Portable Photovoltaic-Self-Powered Flexible Electrochromic Windows for Adaptive Envelopes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Deposition and Characterization
2.3. Device Fabrication
3. Results and Discussion
3.1. Optimization of Electrochromic Components
3.1.1. Working Electrode
3.1.2. Ion Storage Counter Electrode
3.2. Devices Assembly and Electronic Control Design
3.2.1. Power Supply Characterization
3.2.2. Device Scale-Up and Operating Conditions
3.2.3. Electronic Control Design
3.3. Functional Portable Self-Powered Devices
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casini, M. Active dynamic windows for buildings: A review. Renew. Energy 2018, 119, 923–934. [Google Scholar] [CrossRef]
- Granqvist, C.; Lansåker, P.; Mlyuka, N.; Niklasson, G.; Avendaño, E. Progress in chromogenics: New results for electrochromic and thermochromic materials and devices. Sol. Energy Mater. Sol. Cells 2009, 93, 2032–2039. [Google Scholar] [CrossRef]
- Azens, A.; Granqvist, C.G. Electrochromic smart windows: Energy efficiency and device aspects. J. Solid State Electrochem. 2003, 7, 64–68. [Google Scholar] [CrossRef]
- Aleo, F.; Pennisi, A.; Scalia, S.; Simone, F. Optical and energetic performances of an electrochromic window tested in a “PASSYS” cell. Electrochim. Acta 2001, 46, 2243–2249. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Byker, H.J. Single-Compartment, Self-Erasing, Solution-Phase Electrochromic Devices, Solutions for Use Therein, and Uses Thereof. U.S. Patent US4902108A, 20 February 1990. [Google Scholar]
- Mardare, C.C.; Hassel, A.W. Review on the Versatility of Tungsten Oxide Coatings. Phys. Status Solidi A 2019, 216, 1900047. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://shop.smarttint.com/Automotive-Application_b_11.html (accessed on 5 May 2021).
- Lampert, C. Large-area smart glass and integrated photovoltaics. Sol. Energy Mater. Sol. Cells 2003, 76, 489–499. [Google Scholar] [CrossRef]
- Cannavale, A.; Cossari, P.; Eperon, G.E.; Colella, S.; Fiorito, F.; Gigli, G.; Snaith, H.J.; Listorti, A. Forthcoming perspectives of photoelectrochromic devices: A critical review. Energy Environ. Sci. 2016, 9, 2682–2719. [Google Scholar] [CrossRef]
- Ghosh, A.; Norton, B. Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings. Renew. Energy 2018, 126, 1003–1031. [Google Scholar] [CrossRef]
- Tong, Z.; Tian, Y.; Zhang, H.; Li, X.; Ji, J.; Qu, H.; Li, N.; Zhao, J.; Li, Y. Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices. Sci. China Ser. B Chem. 2017, 60, 13–37. [Google Scholar] [CrossRef]
- Bechinger, C.; Ferrere, S.; Zaban, A.; Sprague, J.R.; Gregg, B.A. Photoelectrochromic windows and displays. Nature 1996, 383, 608–610. [Google Scholar] [CrossRef]
- Wu, J.-J.; Hsieh, M.-D.; Liao, W.-P.; Wu, W.-T.; Chen, J.-S. Fast-Switching Photovoltachromic Cells with Tunable Transmittance. ACS Nano 2009, 3, 2297–2303. [Google Scholar] [CrossRef] [PubMed]
- Bella, F.; Leftheriotis, G.; Griffini, G.; Syrrokostas, G.; Turri, S.; Grätzel, M.; Gerbaldi, C. A New Design Paradigm for Smart Windows: Photocurable Polymers for Quasi-Solid Photoelectrochromic Devices with Excellent Long-Term Stability under Real Outdoor Operating Conditions. Adv. Funct. Mater. 2016, 26, 1127–1137. [Google Scholar] [CrossRef]
