Historic and Prehistoric Epidemics: An Overview of Sources Available for the Study of Ancient Pathogens
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Contemporary Genomic DNA as a Source of Ancient Pathogens and Epidemics
3.2. Archeological and Historical Sites as Sources of Ancient Pathogens and Epidemics
3.3. Archeological and Historical Samples as a Source of Ancient Pathogens
3.4. Pathology Collections as a Source of Historical Pathogens
3.5. Historical Publications as a Source of Past Epidemics
A Historical Enigma: Sweating Sickness of 15th and 16th Century Europe
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Katzourakis, A. Editorial overview: Paleovirology: The genomic fossil record, and consequences of ancient viral infections. Curr. Opin. Virol. 2017, 25, ix–xi. [Google Scholar] [CrossRef] [PubMed]
- Katzourakis, A.; Gifford, R.J. Endogenous viral elements in animal genomes. PLoS Genet. 2010, 6, e1001191. [Google Scholar] [CrossRef] [PubMed]
- Van der Kuyl, A.C. Contemporary distribution, estimated age, and prehistoric migrations of Old World monkey retroviruses. Epidemiologia 2021, 2, 46–67. [Google Scholar] [CrossRef]
- Chiu, E.S.; VandeWoude, S. Endogenous retroviruses drive resistance and promotion of exogenous retroviral homologs. Annu. Rev. Anim. Biosci. 2021, 9, 225–248. [Google Scholar] [CrossRef]
- Dewannieux, M.; Harper, F.; Richaud, A.; Letzelter, C.; Ribet, D.; Pierron, G.; Heidmann, T. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res. 2006, 16, 1548–1556. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.N.; Bieniasz, P.D. Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog. 2007, 3, e10. [Google Scholar] [CrossRef] [Green Version]
- Spyrou, M.A.; Musralina, L.; Gnecchi Ruscone, G.A.; Kocher, A.; Borbone, P.G.; Khartanovich, V.I.; Buzhilova, A.; Djansugurova, L.; Bos, K.I.; Kühnert, D.; et al. The source of the Black Death in fourteenth-century central Eurasia. Nature 2022, 606, 718–724. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Niu, Y.H. Understanding of smallpox in ancient China. Zhonghua Yi Shi Za Zhi 2021, 51, 294–301. [Google Scholar] [CrossRef]
- Patterson Ross, Z.; Klunk, J.; Fornaciari, G.; Giuffra, V.; Duchêne, S.; Duggan, A.T.; Poinar, D.; Douglas, M.W.; Eden, J.S.; Holmes, E.C.; et al. The paradox of HBV evolution as revealed from a 16th century mummy. PLoS Pathog. 2018, 14, e1006750. [Google Scholar] [CrossRef] [Green Version]
- Drancourt, M.; Aboudharam, G.; Signoli, M.; Dutour, O.; Raoult, D. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: An approach to the diagnosis of ancient septicemia. Proc. Natl. Acad. Sci. USA 1998, 95, 12637–12640. [Google Scholar] [CrossRef]
- Papagrigorakis, M.J.; Yapijakis, C.; Synodinos, P.N.; Baziotopoulou-Valavani, E. DNA examination of ancient dental pulp incriminates typhoid fever as a probable cause of the Plague of Athens. Int. J. Infect. Dis. 2006, 10, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basler, C.F.; Reid, A.H.; Dybing, J.K.; Janczewski, T.A.; Fanning, T.G.; Zheng, H.; Salvatore, M.; Perdue, M.L.; Swayne, D.E.; García-Sastre, A.; et al. Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc. Natl. Acad. Sci. USA 2001, 98, 2746–2751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spyrou, M.A.; Bos, K.I.; Herbig, A.; Krause, J. Ancient pathogen genomics as an emerging tool for infectious disease research. Nat. Rev. Genet. 2019, 20, 323–340. [Google Scholar] [CrossRef] [PubMed]
- Krause-Kyora, B.; Susat, J.; Key, F.M.; Kühnert, D.; Bosse, E.; Immel, A.; Rinne, C.; Kornell, S.C.; Yepes, D.; Franzenburg, S.; et al. Neolithic and medieval virus genomes reveal complex evolution of hepatitis B. eLife 2018, 7, e36666. [Google Scholar] [CrossRef] [PubMed]
- Mühlemann, B.; Jones, T.C.; Damgaard, P.B.; Allentoft, M.E.; Shevnina, I.; Logvin, A.; Usmanova, E.; Panyushkina, I.P.; Boldgiv, B.; Bazartseren, T.; et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature 2018, 557, 418–423. [Google Scholar] [CrossRef] [Green Version]
- Kocher, A.; Papac, L.; Barquera, R.; Key, F.M.; Spyrou, M.A.; Hübler, R.; Rohrlach, A.B.; Aron, F.; Stahl, R.; Wissgott, A.; et al. Ten millennia of hepatitis B virus evolution. Science 2021, 374, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Bos, K.I.; Kühnert, D.; Herbig, A.; Esquivel-Gomez, L.R.; Andrades Valtueña, A.; Barquera, R.; Giffin, K.; Kumar Lankapalli, A.; Nelson, E.A.; Sabin, S.; et al. Paleomicrobiology: Diagnosis and evolution of ancient pathogens. Annu. Rev. Microbiol. 2019, 73, 639–666. [Google Scholar] [CrossRef]
- Arning, N.; Wilson, D.J. The past, present and future of ancient bacterial DNA. Microb. Genom. 2020, 6, mgen000384. [Google Scholar] [CrossRef]
- Duchêne, S.; Ho, S.Y.W.; Carmichael, A.G.; Holmes, E.C.; Poinar, H. The recovery, interpretation and use of ancient pathogen genomes. Curr. Biol. 2020, 30, R1215–R1231. [Google Scholar] [CrossRef]
- PubMed Database. Available online: ncbi.nlm.nih.gov/pubmed (accessed on 19 April 2022).
- Google Scholar. Available online: scholar.google.nl (accessed on 19 April 2022).
- Google Books. Available online: books.google.nl (accessed on 19 April 2022).
- Rosenberg, C.E. What is an epidemic? AIDS in historical perspective. Bull. Hist. Med. 2020, 94, 563–577. [Google Scholar] [CrossRef]
- Online Etymology Dictionary. Available online: etymonline.com/word/plague (accessed on 26 September 2022).
