Preparation of Li3PS4–Li3PO4 Solid Electrolytes by Liquid-Phase Shaking for All-Solid-State Batteries
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ion. 2011, 182, 53–58. [Google Scholar] [CrossRef]
- Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Tatsumisago, Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion. 2011, 182, 116–119. [Google Scholar] [CrossRef]
- Feng, X.; Chien, P.-H.; Patel, S.; Zheng, J.; Immediato-Scuotto, M.; Xin, Y.; Hung, I.; Gan, Z.; Hu, Y.-Y. Synthesis and characterizations of highly conductive and stable electrolyte Li10P3S12I. Energy Storage Mater. 2019, 22, 397–401. [Google Scholar] [CrossRef]
- Spannenberger, S.; Miß, V.; Klotz, E.; Kettner, J.; Cronau, M.; Ramanayagam, A.; Di Capua, F.; Elsayed, M.; Krause-Rehberg, R.; Vogel, M.; et al. Annealing-induced vacancy formation enables extraordinarily high Li+ ion conductivity in the amorphous electrolyte 0.33LiI + 0.67Li3PS4. Solid State Ion. 2019, 341. [Google Scholar] [CrossRef]
- Ohtomo, T.; Hayashi, A.; Tatsumisago, M.; Kawamoto, K. Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives. J. Mater. Sci. 2013, 48, 4137–4142. [Google Scholar] [CrossRef]
- Calpa, M.; Rosero-Navarro, N.C.; Miura, A.; Jalem, R.; Tateyama, Y.; Tadanaga, K. Chemical stability of Li4PS4I solid electrolyte against hydrolysis. Appl. Mater. Today 2021, 22, 100918. [Google Scholar]
- Takada, K.; Osada, M.; Ohta, N.; Inada, T.; Kajiyama, A.; Sasaki, H.; Kondo, S.; Watanabe, M.; Sasaki, T. Lithium ion conductive oxysulfide, Li3PO4–Li3PS4. Solid State Ion. 2005, 176, 2355–2359. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, W.; Payzant, E.A.; Yu, X.; Wu, Z.; Dudney, N.J.; Kiggans, J.; Hong, K.; Rondinone, A.J.; Liang, C. Anomalous high ionic conductivity of nanoporous beta-Li3PS4. J. Am. Chem. Soc. 2013, 135, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Tsukasaki, H.; Mori, S.; Morimoto, H.; Hayashi, A.; Tatsumisago, M. Direct observation of a non-crystalline state of Li2S-P2S5 solid electrolytes. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Tsukasaki, H.; Mori, S.; Shiotani, S.; Yamamura, H. Yamamura, Ionic conductivity and crystallization process in the Li2S–P2S5 glass electrolyte. Solid State Ion. 2018, 317, 122–126. [Google Scholar] [CrossRef]
- Ohara, K.; Masuda, N.; Yamaguchi, H.; Yao, A.; Tominaka, S.; Yamada, H.; Hiroi, S.; Takahashi, M.; Yamamoto, K.; Wakihara, T.; et al. Observation of Liquid Phase Synthesis of Sulfide Solid Electrolytes Using Time-Resolved Pair Distribution Function Analysis. Phys. Status Solidi 2020, 257, 2000106. [Google Scholar] [CrossRef]
- Yamamoto, K.; Takahashi, M.; Ohara, K.; Phuc, N.H.H.; Yang, S.; Watanabe, T.; Uchiyama, T.; Sakuda, A.; Hayashi, A.; Tatsumisago, M.; et al. Synthesis of Sulfide Solid Electrolytes through the Liquid Phase: Optimization of the Preparation Conditions. ACS Omega 2020, 5, 26287–26294. [Google Scholar] [CrossRef]
- Takahashi, M.; Yang, S.; Yamamoto, K.; Ohara, K.; Phuc, N.H.H.; Watanabe, T.; Uchiyama, T.; Sakuda, A.; Hayashi, A.; Tatsumisago, M.; et al. Improvement of lithium ionic conductivity of Li3PS4 through suppression of crystallization using low-boiling-point solvent in liquid-phase synthesis. Solid State Ion. 2021, 361, 115568. [Google Scholar] [CrossRef]
- Calpa, M.; Rosero-Navarro, N.C.; Miura, A.; Terai, K.; Utsuno, F.; Tadanaga, K. Tadanaga, Formation Mechanism of Thiophosphate Anions in the Liquid-Phase Synthesis of Sulfide Solid Electrolytes Using Polar Aprotic Solvents. Chem. Mater. 2020, 32, 9627–9632. [Google Scholar] [CrossRef]
- Ghidiu, M.; Schlem, R.; Zeier, W.G. Pyridine Complexes as Tailored Precursors for Rapid Synthesis of Thiophosphate Superionic Conductors. Batter. Supercaps 2020. [Google Scholar] [CrossRef]
