Direct Comparison of the Effect of Processing Conditions in Electrolyte-Gated and Bottom-Gated TIPS-Pentacene Transistors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Devices Fabrication
2.2. Characterization Procedure
- IDSVGS curves were taken by scanning VGS from +5 V to −20 V (with constant VDS = −1 V and −20 V) during BG-OFETs characterizations, whereas VGS was scanned from +0.1 V to −0.5 V (with constant VDS = −0.2 V and −0.5 V) during TG-EGOFETs characterizations.
- IDSVDS curves were taken by scanning VDS from 0 V to −20 V (with constant VGS = −10 V and −20 V) during BG-OFETs characterizations, whereas VDS was scanned from 0 V to −0.5 V (with constant VGS = −0.2 V and −0.5 V) during TG-EGOFETs characterizations.
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muccini, M.; Toffanin, S. Organic Light-Emitting Transistors: Towards the Next Generation Display Technology; A Wiley-Science Wise Co-Publication; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 978-1-118-10007-3. [Google Scholar]
- Gomes, A.; Priyadarshana, L.L.; Visser, A.; Carrascal, J.P.; Vertegaal, R. Magicscroll: A Rollable Display Device with Flexible Screen Real Estate and Gestural Input. In Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services, Barcelona, Spain, 3–6 September 2018; ACM: New York, NY, USA, 2018; Volume 6, pp. 1–11. [Google Scholar]
- Koo, J.H.; Kim, D.C.; Shim, H.J.; Kim, T.-H.; Kim, D.-H. Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Adv. Funct. Mater. 2018, 28, 1801834. [Google Scholar] [CrossRef]
- Wu, W.-J.; Chen, J.-W.; Wang, J.-S.; Zhou, L.; Tao, H.; Zou, J.-H.; Xu, M.; Wang, L.; Peng, J.-B.; Chan, M. High-Resolution Flexible AMOLED Display Integrating Gate Driver by Metal–Oxide TFTs. IEEE Electron Device Lett. 2018, 39, 1660–1663. [Google Scholar] [CrossRef]
- Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible Electronics toward Wearable Sensing. Acc. Chem. Res. 2019, 52, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Chen, Z.-Y.; Jiang, N.-R.; Liu, Y.-F.; Bi, Y.-G.; Zhang, X.-L.; Han, W.; Feng, J.; Sun, H.-B. Highly Transparent and Flexible Fabric-Based Organic Light Emitting Devices for Unnoticeable Wearable Displays. Org. Electron. 2020, 76, 105494. [Google Scholar] [CrossRef]
- Lv, J.; Zhou, P.; Zhang, L.; Zhong, Y.; Sui, X.; Wang, B.; Chen, Z.; Xu, H.; Mao, Z. High-Performance Textile Electrodes for Wearable Electronics Obtained by an Improved in Situ Polymerization Method. Chem. Eng. J. 2019, 361, 897–907. [Google Scholar] [CrossRef]
- Lin, P.; Yan, F. Organic Thin-Film Transistors for Chemical and Biological Sensing. Adv. Mater. 2012, 24, 34–51. [Google Scholar] [CrossRef]
- Benfenati, V.; Toffanin, S.; Bonetti, S.; Turatti, G.; Pistone, A.; Chiappalone, M.; Sagnella, A.; Stefani, A.; Generali, G.; Ruani, G.; et al. A Transparent Organic Transistor Structure for Bidirectional Stimulation and Recording of Primary Neurons. Nat. Mater. 2013, 12, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Lago, N.; Cester, A. Flexible and Organic Neural Interfaces: A Review. Appl. Sci. 2017, 7, 1292. [Google Scholar] [CrossRef]
- Kubota, R.; Sasaki, Y.; Minamiki, T.; Minami, T. Chemical Sensing Platforms Based on Organic Thin-Film Transistors Functionalized with Artificial Receptors. ACS Sens. 2019, 4, 2571–2587. [Google Scholar] [CrossRef]
- Kuribara, K.; Hori, Y.; Katashita, T.; Kakita, K.; Tanaka, Y.; Yoshida, M. Organic Physically Unclonable Function on Flexible Substrate Operable at 2 V for IoT/IoE Security Applications. Org. Electron. 2017, 51, 137–141. [Google Scholar] [CrossRef]