- Belyi, V.A.; Levine, A.J.; Skalka, A.M. Unexpected inheritance: Multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog. 2010, 6, e1001030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasaki, J.; Kojima, S.; Mukai, Y.; Tomonaga, K.; Horie, M. 100-My history of bornavirus infections hidden in vertebrate genomes. Proc. Natl. Acad. Sci. USA 2021, 118, e2026235118. [Google Scholar] [CrossRef]
- Uriu, K.; Kosugi, Y.; Ito, J.; Sato, K. The battle between retroviruses and APOBEC3 Genes: Its past and present. Viruses 2021, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.H.; Gochhait, S.; Malhotra, D.; Pettersson, F.H.; Teo, Y.Y.; Khor, C.C.; Rautanen, A.; Chapman, S.J.; Mills, T.C.; Srivastava, A.; et al. Leprosy and the adaptation of human toll-like receptor 1. PLoS Pathog. 2010, 6, e1000979. [Google Scholar] [CrossRef] [PubMed]
- Hummel, S.; Schmidt, D.; Kremeyer, B.; Herrmann, B.; Oppermann, M. Detection of the CCR5-Delta32 HIV resistance gene in Bronze Age skeletons. Genes Immun. 2005, 6, 371–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremeyer, B.; Hummel, S.; Herrmann, B. Frequency analysis of the delta32ccr5 HIV resistance allele in a medieval plague mass grave. Anthropol. Anz. 2005, 63, 13–22. [Google Scholar] [CrossRef]
- Vargas, A.E.; Cechim, G.; Correa, J.F.; Gomes, P.A.; Macedo, G.S.; de Medeiros, R.M.; Perotoni, G.; Rauber, R.; Villodre, E.S.; Chies, J.A. Pros and cons of a missing chemokine receptor—comments on “Is the European spatial distribution of the HIV-1-resistant CCR5-D32 allele formed by a breakdown of the pathocenosis due to the historical Roman expansion?” by Eric Faure and Manuela Royer-Carenzi (2008). Infect. Genet. Evol. 2009, 9, 387–389. [Google Scholar] [CrossRef]
- Immel, A.; Key, F.M.; Szolek, A.; Barquera, R.; Robinson, M.K.; Harrison, G.F.; Palmer, W.H.; Spyrou, M.A.; Susat, J.; Krause-Kyora, B.; et al. Analysis of genomic DNA from medieval plague victims suggests long-term effect of Yersinia pestis on human immunity genes. Mol. Biol. Evol. 2021, 38, 4059–4076. [Google Scholar] [CrossRef]
- Park, Y.H.; Remmers, E.F.; Lee, W.; Ombrello, A.K.; Chung, L.K.; Shilei, Z.; Stone, D.L.; Ivanov, M.I.; Loeven, N.A.; Barron, K.S.; et al. Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nat. Immunol. 2020, 21, 857–867. [Google Scholar] [CrossRef]
- Lindesmith, L.; Moe, C.; Marionneau, S.; Ruvoen, N.; Jiang, X.; Lindblad, L.; Stewart, P.; LePendu, J.; Baric, R. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 2003, 9, 548–553. [Google Scholar] [CrossRef]
- Thorven, M.; Grahn, A.; Hedlund, K.O.; Johansson, H.; Wahlfrid, C.; Larson, G.; Svensson, L. A homozygous nonsense mutation (428G-->A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J. Virol. 2005, 79, 15351–15355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imbert-Marcille, B.M.; Barbé, L.; Dupé, M.; Le Moullac-Vaidye, B.; Besse, B.; Peltier, C.; Ruvoën-Clouet, N.; Le Pendu, J. A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype. J. Infect. Dis. 2014, 209, 1227–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everitt, A.R.; Clare, S.; Pertel, T.; John, S.P.; Wash, R.S.; Smith, S.E.; Chin, C.R.; Feeley, E.M.; Sims, J.S.; Adams, D.J.; et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 2012, 484, 519–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McManus, K.F.; Taravella, A.M.; Henn, B.M.; Bustamante, C.D.; Sikora, M.; Cornejo, O.E. Population genetic analysis of the DARC locus (Duffy) reveals adaptation from standing variation associated with malaria resistance in humans. PLoS Genet. 2017, 13, e1006560. [Google Scholar] [CrossRef] [Green Version]
- Kerner, G.; Laval, G.; Patin, E.; Boisson-Dupuis, S.; Abel, L.; Casanova, J.L.; Quintana-Murci, L. Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2000 years. Am. J. Hum. Genet. 2021, 108, 517–524. [Google Scholar] [CrossRef]
- Key, F.M.; Peter, B.; Dennis, M.Y.; Huerta-Sánchez, E.; Tang, W.; Prokunina-Olsson, L.; Nielsen, R.; Andrés, A.M. Selection on a variant associated with improved viral clearance drives local, adaptive pseudogenization of interferon lambda 4 (IFNL4). PLoS Genet. 2014, 10, e1004681. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, E.K.; Harris, J.B.; Tabrizi, S.; Rahman, A.; Shlyakhter, I.; Patterson, N.; O’Dushlaine, C.; Schaffner, S.F.; Gupta, S.; Chowdhury, F.; et al. Natural selection in a bangladeshi population from the cholera-endemic ganges river delta. Sci. Transl. Med. 2013, 5, 192ra186. [Google Scholar] [CrossRef] [Green Version]
- Sallares, R.; Bouwman, A.; Anderung, C. The spread of malaria to Southern Europe in antiquity: New approaches to old problems. Med. Hist. 2004, 48, 311–328. [Google Scholar] [CrossRef]
- Karlsson, E.K.; Kwiatkowski, D.P.; Sabeti, P.C. Natural selection and infectious disease in human populations. Nat. Rev. Genet. 2014, 15, 379–393. [Google Scholar] [CrossRef]
- Quintana-Murci, L. Dangerous liaisons: Human genetic adaptation to infectious agents. C. R. Biol. 2021, 343, 297–309. [Google Scholar] [CrossRef]
