098. [Google Scholar] [CrossRef] [PubMed]
- Busch, A.S.; Ljubicic, M.L.; Upners, E.N.; Fischer, M.B.; Raket, L.L.; Frederiksen, H.; Albrethsen, J.; Johannsen, T.H.; Hagen, C.P.; Juul, A. Dynamic Changes of Reproductive Hormones in Male Minipuberty: Temporal Dissociation of Leydig and Sertoli Cell Activity. J. Clin. Endocrinol. Metab. 2022, 107, 1560–1568. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Schwarz, H.P. Serum concentrations of LH and FSH in the healthy newborn. Eur. J. Endocrinol. 2000, 143, 213–215. [Google Scholar] [CrossRef]
- Andersson, A.M.; Toppari, J.; Haavisto, A.M.; Petersen, J.H.; Simell, T.; Simell, O.; Skakkebaek, N.E. Longitudinal reproductive hormone profiles in infants: Peak of inhibin B levels in infant boys exceeds levels in adult men. J. Clin. Endocrinol. Metab. 1998, 83, 675–681. [Google Scholar] [CrossRef]
- Boas, M.; Boisen, K.A.; Virtanen, H.E.; Kaleva, M.; Suomi, A.M.; Schmidt, I.M.; Damgaard, I.N.; Kai, C.M.; Chellakooty, M.; Skakkebaek, N.E.; et al. Postnatal penile length and growth rate correlate to serum testosterone levels: A longitudinal study of 1962 normal boys. Eur. J. Endocrinol. 2006, 154, 125–129. [Google Scholar] [CrossRef]
- Dhayat, N.A.; Dick, B.; Frey, B.M.; d’Uscio, C.H.; Vogt, B.; Flück, C.E. Androgen biosynthesis during minipuberty favors the backdoor pathway over the classic pathway: Insights into enzyme activities and steroid fluxes in healthy infants during the first year of life from the urinary steroid metabolome. J. Steroid Biochem. Mol. Biol. 2017, 165, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Bay, K.; Virtanen, H.E.; Hartung, S.; Ivell, R.; Main, K.M.; Skakkebaek, N.E.; Andersson, A.M.; Toppari, J. Insulin-like factor 3 levels in cord blood and serum from children: Effects of age, postnatal hypothalamic-pituitary-gonadal axis activation, and cryptorchidism. J. Clin. Endocrinol. Metab. 2007, 92, 4020–4027. [Google Scholar] [CrossRef]
- Burton, E.; Abeydeera, S.A.; Sarila, G.; Cho, H.J.; Wu, S.; Tien, M.Y.; Hutson, J.; Li, R. The role of gonadotrophins in gonocyte transformation during minipuberty. Pediatr. Surg. Int. 2020, 36, 1379–1385. [Google Scholar] [CrossRef]
- Simorangkir, D.R.; Marshall, G.R.; Plant, T.M. Sertoli cell proliferation during prepubertal development in the rhesus monkey (Macaca mulatta) is maximal during infancy when gonadotropin secretion is robust. J. Clin. Endocrinol. Metab. 2003, 88, 4984–4989. [Google Scholar] [CrossRef]
- Chemes, H.E.; Rey, R.A.; Nistal, M.; Regadera, J.; Musse, M.; González-Peramato, P.; Serrano, A. Physiological androgen insensitivity of the fetal, neonatal, and early infantile testis is explained by the ontogeny of the androgen receptor expression in Sertoli cells. J. Clin. Endocrinol. Metab. 2008, 93, 4408–4412. [Google Scholar] [CrossRef]
- Rey, R.A. Mini-puberty and true puberty: Differences in testicular function. Ann. Endocrinol. 2014, 75, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Aksglaede, L.; Sørensen, K.; Boas, M.; Mouritsen, A.; Hagen, C.P.; Jensen, R.B.; Petersen, J.H.; Linneberg, A.; Andersson, A.M.; Main, K.M.; et al. Changes in anti-Müllerian hormone (AMH) throughout the life span: A population-based study of 1027 healthy males from birth (cord blood) to the age of 69 years. J. Clin. Endocrinol. Metab. 2010, 95, 5357–5364. [Google Scholar] [CrossRef] [PubMed]