- Maniwa, R.; Calpa, M.; Rosero-Navarro, N.C.; Miura, A.; Tadanaga, K. Synthesis of sulfide solid electrolytes from Li2S and P2S5 in anisole. J. Mater. Chem. A 2021, 9, 400–405. [Google Scholar] [CrossRef]
- Phuc, N.H.H.; Morikawa, K.; Totani, M.; Muto, H.; Matsuda, A. Chemical synthesis of Li3PS4 precursor suspension by liquid-phase shaking. Solid State Ion. 2016, 285, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Phuc, N.H.H.; Totani, M.; Morikawa, K.; Muto, H.; Matsuda, A. Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium. Solid State Ion. 2016, 288, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Phuc, N.H.H.; Morikawa, K.; Mitsuhiro, T.; Muto, H.; Matsuda, A. Synthesis of plate-like Li3PS4 solid electrolyte via liquid-phase shaking for all-solid-state lithium batteries. Ionics 2017, 23, 2061–2067. [Google Scholar] [CrossRef]
- Phuc, N.H.H.; Muto, H.; Matsuda, A. Fast preparation of Li3PS4 solid electrolyte using methyl propionate as synthesis medium. Mater. Today Proc. 2019, 16, 216–219. [Google Scholar] [CrossRef]
- Wang, H.; Hood, Z.D.; Xia, Y.; Liang, C. Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. J. Mater. Chem. A 2016, 4, 8091–8096. [Google Scholar] [CrossRef]
- Ito, S.; Nakakita, M.; Aihara, Y.; Uehara, T.; Machida, N. A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent. J. Power Sources 2014, 271, 342–345. [Google Scholar] [CrossRef]
- Xu, R.; Xia, X.; Yao, Z.; Wang, X.; Gu, C.; Tu, J. Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries. Electrochim. Acta 2016, 219, 235–240. [Google Scholar] [CrossRef]
- Ziolkowska, D.A.; Arnold, W.; Druffel, T.; Sunkara, M.K.; Wang, H. Rapid and Economic Synthesis of a Li7PS6 Solid Electrolyte from a Liquid Approach. ACS Appl. Mater. Interfaces 2019, 11, 6015–6021. [Google Scholar] [CrossRef]
- Yubuchi, S.; Uematsu, M.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. Lithium-Ion-Conducting Argyrodite-Type Li6PS5X (X = Cl, Br, I) Solid Electrolytes Prepared by a Liquid-Phase Technique Using Ethanol as a Solvent. ACS Appl. Energy Mater. 2018, 1, 3622–3629. [Google Scholar] [CrossRef]
- Zhou, L.; Park, K.-H.; Sun, X.; Lalère, F.; Adermann, T.; Hartmann, P.; Nazar, L.F. Solvent-Engineered Design of Argyrodite Li6PS5X (X = Cl, Br, I) Solid Electrolytes with High Ionic Conductivity. ACS Energy Lett. 2018, 4, 265–270. [Google Scholar] [CrossRef]
- Chida, S.; Miura, A.; Rosero-Navarro, N.C.; Higuchi, M.; Phuc, N.H.; Muto, H.; Matsuda, A.; Tadanaga, K. Liquid-phase synthesis of Li6PS5Br using ultrasonication and application to cathode composite electrodes in all-solid-state batteries. Ceram. Int. 2018, 44, 742–746. [Google Scholar] [CrossRef] [Green Version]
- Rangasamy, E.; Liu, Z.; Gobet, M.; Pilar, K.; Sahu, G.; Zhou, W.; Wu, H.; Greenbaum, S.; Liang, C. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 2015, 137, 1384–1387. [Google Scholar] [CrossRef]
- Phuc, N.H.H.; Hirahara, E.; Morikawa, K.; Muto, H.; Matsuda, A. One-pot liquid phase synthesis of (100 − x)Li3PS4—xLiI solid electrolytes. J. Power Sources 2017, 365, 7–11. [Google Scholar] [CrossRef]
- Phuc, N.H.H.; Yamamoto, T.; Muto, H.; Matsuda, A. Fast synthesis of Li2S–P2S5–LiI solid electrolyte precursors. Inorg. Chem. Front. 2017, 4, 1660–1664. [Google Scholar] [CrossRef]
- Yamamoto, T.; Phuc, N.H.H.; Muto, H.; Matsuda, A. Preparation of Li7P2S8I Solid Electrolyte and Its Application in All-Solid-State Lithium-Ion Batteries with Graphite Anode. Electron. Mater. Lett. 2019, 15, 409–414. [Google Scholar] [CrossRef]
- Arnold, W.; Buchberger, D.A.; Li, Y.; Sunkara, M.; Druffel, T.; Wang, H. Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X= Cl, Br, I) superionic conductors. J. Power Sources 2020, 464, 228158. [Google Scholar] [CrossRef]