- Soren, D. Can archaeologists excavate evidence of malaria? World Archaeol. 2003, 35, 193–209. [Google Scholar] [CrossRef]
- Fornaciari, A. Environmental microbial forensics and archaeology of past pandemics. Microbiol. Spectr. 2017, 5, 215–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spyrou, M.A.; Keller, M.; Tukhbatova, R.I.; Scheib, C.L.; Nelson, E.A.; Andrades Valtueña, A.; Neumann, G.U.; Walker, D.; Alterauge, A.; Carty, N.; et al. Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes. Nat. Commun. 2019, 10, 4470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spyrou, M.A.; Tukhbatova, R.I.; Feldman, M.; Drath, J.; Kacki, S.; Beltrán de Heredia, J.; Arnold, S.; Sitdikov, A.G.; Castex, D.; Wahl, J.; et al. Historical Y. pestis genomes reveal the European Black Death as the source of ancient and modern plague pandemics. Cell Host Microbe 2016, 19, 874–881. [Google Scholar] [CrossRef] [Green Version]
- Haensch, S.; Bianucci, R.; Signoli, M.; Rajerison, M.; Schultz, M.; Kacki, S.; Vermunt, M.; Weston, D.A.; Hurst, D.; Achtman, M.; et al. Distinct clones of Yersinia pestis caused the black death. PLoS Pathog. 2010, 6, e1001134. [Google Scholar] [CrossRef] [Green Version]
- Bos, K.I.; Schuenemann, V.J.; Golding, G.B.; Burbano, H.A.; Waglechner, N.; Coombes, B.K.; McPhee, J.B.; DeWitte, S.N.; Meyer, M.; Schmedes, S.; et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature 2011, 478, 506–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guellil, M.; Rinaldo, N.; Zedda, N.; Kersten, O.; Gonzalez Muro, X.; Stenseth, N.C.; Gualdi-Russo, E.; Bramanti, B. Bioarchaeological insights into the last plague of Imola (1630–1632). Sci. Rep. 2021, 11, 22253. [Google Scholar] [CrossRef] [PubMed]
- Harbeck, M.; Seifert, L.; Hänsch, S.; Wagner, D.M.; Birdsell, D.; Parise, K.L.; Wiechmann, I.; Grupe, G.; Thomas, A.; Keim, P.; et al. Yersinia pestis DNA from skeletal remains from the 6(th) century AD reveals insights into Justinianic Plague. PLoS Pathog. 2013, 9, e1003349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, M.; Spyrou, M.A.; Scheib, C.L.; Neumann, G.U.; Kröpelin, A.; Haas-Gebhard, B.; Päffgen, B.; Haberstroh, J.; Ribera, I.L.A.; Raynaud, C.; et al. Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750). Proc. Natl. Acad. Sci. USA 2019, 116, 12363–12372. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, S.; Allentoft, M.E.; Nielsen, K.; Orlando, L.; Sikora, M.; Sjögren, K.G.; Pedersen, A.G.; Schubert, M.; Van Dam, A.; Kapel, C.M.; et al. Early divergent strains of Yersinia pestis in Eurasia 5000 years ago. Cell 2015, 163, 571–582. [Google Scholar] [CrossRef]
- Rascovan, N.; Sjögren, K.G.; Kristiansen, K.; Nielsen, R.; Willerslev, E.; Desnues, C.; Rasmussen, S. Emergence and spread of basal lineages of Yersinia pestis during the Neolithic Decline. Cell 2019, 176, 295–305.e210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrades Valtueña, A.; Neumann, G.U.; Spyrou, M.A.; Musralina, L.; Aron, F.; Beisenov, A.; Belinskiy, A.B.; Bos, K.I.; Buzhilova, A.; Conrad, M.; et al. Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague. Proc. Natl. Acad. Sci. USA 2022, 119, e2116722119. [Google Scholar] [CrossRef] [PubMed]
- Chouin, G. Reflections on plague in African history (14th–19th c.). Afriques 2018, 9, 2228. [Google Scholar] [CrossRef]
- Gallagher, D.E.; Dueppen, S.A. Recognizing plague epidemics in the archaeological record of West Africa. Afriques 2018, 9, 2198. [Google Scholar] [CrossRef]
- Schuenemann, V.J.; Singh, P.; Mendum, T.A.; Krause-Kyora, B.; Jäger, G.; Bos, K.I.; Herbig, A.; Economou, C.; Benjak, A.; Busso, P.; et al. Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 2013, 341, 179–183. [Google Scholar] [CrossRef]
- Schuenemann, V.J.; Avanzi, C.; Krause-Kyora, B.; Seitz, A.; Herbig, A.; Inskip, S.; Bonazzi, M.; Reiter, E.; Urban, C.; Dangvard Pedersen, D.; et al. Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathog. 2018, 14, e1006997. [Google Scholar] [CrossRef] [Green Version]
- Pfrengle, S.; Neukamm, J.; Guellil, M.; Keller, M.; Molak, M.; Avanzi, C.; Kushniarevich, A.; Montes, N.; Neumann, G.U.; Reiter, E.; et al. Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes. BMC Biol. 2021, 19, 220. [Google Scholar] [CrossRef] [PubMed]
- Mendum, T.A.; Schuenemann, V.J.; Roffey, S.; Taylor, G.M.; Wu, H.; Singh, P.; Tucker, K.; Hinds, J.; Cole, S.T.; Kierzek, A.M.; et al. Mycobacterium leprae genomes from a British medieval leprosy hospital: Towards understanding an ancient epidemic. BMC Genom. 2014, 15, 270. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, L.H.; de Souza, S.M.; Dias, O.F.; Iñiguez, A.M. Mycobacterium tuberculosis complex in remains of 18th–19th century slaves, Brazil. Emerg. Infect. Dis. 2013, 19, 837–839. [Google Scholar] [CrossRef]
- Bos, K.I.; Harkins, K.M.; Herbig, A.; Coscolla, M.; Weber, N.; Comas, I.; Forrest, S.A.; Bryant, J.M.; Harris, S.R.; Schuenemann, V.J.; et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 2014, 514, 494–497. [Google Scholar] [CrossRef]