- Winter, J.S.; Hughes, I.A.; Reyes, F.I.; Faiman, C. Pituitary-gonadal relations in infancy: 2. Patterns of serum gonadal steroid concentrations in man from birth to two years of age. J. Clin. Endocrinol. Metab. 1976, 42, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Kuiri-Hänninen, T.; Haanpää, M.; Turpeinen, U.; Hämäläinen, E.; Seuri, R.; Tyrväinen, E.; Sankilampi, U.; Dunkel, L. Postnatal ovarian activation has effects in estrogen target tissues in infant girls. J. Clin. Endocrinol. Metab. 2013, 98, 4709–4716. [Google Scholar] [CrossRef]
- Kuiri-Hänninen, T.; Kallio, S.; Seuri, R.; Tyrväinen, E.; Liakka, A.; Tapanainen, J.; Sankilampi, U.; Dunkel, L. Postnatal developmental changes in the pituitary-ovarian axis in preterm and term infant girls. J. Clin. Endocrinol. Metab. 2011, 96, 3432–3439. [Google Scholar] [CrossRef]
- Bidlingmaier, F.; Strom, T.M.; Dörr, H.G.; Eisenmenger, W.; Knorr, D. Estrone and estradiol concentrations in human ovaries, testes, and adrenals during the first two years of life. J. Clin. Endocrinol. Metab. 1987, 65, 862–867. [Google Scholar] [CrossRef]
- Cohen, H.L.; Shapiro, M.A.; Mandel, F.S.; Shapiro, M.L. Normal ovaries in neonates and infants: A sonographic study of 77 patients 1 day to 24 months old. AJR Am. J. Roentgenol. 1993, 160, 583–586. [Google Scholar] [CrossRef]
- Courant, F.; Aksglaede, L.; Antignac, J.P.; Monteau, F.; Sorensen, K.; Andersson, A.M.; Skakkebaek, N.E.; Juul, A.; Bizec, B.L. Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. J. Clin. Endocrinol. Metab. 2010, 95, 82–92. [Google Scholar] [CrossRef]
- Jayasinghe, Y.; Cha, R.; Horn-Ommen, J.; O’Brien, P.; Simmons, P.S. Establishment of normative data for the amount of breast tissue present in healthy children up to two years of age. J. Pediatr. Adolesc. Gynecol. 2010, 23, 305–311. [Google Scholar] [CrossRef]
- Schmidt, I.M.; Chellakooty, M.; Haavisto, A.M.; Boisen, K.A.; Damgaard, I.N.; Steendahl, U.; Toppari, J.; Skakkebaek, N.E.; Main, K.M. Gender difference in breast tissue size in infancy: Correlation with serum estradiol. Pediatr. Res. 2002, 52, 682–686. [Google Scholar] [CrossRef]
- Nguyen, R.H.; Umbach, D.M.; Parad, R.B.; Stroehla, B.; Rogan, W.J.; Estroff, J.A. US assessment of estrogen-responsive organ growth among healthy term infants: Piloting methods for assessing estrogenic activity. Pediatr. Radiol. 2011, 41, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Devillers, M.M.; Mhaouty-Kodja, S.; Guigon, C.J. Deciphering the Roles & Regulation of Estradiol Signaling During Female Mini-Puberty: Insights from Mouse Models. Int. J. Mol. Sci. 2022, 23, 13695. [Google Scholar] [CrossRef]
- Delli, V.; Dehame, J.; Franssen, D.; Rasika, S.; Parent, A.S.; Prevot, V.; Chachlaki, K. Male minipuberty involves the gonad-independent activation of preoptic nNOS neurons. Free Radic. Biol. Med. 2023, 194, 199–208. [Google Scholar] [CrossRef]
- Chachlaki, K.; Messina, A.; Delli, V.; Leysen, V.; Maurnyi, C.; Huber, C.; Ternier, G.; Skrapits, K.; Papadakis, G.; Shruti, S.; et al. NOS1 mutations cause hypogonadotropic hypogonadism with sensory and cognitive deficits that can be reversed in infantile mice. Sci. Transl. Med. 2022, 14, eabh2369. [Google Scholar] [CrossRef] [PubMed]