- Zeb, S.; Habib, A.; Amin, Y.; Tenhunen, H.; Loo, J. Green Electronic Based Chipless Humidity Sensor for IoT Applications. In Proceedings of the 2018 IEEE Green Technologies Conference (GreenTech), Austin, TX, USA, 4–6 April 2018; pp. 172–175. [Google Scholar]
- Jo, I.Y.; Park, J.-G.; Moon, J.-H.; Jung, J.Y.; Kim, D.E.; Baeg, K.-J. Low-Voltage-Operating Complementary-like Circuits Using Ambipolar Organic-Inorganic Hybrid Thin-Film Transistors with Solid-State-Electrolyte Gate Insulator. Org. Electron. 2019, 75, 105358. [Google Scholar] [CrossRef]
- Cho, S.Y.; Ko, J.M.; Lim, J.; Lee, J.Y.; Lee, C. Inkjet-Printed Organic Thin Film Transistors Based on TIPS Pentacene with Insulating Polymers. J. Mater. Chem. C 2013, 1, 914–923. [Google Scholar] [CrossRef]
- Lago, N.; Buonomo, M.; Imran, S.; Bertani, R.; Wrachien, N.; Bortolozzi, M.; Pedersen, M.G.; Cester, A. TIPS-Pentacene as Biocompatible Material for Solution Processed High-Performance Electronics Operating in Water. IEEE Electron Device Lett. 2018, 39, 1401–1404. [Google Scholar] [CrossRef]
- Park, S.K.; Jackson, T.N.; Anthony, J.E.; Mourey, D.A. High Mobility Solution Processed 6,13-Bis(Triisopropyl-Silylethynyl) Pentacene Organic Thin Film Transistors. Appl. Phys. Lett. 2007, 91, 063514. [Google Scholar] [CrossRef]
- Zhang, Q.; Leonardi, F.; Casalini, S.; Temiño, I.; Mas-Torrent, M. High Performing Solution-Coated Electrolyte-Gated Organic Field-Effect Transistors for Aqueous Media Operation. Sci. Rep. 2016, 6, 39623. [Google Scholar] [CrossRef]
- Zhang, Q.; Leonardi, F.; Casalini, S.; Mas-Torrent, M. Mercury-Mediated Organic Semiconductor Surface Doping Monitored by Electrolyte-Gated Field-Effect Transistors. Adv. Funct. Mater. 2017, 27, 1703899. [Google Scholar] [CrossRef]
- Lago, N.; Wrachien, N.; Pedersen, M.G.; Cester, A. Simultaneous Stimulation and Recording of Cell Activity with Reference-Less Sensors: Is It Feasible? Org. Electron. 2018, 62, 676–684. [Google Scholar] [CrossRef]
- Buonomo, M.; Lago, N. Self-Polarization in Reference-Less Electrolyte-Gated Organic Field-Effect Transistors. IEEE Electron Device Lett. 2020, 41, 477–480. [Google Scholar] [CrossRef]
- Picca, R.A.; Manoli, K.; Macchia, E.; Sarcina, L.; Franco, C.D.; Cioffi, N.; Blasi, D.; Österbacka, R.; Torricelli, F.; Scamarcio, G.; et al. Ultimately Sensitive Organic Bioelectronic Transistor Sensors by Materials and Device Structure Design. Ads. Funct. Mater. 2019, 30, 1904513. [Google Scholar] [CrossRef]
- Piro, B.; Mattana, G.; Reisberg, S. Transistors for Chemical Monitoring of Living Cells. Biosensors 2018, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Lee, J.; Park, N.; Min, H.; Park, H.W.; Kim, D.H.; Lee, H.S. Impact of Energetically Engineered Dielectrics on Charge Transport in Vacuum-Deposited Bis(Triisopropylsilylethynyl)Pentacene. J. Phys. Chem. C 2015, 119, 28819–28827. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, L.; Zhu, X.; Zhou, X.; Chi, L. An Ultrasensitive Organic Semiconductor NO2 Sensor Based on Crystalline TIPS-Pentacene Films. Adv. Mater. 2017, 29, 1703192. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Kim, D.H.; Jang, Y.; Cho, J.H.; Hwang, M.; Park, Y.D.; Kim, Y.H.; Han, J.I.; Cho, K. Solution-Processable Pentacene Microcrystal Arrays for High Performance Organic Field-Effect Transistors. Appl. Phys. Lett. 2007, 90, 132106. [Google Scholar] [CrossRef]
- Cosseddu, P.; Lai, S.; Barbaro, M.; Bonfiglio, A. Ultra-Low Voltage, Organic Thin Film Transistors Fabricated on Plastic Substrates by a Highly Reproducible Process. Appl. Phys. Lett. 2012, 100, 093305. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, B.; Tang, Q.; Ding, X.; Wang, S.; Zhou, Y.; Tong, Y.; Liu, Y. Conformal Transistor Arrays Based on Solution-Processed Organic Crystals. Sci. Rep. 2017, 7, 15367. [Google Scholar] [CrossRef]