- Müller, R.; Roberts, C.A.; Brown, T.A. Biomolecular identification of ancient Mycobacterium tuberculosis complex DNA in human remains from Britain and continental Europe. Am. J. Phys. Anthropol. 2014, 153, 178–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, G.L.; Sergeant, M.J.; Zhou, Z.; Chan, J.Z.; Millard, A.; Quick, J.; Szikossy, I.; Pap, I.; Spigelman, M.; Loman, N.J.; et al. Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nat. Commun. 2015, 6, 6717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hershkovitz, I.; Donoghue, H.D.; Minnikin, D.E.; Besra, G.S.; Lee, O.Y.; Gernaey, A.M.; Galili, E.; Eshed, V.; Greenblatt, C.L.; Lemma, E.; et al. Detection and molecular characterization of 9000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS ONE 2008, 3, e3426. [Google Scholar] [CrossRef]
- Raoult, D.; Dutour, O.; Houhamdi, L.; Jankauskas, R.; Fournier, P.E.; Ardagna, Y.; Drancourt, M.; Signoli, M.; La, V.D.; Macia, Y.; et al. Evidence for louse-transmitted diseases in soldiers of Napoleon’s Grand Army in Vilnius. J. Infect. Dis. 2006, 193, 112–120. [Google Scholar] [CrossRef]
- Nguyen-Hieu, T.; Aboudharam, G.; Signoli, M.; Rigeade, C.; Drancourt, M.; Raoult, D. Evidence of a louse-borne outbreak involving typhus in Douai, 1710–1712 during the war of Spanish succession. PLoS ONE 2010, 5, e15405. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.N.; Forestier, C.L.; Drancourt, M.; Raoult, D.; Aboudharam, G. Brief communication: Co-detection of Bartonella quintana and Yersinia pestis in an 11th–15th burial site in Bondy, France. Am. J. Phys. Anthropol. 2011, 145, 489–494. [Google Scholar] [CrossRef]
- Barbieri, R.; Drancourt, M.; Raoult, D. The role of louse-transmitted diseases in historical plague pandemics. Lancet Infect. Dis. 2021, 21, e17–e25. [Google Scholar] [CrossRef]
- Guellil, M.; Kersten, O.; Namouchi, A.; Bauer, E.L.; Derrick, M.; Jensen, A.; Stenseth, N.C.; Bramanti, B. Genomic blueprint of a relapsing fever pathogen in 15th century Scandinavia. Proc. Natl. Acad. Sci. USA 2018, 115, 10422–10427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oumarou Hama, H.; Barbieri, R.; Guirou, J.; Chenal, T.; Mayer, A.; Ardagna, Y.; Signoli, M.; Aboudharam, G.; Raoult, D.; Drancourt, M. An outbreak of relapsing fever unmasked by microbial paleoserology, 16th century, France. Am. J. Phys. Anthropol. 2020, 173, 784–789. [Google Scholar] [CrossRef]
- De-Dios, T.; Carrión, P.; Olalde, I.; Llovera Nadal, L.; Lizano, E.; Pàmies, D.; Marques-Bonet, T.; Balloux, F.; van Dorp, L.; Lalueza-Fox, C. Salmonella enterica from a soldier from the 1652 siege of Barcelona (Spain) supports historical transatlantic epidemic contacts. iScience 2021, 24, 103021. [Google Scholar] [CrossRef]
- Warinner, C.; García, N.R.; Spores, R.; Tuross, N. Disease, demography, and diet in early colonial New Spain: Investigation of a sixteenth-century Mixtec cemetery at Teposcolula Yucundaa. Lat. Am. Antiq. 2012, 23, 467–489. [Google Scholar] [CrossRef] [Green Version]
- Vågene, Å.J.; Herbig, A.; Campana, M.G.; Robles García, N.M.; Warinner, C.; Sabin, S.; Spyrou, M.A.; Andrades Valtueña, A.; Huson, D.; Tuross, N.; et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat. Ecol. Evol. 2018, 2, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Haller, M.; Callan, K.; Susat, J.; Flux, A.L.; Immel, A.; Franke, A.; Herbig, A.; Krause, J.; Kupczok, A.; Fouquet, G.; et al. Mass burial genomics reveals outbreak of enteric paratyphoid fever in the Late Medieval trade city Lübeck. iScience 2021, 24, 102419. [Google Scholar] [CrossRef]
- Wu, X.; Ning, C.; Key, F.M.; Andrades Valtueña, A.; Lankapalli, A.K.; Gao, S.; Yang, X.; Zhang, F.; Liu, L.; Nie, Z.; et al. A 3000-year-old, basal S. enterica lineage from Bronze Age Xinjiang suggests spread along the Proto-Silk Road. PLoS Pathog. 2021, 17, e1009886. [Google Scholar] [CrossRef]
- Zhou, Z.; Lundstrøm, I.; Tran-Dien, A.; Duchêne, S.; Alikhan, N.F.; Sergeant, M.J.; Langridge, G.; Fotakis, A.K.; Nair, S.; Stenøien, H.K.; et al. Pan-genome analysis of ancient and modern Salmonella enterica demonstrates genomic stability of the invasive Para C lineage for millennia. Curr. Biol. 2018, 28, 2420–2428.e2410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biagini, P.; Thèves, C.; Balaresque, P.; Géraut, A.; Cannet, C.; Keyser, C.; Nikolaeva, D.; Gérard, P.; Duchesne, S.; Orlando, L.; et al. Variola virus in a 300-year-old Siberian mummy. N. Engl. J. Med. 2012, 367, 2057–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guellil, M.; Keller, M.; Dittmar, J.M.; Inskip, S.A.; Cessford, C.; Solnik, A.; Kivisild, T.; Metspalu, M.; Robb, J.E.; Scheib, C.L. An invasive Haemophilus influenzae serotype b infection in an Anglo-Saxon plague victim. Genome biology 2022, 23, 22. [Google Scholar] [CrossRef] [PubMed]
- Giffin, K.; Lankapalli, A.K.; Sabin, S.; Spyrou, M.A.; Posth, C.; Kozakaitė, J.; Friedrich, R.; Miliauskienė, Ž.; Jankauskas, R.; Herbig, A.; et al. A treponemal genome from an historic plague victim supports a recent emergence of yaws and its presence in 15(th) century Europe. Sci Rep 2020, 10, 9499. [Google Scholar] [CrossRef] [PubMed]