- Tapanainen, J.; Koivisto, M.; Vihko, R.; Huhtaniemi, I. Enhanced activity of the pituitary-gonadal axis in premature human infants. J. Clin. Endocrinol. Metab. 1981, 52, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Shinkawa, O.; Furuhashi, N.; Fukaya, T.; Suzuki, M.; Kono, H.; Tachibana, Y. Changes of serum gonadotropin levels and sex differences in premature and mature infant during neonatal life. J. Clin. Endocrinol. Metab. 1983, 56, 1327–1331. [Google Scholar] [CrossRef]
- Kuiri-Hänninen, T.; Seuri, R.; Tyrväinen, E.; Turpeinen, U.; Hämäläinen, E.; Stenman, U.H.; Dunkel, L.; Sankilampi, U. Increased activity of the hypothalamic-pituitary-testicular axis in infancy results in increased androgen action in premature boys. J. Clin. Endocrinol. Metab. 2011, 96, 98–105. [Google Scholar] [CrossRef]
- Sedin, G.; Bergquist, C.; Lindgren, P.G. Ovarian hyperstimulation syndrome in preterm infants. Pediatr. Res. 1985, 19, 548–552. [Google Scholar] [CrossRef]
- Lee, Y.L.; Jamli, F.M. Preterm ovarian hyperstimulation syndrome presenting as clitoromegaly in a premature female infant. Arch. Dis. Child. 2022, 107, 166–167. [Google Scholar] [CrossRef]
- Mosallanejad, A.; Tabatabai, S.; Shakiba, M.; Alaei, M.R.; Saneifard, H. A Rare Case of Ovarian Hyperstimulation Syndrome in a Preterm Infant. J. Clin. Diagn. Res. 2016, 10, Sd07–Sd08. [Google Scholar] [CrossRef]
- Altuntas, N.; Turkyilmaz, C.; Yuce, O.; Kulali, F.; Hirfanoglu, I.M.; Onal, E.; Ergenekon, E.; Koç, E.; Bideci, A.; Atalay, Y. Preterm ovarian hyperstimulation syndrome presented with vaginal bleeding: A case report. J. Pediatr. Endocrinol. Metab. 2014, 27, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, C.; Di, T.; Zhu, Y.; Zhu, R.; Chen, S.; Qian, Y. Clinical characteristics of preterm ovarian hyperstimulation syndrome: Seven cases from China and 14 cases from the literature. Gynecol. Endocrinol. 2019, 35, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Boncompagni, A.; Pietrella, E.; Passini, E.; Grisolia, C.; Tagliazucchi, M.; Tagliafico, E.; Lugli, L.; Berardi, A.; Iughetti, L.; Lucaccioni, L. Minipuberty in Male Full-term Neonates Appropriate and Small for Gestational Age and in Preterm Babies: Data from a Single Centre. J. Clin. Res. Pediatr. Endocrinol. 2024, 16, 50–59. [Google Scholar] [CrossRef]
- Pepe, G.; Calafiore, M.; Velletri, M.R.; Corica, D.; Valenzise, M.; Mondello, I.; Alibrandi, A.; Wasniewska, M.; Aversa, T. Minipuberty in born small for gestational age infants: A case control prospective pilot study. Endocrine 2022, 76, 465–473. [Google Scholar] [CrossRef]
- Nagai, S.; Kawai, M.; Myowa-Yamakoshi, M.; Morimoto, T.; Matsukura, T.; Heike, T. Gonadotropin levels in urine during early postnatal period in small for gestational age preterm male infants with fetal growth restriction. J. Perinatol. 2017, 37, 843–847. [Google Scholar] [CrossRef]