- Bogati, S.; Georg, A.; Graf, W. Photoelectrochromic devices based on sputtered WO3 and TiO2 films. Sol. Energy Mater. Sol. Cells 2017, 163, 170–177. [Google Scholar] [CrossRef]
- Ahn, K.-S.; Yoo, S.J.; Kang, M.-S.; Lee, J.-W.; Sung, Y.-E. Tandem dye-sensitized solar cell-powered electrochromic devices for the photovoltaic-powered smart window. J. Power Sources 2007, 168, 533–536. [Google Scholar] [CrossRef]
- Huang, L.-M.; Hu, C.-W.; Liu, H.-C.; Hsu, C.-Y.; Chen, C.-H.; Ho, K.-C. Photovoltaic electrochromic device for solar cell module and self-powered smart glass applications. Sol. Energy Mater. Sol. Cells 2012, 99, 154–159. [Google Scholar] [CrossRef]
- Zhou, F.; Ren, Z.; Zhao, Y.; Shen, X.; Wang, A.; Li, Y.Y.; Surya, C.; Chai, Y. Perovskite Photovoltachromic Supercapacitor with All-Transparent Electrodes. ACS Nano 2016, 10, 5900–5908. [Google Scholar] [CrossRef]
- Huang, L.-M.; Kung, C.-P.; Hu, C.-W.; Peng, C.-Y.; Liu, H.-C. Tunable photovoltaic electrochromic device and module. Sol. Energy Mater. Sol. Cells 2012, 107, 390–395. [Google Scholar] [CrossRef]
- Bechinger, C.; Bullock, J.N.; Zhang, J.; Tracy, C.E.; Benson, D.K.; Deb, S.K.; Branz, H.M. Low-voltage electrochromic device for photovoltaic-powered smart windows. J. Appl. Phys. 1996, 80, 1226–1232. [Google Scholar] [CrossRef] [Green Version]
- Cannavale, A.; Eperon, G.E.; Cossari, P.; Abate, A.; Snaith, H.J.; Gigli, G. Perovskite photovoltachromic cells for building integration. Energy Environ. Sci. 2015, 8, 1578–1584. [Google Scholar] [CrossRef]
- Krebs, F.C.; Espinosa, N.; Hösel, M.; Søndergaard, R.R.; Jørgensen, M. 25th Anniversary Article: Rise to Power—OPV-Based Solar Parks. Adv. Mater. 2013, 26, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.; Jung, Y.-S.; Heo, Y.-J.; Scholes, F.H.; Watkins, S.E.; Subbiah, J.; Jones, D.J.; Kim, D.-Y.; Vak, D. Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells. Adv. Mater. 2015, 27, 1241–1247. [Google Scholar] [CrossRef]
- Dyer, A.L.; Bulloch, R.H.; Zhou, Y.; Kippelen, B.; Reynolds, J.R.; Zhang, F. A Vertically Integrated Solar-Powered Electrochromic Window for Energy Efficient Buildings. Adv. Mater. 2014, 26, 4895–4900. [Google Scholar] [CrossRef]
- Jensen, J.; Dam, H.F.; Reynolds, J.R.; Dyer, A.L.; Krebs, F.C. Manufacture and demonstration of organic photovoltaic-powered electrochromic displays using roll coating methods and printable electrolytes. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 536–545. [Google Scholar] [CrossRef]
- Seshadri, V.; Padilla, J.; Bircan, H.; Radmard, B.; Draper, R.; Wood, M.; Otero, T.F.; Sotzing, G.A. Optimization, preparation, and electrical short evaluation for 30 cm2 active area dual conjugated polymer electrochromic windows. Org. Electron. 2007, 8, 367–381. [Google Scholar] [CrossRef]
- Padilla, J.; Osterholm, A.; Dyer, A.L.; Reynolds, J.R. Process controlled performance for soluble electrochromic polymers. Sol. Energy Mater. Sol. Cells 2015, 140, 54–60. [Google Scholar] [CrossRef]
- Padilla, J.; Seshadri, V.; Sotzing, G.; Otero, T. Maximum contrast from an electrochromic material. Electrochem. Commun. 2007, 9, 1931–1935. [Google Scholar] [CrossRef]