- Schuenemann, V.J.; Kumar Lankapalli, A.; Barquera, R.; Nelson, E.A.; Iraíz Hernández, D.; Acuña Alonzo, V.; Bos, K.I.; Márquez Morfín, L.; Herbig, A.; Krause, J. Historic Treponema pallidum genomes from Colonial Mexico retrieved from archaeological remains. PLoS Negl. Trop. Dis. 2018, 12, e0006447. [Google Scholar] [CrossRef] [Green Version]
- Majander, K.; Pfrengle, S.; Kocher, A.; Neukamm, J.; du Plessis, L.; Pla-Díaz, M.; Arora, N.; Akgül, G.; Salo, K.; Schats, R.; et al. Ancient bacterial genomes reveal a high diversity of Treponema pallidum strains in early modern Europe. Curr. Biol. 2020, 30, 3788–3803.e10. [Google Scholar] [CrossRef]
- Gogarten, J.F.; Düx, A.; Schuenemann, V.J.; Nowak, K.; Boesch, C.; Wittig, R.M.; Krause, J.; Calvignac-Spencer, S.; Leendertz, F.H. Tools for opening new chapters in the book of Treponema pallidum evolutionary history. Clin Microbiol Infect 2016, 22, 916–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beale, M.A.; Lukehart, S.A. Archaeogenetics: What can ancient genomes tell us about the origin of syphilis? Curr Biol 2020, 30, R1092–R1095. [Google Scholar] [CrossRef] [PubMed]
- Knell, R.J. Syphilis in renaissance Europe: Rapid evolution of an introduced sexually transmitted disease? Proc. Biol. Sci. 2004, 271 (Suppl. S4), S174–S176. [Google Scholar] [CrossRef] [Green Version]
- Tampa, M.; Sarbu, I.; Matei, C.; Benea, V.; Georgescu, S.R. Brief history of syphilis. J. Med. Life 2014, 7, 4–10. [Google Scholar] [PubMed]
- Mühlemann, B.; Vinner, L.; Margaryan, A.; Wilhelmson, H.; de la Fuente Castro, C.; Allentoft, M.E.; de Barros Damgaard, P.; Hansen, A.J.; Holtsmark Nielsen, S.; Strand, L.M.; et al. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age. Science 2020, 369, eaaw8977. [Google Scholar] [CrossRef] [PubMed]
- Toppinen, M.; Perdomo, M.F.; Palo, J.U.; Simmonds, P.; Lycett, S.J.; Söderlund-Venermo, M.; Sajantila, A.; Hedman, K. Bones hold the key to DNA virus history and epidemiology. Sci. Rep. 2015, 5, 17226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mühlemann, B.; Margaryan, A.; Damgaard, P.B.; Allentoft, M.E.; Vinner, L.; Hansen, A.J.; Weber, A.; Bazaliiskii, V.I.; Molak, M.; Arneborg, J.; et al. Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans. Proc. Natl. Acad. Sci. USA 2018, 115, 7557–7562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzmán-Solís, A.A.; Villa-Islas, V.; Bravo-López, M.J.; Sandoval-Velasco, M.; Wesp, J.K.; Gómez-Valdés, J.A.; Moreno-Cabrera, M.L.; Meraz, A.; Solís-Pichardo, G.; Schaaf, P.; et al. Ancient viral genomes reveal introduction of human pathogenic viruses into Mexico during the transatlantic slave trade. eLife 2021, 10, e68612. [Google Scholar] [CrossRef]
- Loreille, O.; Roumat, E.; Verneau, O.; Bouchet, F.; Hänni, C. Ancient DNA from Ascaris: Extraction amplification and sequences from eggs collected in coprolites. Int. J. Parasitol. 2001, 31, 1101–1106. [Google Scholar] [CrossRef]
- Oh, C.S.; Seo, M.; Hong, J.H.; Chai, J.Y.; Oh, S.W.; Park, J.B.; Shin, D.H. Ancient mitochondrial DNA analyses of ascaris eggs discovered in coprolites from joseon tomb. Korean J. Parasitol. 2015, 53, 237–242. [Google Scholar] [CrossRef]
- Søe, M.J.; Nejsum, P.; Fredensborg, B.L.; Kapel, C.M. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Viking-age settlement. J. Parasitol. 2015, 101, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Roche, K.; Nicolas, C.; Elsa, P.; Paolo, L.; Pasquino, P.; Raffaella, B.; Matthieu, L.B. Gastrointestinal parasite burden in 4th–5th c. CE Florence highlighted by microscopy and paleogenetics. Infect. Genet. Evol. 2021, 90, 104713. [Google Scholar] [CrossRef] [PubMed]
- Flammer, P.G.; Dellicour, S.; Preston, S.G.; Rieger, D.; Warren, S.; Tan, C.K.W.; Nicholson, R.; Přichystalová, R.; Bleicher, N.; Wahl, J.; et al. Molecular archaeoparasitology identifies cultural changes in the Medieval Hanseatic trading centre of Lübeck. Proc. Biol. Sci. 2018, 285, 20180991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, P.D.; Yeh, H.Y.; Appleby, J.; Buckley, R. The intestinal parasites of King Richard III. Lancet 2013, 382, 888. [Google Scholar] [CrossRef] [Green Version]
- Flammer, P.G.; Ryan, H.; Preston, S.G.; Warren, S.; Přichystalová, R.; Weiss, R.; Palmowski, V.; Boschert, S.; Fellgiebel, K.; Jasch-Boley, I.; et al. Epidemiological insights from a large-scale investigation of intestinal helminths in Medieval Europe. PLoS Negl. Trop. Dis. 2020, 14, e0008600. [Google Scholar] [CrossRef]
- Ryan, H.; Flammer, P.G.; Nicholson, R.; Loe, L.; Reeves, B.; Allison, E.; Guy, C.; Doriga, I.L.; Waldron, T.; Walker, D.; et al. Reconstructing the history of helminth prevalence in the UK. PLoS Negl. Trop. Dis. 2022, 16, e0010312. [Google Scholar] [CrossRef]
- Appelt, S.; Fancello, L.; Le Bailly, M.; Raoult, D.; Drancourt, M.; Desnues, C. Viruses in a 14th-century coprolite. Appl. Environ. Microbiol. 2014, 80, 2648–2655. [Google Scholar] [CrossRef] [Green Version]