- Thorsted, A.; Lauridsen, J.; Høyer, B.; Arendt, L.H.; Bech, B.; Toft, G.; Hougaard, K.; Olsen, J.; Bonde, J.P.; Ramlau-Hansen, C. Birth weight for gestational age and the risk of infertility: A Danish cohort study. Hum. Reprod. 2020, 35, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Kerkhof, G.F.; Leunissen, R.W.; Willemsen, R.H.; de Jong, F.H.; Stijnen, T.; Hokken-Koelega, A.C. Influence of preterm birth and birth size on gonadal function in young men. J. Clin. Endocrinol. Metab. 2009, 94, 4243–4250. [Google Scholar] [CrossRef]
- Boonstra, V.H.; Weber, R.F.; de Jong, F.H.; Hokken-Koelega, A.C. Testis function in prepubertal boys and young men born small for gestational age. Horm. Res. 2008, 70, 357–363. [Google Scholar] [CrossRef]
- Jensen, R.B.; Vielwerth, S.; Larsen, T.; Greisen, G.; Veldhuis, J.; Juul, A. Pituitary-gonadal function in adolescent males born appropriate or small for gestational age with or without intrauterine growth restriction. J. Clin. Endocrinol. Metab. 2007, 92, 1353–1357. [Google Scholar] [CrossRef]
- Meng, F.; Yao, M.; Li, S.; Tian, A.; Zhang, C.; Luo, X. The impact of impaired intrauterine growth on male fertility: A systematic review and meta-analysis. Andrology 2024, 12, 1651–1660. [Google Scholar] [CrossRef]
- Verkauskiene, R.; Petraitiene, I.; Albertsson Wikland, K. Puberty in children born small for gestational age. Horm. Res. Paediatr. 2013, 80, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Meas, T.; Deghmoun, S.; Lévy-Marchal, C.; Bouyer, J. Fertility is not altered in young adults born small for gestational age. Hum. Reprod. 2010, 25, 2354–2359. [Google Scholar] [CrossRef] [PubMed]
- Lorthe, E.; Benhammou, V.; Marchand-Martin, L.; Pierrat, V.; Lebeaux, C.; Durox, M.; Goffinet, F.; Kaminski, M.; Ancel, P.Y. Cohort Profile: The Etude Epidémiologique sur les Petits Ages Gestationnels-2 (EPIPAGE-2) preterm birth cohort. Int. J. Epidemiol. 2021, 50, 1428–1429m. [Google Scholar] [CrossRef]
- Fields, D.A.; Gilchrist, J.M.; Catalano, P.M.; Giannì, M.L.; Roggero, P.M.; Mosca, F. Longitudinal body composition data in exclusively breast-fed infants: A multicenter study. Obesity 2011, 19, 1887–1891. [Google Scholar] [CrossRef]
- Fomon, S.J.; Nelson, S.E. Body composition of the male and female reference infants. Annu. Rev. Nutr. 2002, 22, 1–17. [Google Scholar] [CrossRef]
- Andersen, G.S.; Girma, T.; Wells, J.C.; Kæstel, P.; Leventi, M.; Hother, A.L.; Michaelsen, K.F.; Friis, H. Body composition from birth to 6 mo of age in Ethiopian infants: Reference data obtained by air-displacement plethysmography. Am. J. Clin. Nutr. 2013, 98, 885–894. [Google Scholar] [CrossRef]
- Jain, V.; Kurpad, A.V.; Kumar, B.; Devi, S.; Sreenivas, V.; Paul, V.K. Body composition of term healthy Indian newborns. Eur. J. Clin. Nutr. 2016, 70, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.M.; Kaar, J.L.; Ringham, B.M.; Hockett, C.W.; Glueck, D.H.; Dabelea, D. Sex differences in infant body composition emerge in the first 5 months of life. J. Pediatr. Endocrinol. Metab. 2019, 32, 1235–1239. [Google Scholar] [CrossRef]
- Chachlaki, K.; Le Duc, K.; Storme, L.; Prevot, V. Novel insights into minipuberty and GnRH: Implications on neurodevelopment, cognition, and COVID-19 therapeutics. J. Neuroendocrinol. 2024, 36, e13387. [Google Scholar] [CrossRef]
- Kung, K.T.; Browne, W.V.; Constantinescu, M.; Noorderhaven, R.M.; Hines, M. Early postnatal testosterone predicts sex-related differences in early expressive vocabulary. Psychoneuroendocrinology 2016, 68, 111–116. [Google Scholar] [CrossRef]