- Ohe, T.; Kuribayashi, M.; Yasuda, R.; Tsuboi, A.; Nomoto, K.; Satori, K.; Itabashi, M.; Kasahara, J. Solution-Processed Organic Thin-Film Transistors with Vertical Nanophase Separation. Appl. Phys. Lett. 2008, 93, 053303. [Google Scholar] [CrossRef]
- Li, X.; Kim, K.; Oh, H.; Moon, H.C.; Nam, S.; Kim, S.H. Cone-Jet Printing of Aligned Silver Nanowire/Poly(Ethylene Oxide) Composite Electrodes for Organic Thin-Film Transistors. Org. Electron. 2019, 69, 190–199. [Google Scholar] [CrossRef]
- Jain, S.; Surya, S.G.; Suggisetti, P.K.; Gupta, A.; Rao, V.R. Sensitivity Improvement of Medical Dosimeters Using Solution Processed TIPS-Pentacene FETs. IEEE Sens. J. 2019, 19, 4428–4434. [Google Scholar] [CrossRef]
- Park, B.; Bae, I.-G.; Kwon, O.E.; Jeon, H.G. Organic Thin-Film Transistors Fabricated Using a Slot-Die-Coating Process and Related Sensing Applications. RSC Adv. 2016, 6, 101613–101621. [Google Scholar] [CrossRef]
- Da Rocha, C.T.; Haase, K.; Zheng, Y.; Löffler, M.; Hambsch, M.; Mannsfeld, S.C.B. Solution Coating of Small Molecule/Polymer Blends Enabling Ultralow Voltage and High-Mobility Organic Transistors. Adv. Electron. Mater. 2018, 4, 1800141. [Google Scholar] [CrossRef]
- Lin, Z.; Guo, X.; Zhou, L.; Zhang, C.; Chang, J.; Wu, J.; Zhang, J. Solution-Processed High Performance Organic Thin Film Transistors Enabled by Roll-to-Roll Slot Die Coating Technique. Org. Electron. 2018, 54, 80–88. [Google Scholar] [CrossRef]
- Mattana, G.; Loi, A.; Woytasik, M.; Barbaro, M.; Noël, V.; Piro, B. Inkjet-Printing: A New Fabrication Technology for Organic Transistors. Adv. Mater. Technol. 2017, 2, 1700063. [Google Scholar] [CrossRef]
- Raghuwanshi, V.; Bharti, D.; Mahato, A.K.; Varun, I.; Tiwari, S.P. Solution-Processed Organic Field-Effect Transistors with High Performance and Stability on Paper Substrates. ACS Appl. Mater. Interfaces 2019, 11, 8357–8364. [Google Scholar] [CrossRef]
- Lago, N.; Buonomo, M.; Molina, G.R.; Pollesel, A.; Hensel, R.C.; Sedona, F.; Sambi, M.; Torrent, M.M.; Casalini, S.; Cester, A. Real-time threshold voltage compensation on dual-gate electrolyte-gated organic field-effect transistors. Org. Electron. 2022, 106, 106531. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Sbircea, D.T.; Giovannitti, A.; Xu, J.; Xu, H.; Zhou, G.; Bian, L.; McCulloch, I.; Zhao, N. Liquid–Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing. ACS Appl. Mater. Interfaces 2017, 9, 38687–38694. [Google Scholar] [CrossRef]
- Devynck, M.; Tardy, P.; Wantz, G.; Nicolas, Y.; Hirsch, L. Organic Field-Effect Transistor with Octadecyltrichlorosilane (OTS) Self-Assembled Monolayers on Gate Oxide: Effect of OTS Quality. Eur. Phys. J. Appl. Phys. 2011, 56, 34106. [Google Scholar] [CrossRef]
- Sista, P.; Bhatt, M.P.; Mccary, A.R.; Nguyen, H.; Hao, J.; Biewer, M.C.; Stefan, M.C. Enhancement of OFET Performance of Semiconducting Polymers Containing Benzodithiophene upon Surface Treatment with Organic Silanes. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 2292–2302. [Google Scholar] [CrossRef]
- Smith, J.W.H.; Hill, I.G. Influence of SiO2 Dielectric Preparation on Interfacial Trap Density in Pentacene-Based Organic Thin-Film Transistors. J. Appl. Phys. 2007, 101, 044503. [Google Scholar] [CrossRef]
- Sirringhaus, H. Reliability of Organic Field-Effect Transistors. Adv. Mater. 2009, 21, 3859–3873. [Google Scholar] [CrossRef]
- Servati, P.; Striakhilev, D.; Nathan, A. Above-Threshold Parameter Extraction and Modeling for Amorphous Silicon Thin-Film Transistors. IEEE Trans. Electron Devices 2003, 50, 2227–2235. [Google Scholar] [CrossRef]