- Warinner, C.; Rodrigues, J.F.; Vyas, R.; Trachsel, C.; Shved, N.; Grossmann, J.; Radini, A.; Hancock, Y.; Tito, R.Y.; Fiddyment, S.; et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 2014, 46, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Warinner, C.; Speller, C.; Collins, M.J.; Lewis, C.M., Jr. Ancient human microbiomes. J. Hum. Evol. 2015, 79, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Warinner, C.; Speller, C.; Collins, M.J. A new era in palaeomicrobiology: Prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2015, 370, 20130376. [Google Scholar] [CrossRef]
- Santiago-Rodriguez, T.M.; Fornaciari, G.; Luciani, S.; Dowd, S.E.; Toranzos, G.A.; Marota, I.; Cano, R.J. Gut microbiome of an 11th century A.D. pre-Columbian Andean mummy. PLoS ONE 2015, 10, e0138135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiago-Rodriguez, T.M.; Fornaciari, G.; Luciani, S.; Dowd, S.E.; Toranzos, G.A.; Marota, I.; Cano, R.J. Natural mummification of the human gut preserves bacteriophage DNA. FEMS Microbiol. Lett. 2016, 363, fnv219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neukamm, J.; Pfrengle, S.; Molak, M.; Seitz, A.; Francken, M.; Eppenberger, P.; Avanzi, C.; Reiter, E.; Urban, C.; Welte, B.; et al. 2000-year-old pathogen genomes reconstructed from metagenomic analysis of Egyptian mummified individuals. BMC Biol. 2020, 18, 108. [Google Scholar] [CrossRef]
- Wibowo, M.C.; Yang, Z.; Borry, M.; Hübner, A.; Huang, K.D.; Tierney, B.T.; Zimmerman, S.; Barajas-Olmos, F.; Contreras-Cubas, C.; García-Ortiz, H.; et al. Reconstruction of ancient microbial genomes from the human gut. Nature 2021, 594, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Senti, S.; Habicht, M.E.; Rayo, E.; Eppenberger, P.E.; Rühli, F.J.; Galassi, F.M. Egyptian canopic jars at the crossroad of medicine and archaeology: Overview of 100 years of research and future scientific expectations. Pathobiology 2018, 85, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruffer, M.A. Note on the presence of “Bilharzia haematobia” in Egyptian mummies of the Twentieth Dynasty [1250–1000 B.C.]. Br. Med. J. 1910, 1, 16. [Google Scholar] [CrossRef]
- Susat, J.; Lübke, H.; Immel, A.; Brinker, U.; Macāne, A.; Meadows, J.; Steer, B.; Tholey, A.; Zagorska, I.; Gerhards, G.; et al. A 5000-year-old hunter-gatherer already plagued by Yersinia pestis. Cell. Rep. 2021, 35, 109278. [Google Scholar] [CrossRef]
- Devault, A.M.; Golding, G.B.; Waglechner, N.; Enk, J.M.; Kuch, M.; Tien, J.H.; Shi, M.; Fisman, D.N.; Dhody, A.N.; Forrest, S.; et al. Second-pandemic strain of Vibrio cholerae from the Philadelphia cholera outbreak of 1849. N. Engl. J. Med. 2014, 370, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Korber, B.T.; Nahmias, A.J.; Hooper, E.; Sharp, P.M.; Ho, D.D. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature 1998, 391, 594–597. [Google Scholar] [CrossRef]
- Worobey, M.; Gemmel, M.; Teuwen, D.E.; Haselkorn, T.; Kunstman, K.; Bunce, M.; Muyembe, J.J.; Kabongo, J.M.; Kalengayi, R.M.; Van Marck, E.; et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 2008, 455, 661–664. [Google Scholar] [CrossRef]
- Taubenberger, J.K.; Reid, A.H.; Krafft, A.E.; Bijwaard, K.E.; Fanning, T.G. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 1997, 275, 1793–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, A.H.; Fanning, T.G.; Hultin, J.V.; Taubenberger, J.K. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc. Natl. Acad. Sci. USA 1999, 96, 1651–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worobey, M.; Han, G.Z.; Rambaut, A. Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus. Proc. Natl. Acad. Sci. USA 2014, 111, 8107–8112. [Google Scholar] [CrossRef] [Green Version]
- Patrono, L.V.; Vrancken, B.; Budt, M.; Düx, A.; Lequime, S.; Boral, S.; Gilbert, M.T.P.; Gogarten, J.F.; Hoffmann, L.; Horst, D.; et al. Archival influenza virus genomes from Europe reveal genomic variability during the 1918 pandemic. Nat. Commun. 2022, 13, 2314. [Google Scholar] [CrossRef]
- Fanning, T.G.; Slemons, R.D.; Reid, A.H.; Janczewski, T.A.; Dean, J.; Taubenberger, J.K. 1917 avian influenza virus sequences suggest that the 1918 pandemic virus did not acquire its hemagglutinin directly from birds. J. Virol. 2002, 76, 7860–7862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rekand, T.; Male, R.; Myking, A.O.; Nygaard, S.J.; Aarli, J.A.; Haarr, L.; Langeland, N. Detection of viral sequences in archival spinal cords from fatal cases of poliomyelitis in 1951–1952. J. Virol. Methods 2003, 114, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Düx, A.; Lequime, S.; Patrono, L.V.; Vrancken, B.; Boral, S.; Gogarten, J.F.; Hilbig, A.; Horst, D.; Merkel, K.; Prepoint, B.; et al. Measles virus and rinderpest virus divergence dated to the sixth century BCE. Science 2020, 368, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.L.; Kash, J.C.; Beres, S.B.; Sheng, Z.M.; Musser, J.M.; Taubenberger, J.K. High-throughput RNA sequencing of a formalin-fixed, paraffin-embedded autopsy lung tissue sample from the 1918 influenza pandemic. J. Pathol. 2013, 229, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Carrick, D.M.; Mehaffey, M.G.; Sachs, M.C.; Altekruse, S.; Camalier, C.; Chuaqui, R.; Cozen, W.; Das, B.; Hernandez, B.Y.; Lih, C.J.; et al. Robustness of Next Generation Sequencing on older formalin-fixed paraffin-embedded tissue. PLoS ONE 2015, 10, e0127353. [Google Scholar] [CrossRef] [Green Version]