- Lombardo, M.V.; Ashwin, E.; Auyeung, B.; Chakrabarti, B.; Taylor, K.; Hackett, G.; Bullmore, E.T.; Baron-Cohen, S. Fetal testosterone influences sexually dimorphic gray matter in the human brain. J. Neurosci. 2012, 32, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Hines, M.; Constantinescu, M.; Spencer, D. Early androgen exposure and human gender development. Biol. Sex. Differ. 2015, 6, 3. [Google Scholar] [CrossRef]
- Prévot, V.; Tena-Sempere, M.; Pitteloud, N. New Horizons: Gonadotropin-Releasing Hormone and Cognition. J. Clin. Endocrinol. Metab. 2023, 108, 2747–2758. [Google Scholar] [CrossRef]
- Roa, J.; Tena-Sempere, M. Unique Features of a Unique Cell: The Wonder World of GnRH Neurons. Endocrinology 2018, 159, 3895–3896. [Google Scholar] [CrossRef]
- Campbell, R.E.; Coolen, L.M.; Hoffman, G.E.; Hrabovszky, E. Highlights of neuroanatomical discoveries of the mammalian gonadotropin-releasing hormone system. J. Neuroendocrinol. 2022, 34, e13115. [Google Scholar] [CrossRef] [PubMed]
- Kałużna, M.; Budny, B.; Rabijewski, M.; Kałużny, J.; Dubiel, A.; Trofimiuk-Müldner, M.; Wrotkowska, E.; Hubalewska-Dydejczyk, A.; Ruchała, M.; Ziemnicka, K. Defects in GnRH Neuron Migration/Development and Hypothalamic-Pituitary Signaling Impact Clinical Variability of Kallmann Syndrome. Genes 2021, 12, 868. [Google Scholar] [CrossRef]
- Manfredi-Lozano, M.; Leysen, V.; Adamo, M.; Paiva, I.; Rovera, R.; Pignat, J.M.; Timzoura, F.E.; Candlish, M.; Eddarkaoui, S.; Malone, S.A.; et al. GnRH replacement rescues cognition in Down syndrome. Science 2022, 377, eabq4515. [Google Scholar] [CrossRef] [PubMed]
- Ab Rahim, S.N.; Omar, J.; Tuan Ismail, T.S. Gonadotropin-releasing hormone stimulation test and diagnostic cutoff in precocious puberty: A mini review. Ann. Pediatr. Endocrinol. Metab. 2020, 25, 152–155. [Google Scholar] [CrossRef]
- Starzyk, J.; Wójcik, M.; Wojtyś, J.; Tomasik, P.; Mitkowska, Z.; Pietrzyk, J.J. Ovarian hyperstimulation syndrome in newborns--a case presentation and literature review. Horm. Res. 2009, 71, 60–64. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serbis, A.; Kosmeri, C.; Atzemoglou, N.; Lampropoulou, K.-M.; Giaprou, L.-E.; Rallis, D.; Giapros, V. Decoding Mini-Puberty and Its Clinical Significance: A Narrative Review. Endocrines 2025, 6, 28. https://doi.org/10.3390/endocrines6020028
Serbis A, Kosmeri C, Atzemoglou N, Lampropoulou K-M, Giaprou L-E, Rallis D, Giapros V. Decoding Mini-Puberty and Its Clinical Significance: A Narrative Review. Endocrines. 2025; 6(2):28. https://doi.org/10.3390/endocrines6020028
Chicago/Turabian StyleSerbis, Anastasios, Chrysoula Kosmeri, Natalia Atzemoglou, Katerina-Marina Lampropoulou, Lida-Eleni Giaprou, Dimitrios Rallis, and Vasileios Giapros. 2025. "Decoding Mini-Puberty and Its Clinical Significance: A Narrative Review" Endocrines 6, no. 2: 28. https://doi.org/10.3390/endocrines6020028
APA StyleSerbis, A., Kosmeri, C., Atzemoglou, N., Lampropoulou, K.-M., Giaprou, L.-E., Rallis, D., & Giapros, V. (2025). Decoding Mini-Puberty and Its Clinical Significance: A Narrative Review. Endocrines, 6(2), 28. https://doi.org/10.3390/endocrines6020028