- Li, J.; Liu, W.; Zhang, X.; Ma, Y.; Wei, Y.; Fu, Z.; Li, J.; Yan, Y. Heat treatment effects in oxygen-doped β-Li3PS4 solid electrolyte prepared by wet chemistry method. J. Solid State Electrochem. 2021, 1–11. [Google Scholar] [CrossRef]
- Takada, K.; Aotani, N.; Kondo, S. Electrochemical behaviors of Li+ ion conductor, Li3PO4-Li2S-SiS2. J. Power Sources 1993, 43–44, 135–141. [Google Scholar] [CrossRef]
- Nagamedianova, Z.; Hernández, A.; Sánchez, E. Conductivity studies on LiX–Li2S–Sb2S3–P2S5 (X = LiI or Li3PO4) glassy system. Ionics 2006, 12, 315–322. [Google Scholar] [CrossRef]
- Mo, S.; Lu, P.; Ding, F.; Xu, Z.; Liu, J.; Liu, X.; Xu, Q. High-temperature performance of all-solid-state battery assembled with 95(0.7Li2S-0.3P2S5)-5Li3PO4 glass electrolyte. Solid State Ion. 2016, 296, 37–41. [Google Scholar] [CrossRef]
- Hayashi, K.T.A.; Tatsumisago, M.; Minami, T.; Miura, Y. Structural Change Accompanying Crystallization in the Lithium lon Conductive Li2S-SiS2-Li3PO4 Oxysulfide Glasses. J. Ceram. Soc. Jpn. 1999, 107, 510–516. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Yao, X.; Huang, Z.; Guan, Y.; Jin, Y.; Xu, X. Li3PO4 -doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries. J. Power Sources 2015, 284, 206–211. [Google Scholar] [CrossRef]
- Eckert, Z.Z.H.; Kennedy, J.H. Structural Transformation of Non-Oxide Chalcogenide Glasses. The Short-Range Order of Li2S-P2S5 Glasses Studied by Quantitative 31 P and 6, 7Li High-Resolution Solid-state NMR. Chem. Mater. 1990, 2, 273–279. [Google Scholar] [CrossRef]
- Gobet, M.; Greenbaum, S.; Sahu, G.; Liang, C. Structural Evolution and Li Dynamics in Nanophase Li3PS4 by Solid-State and Pulsed-Field Gradient NMR. Chem. Mater. 2014, 26, 3558–3564. [Google Scholar] [CrossRef]
- Tao, Y.; Chen, S.; Liu, D.; Peng, G.; Yao, X.; Xu, X. Lithium Superionic Conducting Oxysulfide Solid Electrolyte with Excellent Stability against Lithium Metal for All-Solid-State Cells. J. Electrochem. Soc. 2016, 163, A96–A101. [Google Scholar] [CrossRef]
- Wang, R.X.X.; Li, H.; Chen, L. Oxygen-driven transition from two-dimensional to three-dimensional transport behavior in β-Li3PS4 electrolyte. Phys. Chem. Chem. Phys. 2016, 18, 21269–21277. [Google Scholar] [CrossRef] [PubMed]
- Machida, N.; Yoneda, Y.; Shigematsu, T. Mechano-chemical Synthesis of Lithium Ion Conducting Materials in the System Li20-Li2S-P2S5. J. Jpn. Soc. Powder Powder Metall. 2004, 51, 91–97. [Google Scholar] [CrossRef]
- Xie, D.; Chen, S.; Zhang, Z.; Ren, J.; Yao, L.; Wu, L.; Yao, X.; Xu, X. High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries. J. Power Sources 2018, 389, 140–147. [Google Scholar] [CrossRef]
- Zhu, Y.; He, X.; Mo, Y. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Appl. Mater. Interfaces 2015, 7, 23685–23693. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phuc, N.H.H.; Maeda, T.; Yamamoto, T.; Muto, H.; Matsuda, A. Preparation of Li3PS4–Li3PO4 Solid Electrolytes by Liquid-Phase Shaking for All-Solid-State Batteries. Electron. Mater. 2021, 2, 39-48. https://doi.org/10.3390/electronicmat2010004
Phuc NHH, Maeda T, Yamamoto T, Muto H, Matsuda A. Preparation of Li3PS4–Li3PO4 Solid Electrolytes by Liquid-Phase Shaking for All-Solid-State Batteries. Electronic Materials. 2021; 2(1):39-48. https://doi.org/10.3390/electronicmat2010004
Chicago/Turabian StylePhuc, Nguyen H. H., Takaki Maeda, Tokoharu Yamamoto, Hiroyuki Muto, and Atsunori Matsuda. 2021. "Preparation of Li3PS4–Li3PO4 Solid Electrolytes by Liquid-Phase Shaking for All-Solid-State Batteries" Electronic Materials 2, no. 1: 39-48. https://doi.org/10.3390/electronicmat2010004
APA StylePhuc, N. H. H., Maeda, T., Yamamoto, T., Muto, H., & Matsuda, A. (2021). Preparation of Li3PS4–Li3PO4 Solid Electrolytes by Liquid-Phase Shaking for All-Solid-State Batteries. Electronic Materials, 2(1), 39-48. https://doi.org/10.3390/electronicmat2010004