- Hykin, S.M.; Bi, K.; McGuire, J.A. Fixing formalin: A method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing. PLoS ONE 2015, 10, e0141579. [Google Scholar] [CrossRef]
- Xiao, Y.; Sheng, Z.M.; Taubenberger, J.K. Isolating viral and host RNA sequences from archival material and production of cDNA libraries for high-throughput DNA sequencing. Curr. Protoc. Microbiol. 2015, 37, 1E-8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocjan, B.J.; Hošnjak, L.; Poljak, M. Detection of alpha human papillomaviruses in archival formalin-fixed, paraffin-embedded (FFPE) tissue specimens. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2016, 76 (Suppl. S1), S88–S97. [Google Scholar] [CrossRef] [PubMed]
- Van Doorslaer, K.; Chen, Z.; McBride, A.A. Detection and genotyping of human papillomaviruses from archival formalin-fixed tissue samples. Curr. Protoc. Microbiol. 2016, 43, 14B.9.1–14B.9.20. [Google Scholar] [CrossRef] [PubMed]
- Derkarabetian, S.; Benavides, L.R.; Giribet, G. Sequence capture phylogenomics of historical ethanol-preserved museum specimens: Unlocking the rest of the vault. Mol. Ecol. Resour. 2019, 19, 1531–1544. [Google Scholar] [CrossRef] [PubMed]
- Montiel, R.; Solórzano, E.; Díaz, N.; Álvarez-Sandoval, B.A.; González-Ruiz, M.; Cañadas, M.P.; Simões, N.; Isidro, A.; Malgosa, A. Neonate human remains: A window of opportunity to the molecular study of ancient syphilis. PLoS ONE 2012, 7, e36371. [Google Scholar] [CrossRef] [Green Version]
- Schuenemann, V.J.; Bos, K.; DeWitte, S.; Schmedes, S.; Jamieson, J.; Mittnik, A.; Forrest, S.; Coombes, B.K.; Wood, J.W.; Earn, D.J.; et al. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. Proc. Natl. Acad. Sci. USA 2011, 108, E746–E752. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Rojas, G.; Cerbón, M.A.; López-Vidal, Y. Presence of Helicobacter pylori in a Mexican Pre-Columbian Mummy. BMC Microbiol. 2008, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.H.; Oh, C.S.; Hong, J.H.; Lee, H.; Lee, S.D.; Lee, E. Helicobacter pylori DNA obtained from the stomach specimens of two 17(th) century Korean mummies. Anthropol. Anz. 2018, 75, 75–87. [Google Scholar] [CrossRef]
- Fornaciari, G.; Zavaglia, K.; Giusti, L.; Vultaggio, C.; Ciranni, R. Human papillomavirus in a 16th century mummy. Lancet 2003, 362, 1160. [Google Scholar] [CrossRef]
- Chan, J.Z.; Sergeant, M.J.; Lee, O.Y.; Minnikin, D.E.; Besra, G.S.; Pap, I.; Spigelman, M.; Donoghue, H.D.; Pallen, M.J. Metagenomic analysis of tuberculosis in a mummy. N. Engl. J. Med. 2013, 369, 289–290. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, I.S.; Oh, C.S.; Kim, M.J.; Cha, S.C.; Shin, D.H. Calcified pulmonary nodules identified in a 350-year-old-Joseon mummy: The first report on ancient pulmonary tuberculosis from archaeologically obtained pre-modern Korean samples. J Korean Med. Sci. 2016, 31, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Duggan, A.T.; Perdomo, M.F.; Piombino-Mascali, D.; Marciniak, S.; Poinar, D.; Emery, M.V.; Buchmann, J.P.; Duchêne, S.; Jankauskas, R.; Humphreys, M.; et al. 17(th) Century variola virus reveals the recent history of smallpox. Curr. Biol. 2016, 26, 3407–3412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, G.; Neukamm, J.; Baalsrud, H.T.; Breidenstein, A.M.; Ravinet, M.; Phillips, C.; Rühli, F.; Bouwman, A.; Schuenemann, V.J. Variola virus genome sequenced from an eighteenth-century museum specimen supports the recent origin of smallpox. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2020, 375, 20190572. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.R.; Tanaka, Y.; Takebe, Y.; Magiorkinis, G.; Buskell, Z.; Seeff, L.; Alter, H.J.; Pybus, O.G. Evolutionary analysis of hepatitis C virus gene sequences from 1953. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2013, 368, 20130168. [Google Scholar] [CrossRef] [Green Version]
- Swanston, T.; Haakensen, M.; Deneer, H.; Walker, E.G. The characterization of Helicobacter pylori DNA associated with ancient human remains recovered from a Canadian glacier. PLoS ONE 2011, 6, e16864. [Google Scholar] [CrossRef] [Green Version]
- Maixner, F.; Krause-Kyora, B.; Turaev, D.; Herbig, A.; Hoopmann, M.R.; Hallows, J.L.; Kusebauch, U.; Vigl, E.E.; Malfertheiner, P.; Megraud, F.; et al. The 5300-year-old Helicobacter pylori genome of the Iceman. Science 2016, 351, 162–165. [Google Scholar] [CrossRef] [Green Version]
- Drancourt, M.; Tran-Hung, L.; Courtin, J.; Lumley, H.; Raoult, D. Bartonella quintana in a 4000-year-old human tooth. J. Infect. Dis. 2005, 191, 607–611. [Google Scholar] [CrossRef] [Green Version]
- Mai, B.H.; Barbieri, R.; Chenal, T.; Castex, D.; Jonvel, R.; Tanasi, D.; Georges-Zimmermann, P.; Dutour, O.; Peressinotto, D.; Demangeot, C.; et al. Five millennia of Bartonella quintana bacteraemia. PLoS ONE 2020, 15, e0239526. [Google Scholar] [CrossRef]