- Tu, D.; Herlogsson, L.; Kergoat, L.; Crispin, X.; Berggren, M.; Forchheimer, R. A Static Model for Electrolyte-Gated Organic Field-Effect Transistors. IEEE Trans. Electron Devices 2011, 58, 3574–3582. [Google Scholar] [CrossRef]
- Buonomo, M.; Lago, N.; Cantarella, G.; Wrachien, N.; Natali, M.; Prescimone, F.; Benvenuti, E.; Muccini, M.; Toffanin, S.; Cester, A. Simple and Accurate Single Transistor Technique for Parameters Extraction from Organic and Inorganic Thin Film Devices. Org. Electron. 2018, 63, 376–383. [Google Scholar] [CrossRef]
- Kergoat, L.; Piro, B.; Berggrer, M.; Horowitz, G.; Pham, M.C. Advances in organic transistor-based biosensors: From organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Anal. Bioanal. Chem. 2012, 402, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Lago, N.; Buonomo, M.; Wrachien, N.; Prescimone, F.; Natali, M.; Muccini, M.; Toffanin, S.; Cester, A. A General Equivalent Circuit Model for a Metal/Organic/Liquid/Metal System. IEEE Trans. Electron Devices 2018, 65, 4555–4562. [Google Scholar] [CrossRef]
- Colinge, J.-P. Silicon-on-Insulator Technology: Materials to VLSI: Materials to VLSI, 3rd ed.; Springer: New York, NY, USA, 2004; ISBN 978-1-4020-7773-9. [Google Scholar]
TIPS-P5 Solution | Deposition Temperature (°C) | With HMDS Functionalization | Without HMDS Functionalization | ||
---|---|---|---|---|---|
Mobility (cm2 V−1 s−1) | Threshold Voltage (V) | Mobility (cm2 V−1 s−1) | Threshold Voltage (V) | ||
1% | 30 | 1.62 × 10−3 | −8.37 | 5.17 × 10−4 | −6.98 |
60 | 2.44 × 10−3 | −5.95 | 7.15 × 10−4 | −6.29 | |
90 | 3.86 × 10−3 | −4.68 | 1.16 × 10−3 | −6.44 | |
5% | 30 | 1.35 × 10−3 | −6.35 | 2.60 × 10−4 | −3.22 |
60 | 1.34 × 10−3 | −2.72 | 4.19 × 10−4 | −6.24 | |
90 | 2.70 × 10−3 | −3.07 | 1.17 × 10−3 | −5.21 |
TIPS-P5 Solution | Deposition Temperature (°C) | With HMDS Functionalization | Without HMDS Functionalization | ||
---|---|---|---|---|---|
Mobility (cm2 V−1 s−1) | Threshold Voltage (mV) | Mobility (cm2 V−1 s−1) | Threshold Voltage (mV) | ||
1% | 30 | 4.42 × 10−4 | −136.99 | 1.15 × 10−3 | 56.99 |
60 | 1.41 × 10−4 | −15.17 | 7.23 × 10−4 | 26.19 | |
90 | 1.39 × 10−4 | −19.88 | 4.55 × 10−4 | −3.75 | |
5% | 30 | 1.63 × 10−4 | −54.18 | 1.53 × 10−4 | 75.94 |
60 | 2.81 × 10−5 | 146.36 | 4.91 × 10−4 | 128.08 | |
90 | 3.08 × 10−5 | 102.57 | 2.19 × 10−4 | 96.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lago, N.; Buonomo, M.; Prescimone, F.; Toffanin, S.; Muccini, M.; Cester, A. Direct Comparison of the Effect of Processing Conditions in Electrolyte-Gated and Bottom-Gated TIPS-Pentacene Transistors. Electron. Mater. 2022, 3, 281-290. https://doi.org/10.3390/electronicmat3040024
Lago N, Buonomo M, Prescimone F, Toffanin S, Muccini M, Cester A. Direct Comparison of the Effect of Processing Conditions in Electrolyte-Gated and Bottom-Gated TIPS-Pentacene Transistors. Electronic Materials. 2022; 3(4):281-290. https://doi.org/10.3390/electronicmat3040024
Chicago/Turabian StyleLago, Nicolò, Marco Buonomo, Federico Prescimone, Stefano Toffanin, Michele Muccini, and Andrea Cester. 2022. "Direct Comparison of the Effect of Processing Conditions in Electrolyte-Gated and Bottom-Gated TIPS-Pentacene Transistors" Electronic Materials 3, no. 4: 281-290. https://doi.org/10.3390/electronicmat3040024
APA StyleLago, N., Buonomo, M., Prescimone, F., Toffanin, S., Muccini, M., & Cester, A. (2022). Direct Comparison of the Effect of Processing Conditions in Electrolyte-Gated and Bottom-Gated TIPS-Pentacene Transistors. Electronic Materials, 3(4), 281-290. https://doi.org/10.3390/electronicmat3040024