- Kawahara, J.; Ersman, P.A.; Engquist, I.; Berggren, M. Improving the color switch contrast in PEDOT:PSS-based electrochromic displays. Org. Electron. 2012, 13, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Vasilyeva, S.V.; Unur, E.; Walczak, R.M.; Donoghue, E.P.; Rinzler, A.G.; Reynolds, J.R. Color Purity in Polymer Electrochromic Window Devices on Indium−Tin Oxide and Single-Walled Carbon Nanotube Electrodes. ACS Appl. Mater. Interfaces 2009, 1, 2288–2297. [Google Scholar] [CrossRef]
- Unur, E.; Beaujuge, P.M.; Ellinger, S.; Jung, J.-H.; Reynolds, J.R. Black to Transmissive Switching in a Pseudo Three-Electrode Electrochromic Device. Chem. Mater. 2009, 21, 5145–5153. [Google Scholar] [CrossRef]
- Padilla, J.; Otero, T. Contrast limitations of dual electrochromic systems. Electrochem. Commun. 2008, 10, 1–6. [Google Scholar] [CrossRef]
- Badilescu, S. Study of sol–gel prepared nanostructured WO3 thin films and composites for electrochromic applications. Solid State Ionics 2003, 158, 187–197. [Google Scholar] [CrossRef]
- Santos, L.; Wojcik, P.; Pinto, J.V.; Elangovan, E.; Viegas, J.; Pereira, L.; Martins, R.; Fortunato, E. Structure and Morphologic Influence of WO3Nanoparticles on the Electrochromic Performance of Dual-Phasea-WO3/WO3Inkjet Printed Films. Adv. Electron. Mater. 2015, 1, 1400002. [Google Scholar] [CrossRef]
- Hajzeri, M.; Vuk, A.Š.; Perše, L.S.; Čolović, M.; Herbig, B.; Posset, U.; Kržmanc, M.; Orel, B. Sol–gel vanadium oxide thin films for a flexible electronically conductive polymeric substrate. Sol. Energy Mater. Sol. Cells 2012, 99, 62–72. [Google Scholar] [CrossRef]
- Bisquert, J. Analysis of the kinetics of ion intercalation Ion trapping approach to solid-state relaxation processes. Electrochim. Acta 2002, 47, 2435–2449. [Google Scholar] [CrossRef]
- Hassab, S.; Shen, D.E.; Osterholm, A.; Da Rocha, M.; Song, G.; Alesanco, Y.; Viñuales, A.; Rougier, A.; Reynolds, J.R.; Padilla, J. A new standard method to calculate electrochromic switching time. Sol. Energy Mater. Sol. Cells 2018, 185, 54–60. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cánovas-Saura, A.; Ruiz, R.; López-Vicente, R.; Abad, J.; Urbina, A.; Padilla, J. Portable Photovoltaic-Self-Powered Flexible Electrochromic Windows for Adaptive Envelopes. Electron. Mater. 2021, 2, 174-185. https://doi.org/10.3390/electronicmat2020014
Cánovas-Saura A, Ruiz R, López-Vicente R, Abad J, Urbina A, Padilla J. Portable Photovoltaic-Self-Powered Flexible Electrochromic Windows for Adaptive Envelopes. Electronic Materials. 2021; 2(2):174-185. https://doi.org/10.3390/electronicmat2020014
Chicago/Turabian StyleCánovas-Saura, Antonio, Ramón Ruiz, Rodolfo López-Vicente, José Abad, Antonio Urbina, and Javier Padilla. 2021. "Portable Photovoltaic-Self-Powered Flexible Electrochromic Windows for Adaptive Envelopes" Electronic Materials 2, no. 2: 174-185. https://doi.org/10.3390/electronicmat2020014
APA StyleCánovas-Saura, A., Ruiz, R., López-Vicente, R., Abad, J., Urbina, A., & Padilla, J. (2021). Portable Photovoltaic-Self-Powered Flexible Electrochromic Windows for Adaptive Envelopes. Electronic Materials, 2(2), 174-185. https://doi.org/10.3390/electronicmat2020014