- Thèves, C.; Senescau, A.; Vanin, S.; Keyser, C.; Ricaut, F.X.; Alekseev, A.N.; Dabernat, H.; Ludes, B.; Fabre, R.; Crubézy, E. Molecular identification of bacteria by total sequence screening: Determining the cause of death in ancient human subjects. PLoS ONE 2011, 6, e21733. [Google Scholar] [CrossRef] [Green Version]
- Wagner, D.M.; Klunk, J.; Harbeck, M.; Devault, A.; Waglechner, N.; Sahl, J.W.; Enk, J.; Birdsell, D.N.; Kuch, M.; Lumibao, C.; et al. Yersinia pestis and the plague of Justinian 541–543 AD: A genomic analysis. Lancet Infect. Dis. 2014, 14, 319–326. [Google Scholar] [CrossRef]
- Fotakis, A.K.; Denham, S.D.; Mackie, M.; Orbegozo, M.I.; Mylopotamitaki, D.; Gopalakrishnan, S.; Sicheritz-Pontén, T.; Olsen, J.V.; Cappellini, E.; Zhang, G.; et al. Multi-omic detection of Mycobacterium leprae in archaeological human dental calculus. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2020, 375, 20190584. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, D.K.; Honap, T.P.; Monroe, C.; Lund, J.; Houk, B.A.; Novotny, A.C.; Robin, C.; Marini, E.; Lewis, C.M., Jr. Functional diversity of microbial ecologies estimated from ancient human coprolites and dental calculus. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2020, 375, 20190586. [Google Scholar] [CrossRef] [PubMed]
- Willmann, C.; Mata, X.; Hanghoej, K.; Tonasso, L.; Tisseyre, L.; Jeziorski, C.; Cabot, E.; Chevet, P.; Crubézy, E.; Orlando, L.; et al. Oral health status in historic population: Macroscopic and metagenomic evidence. PLoS ONE 2018, 13, e0196482. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Lopez, M.; Villa-Islas, V.; Rocha Arriaga, C.; Villaseñor-Altamirano, A.B.; Guzmán-Solís, A.; Sandoval-Velasco, M.; Wesp, J.K.; Alcantara, K.; López-Corral, A.; Gómez-Valdés, J.; et al. Paleogenomic insights into the red complex bacteria Tannerella forsythia in Pre-Hispanic and Colonial individuals from Mexico. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2020, 375, 20190580. [Google Scholar] [CrossRef]
- Philips, A.; Stolarek, I.; Handschuh, L.; Nowis, K.; Juras, A.; Trzciński, D.; Nowaczewska, W.; Wrzesińska, A.; Potempa, J.; Figlerowicz, M. Analysis of oral microbiome from fossil human remains revealed the significant differences in virulence factors of modern and ancient Tannerella forsythia. BMC Genom. 2020, 21, 402. [Google Scholar] [CrossRef]
- Ubaldi, M.; Luciani, S.; Marota, I.; Fornaciari, G.; Cano, R.J.; Rollo, F. Sequence analysis of bacterial DNA in the colon of an Andean mummy. Am. J. Phys. Anthropol. 1998, 107, 285–295. [Google Scholar] [CrossRef]
- Cano, R.J.; Tiefenbrunner, F.; Ubaldi, M.; Del Cueto, C.; Luciani, S.; Cox, T.; Orkand, P.; Künzel, K.H.; Rollo, F. Sequence analysis of bacterial DNA in the colon and stomach of the Tyrolean Iceman. Am. J. Phys. Anthropol. 2000, 112, 297–309. [Google Scholar] [CrossRef]
- Rifkin, R.F.; Vikram, S.; Ramond, J.B.; Rey-Iglesia, A.; Brand, T.B.; Porraz, G.; Val, A.; Hall, G.; Woodborne, S.; Le Bailly, M.; et al. Multi-proxy analyses of a mid-15th century Middle Iron Age Bantu-speaker palaeo-faecal specimen elucidates the configuration of the ‘ancestral’ sub-Saharan African intestinal microbiome. Microbiome 2020, 8, 62. [Google Scholar] [CrossRef]
- Santiago-Rodriguez, T.M.; Fornaciari, G.; Luciani, S.; Dowd, S.E.; Toranzos, G.A.; Marota, I.; Cano, R.J. Taxonomic and predicted metabolic profiles of the human gut microbiome in pre-Columbian mummies. FEMS Microbiol. Ecol. 2016, 92, fiw182. [Google Scholar] [CrossRef] [Green Version]
- Jensen, T.Z.T.; Niemann, J.; Iversen, K.H.; Fotakis, A.K.; Gopalakrishnan, S.; Vågene, Å.J.; Pedersen, M.W.; Sinding, M.S.; Ellegaard, M.R.; Allentoft, M.E.; et al. A 5700 year-old human genome and oral microbiome from chewed birch pitch. Nat. Commun. 2019, 10, 5520. [Google Scholar] [CrossRef]
- Devault, A.M.; Mortimer, T.D.; Kitchen, A.; Kiesewetter, H.; Enk, J.M.; Golding, G.B.; Southon, J.; Kuch, M.; Duggan, A.T.; Aylward, W.; et al. A molecular portrait of maternal sepsis from Byzantine Troy. eLife 2017, 6, e20983. [Google Scholar] [CrossRef] [PubMed]
- Kay, G.L.; Sergeant, M.J.; Giuffra, V.; Bandiera, P.; Milanese, M.; Bramanti, B.; Bianucci, R.; Pallen, M.J. Recovery of a medieval Brucella melitensis genome using shotgun metagenomics. mBio 2014, 5, e01337-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunenwald, A.; Keyser, C.; Sautereau, A.M.; Crubézy, E.; Ludes, B.; Drouet, C. Novel contribution on the diagenetic physicochemical features of bone and teeth minerals, as substrates for ancient DNA typing. Anal. Bioanal. Chem. 2014, 406, 4691–4704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, L.K. Life and afterlife of the first plague pandemic. In Plague and the End of Antiquity: The Pandemic of 541–750; Little, L.K., Ed.; Cambridge University Press: Cambridge, UK, 2007; pp. 3–33. [Google Scholar]
- Habicht, M.E.; Eppenberger, P.E.; Rühli, F. A critical assessment of proposed outbreaks of plague and other epidemic diseases in Ancient Egypt. Int. J. Infect. Dis. 2021, 103, 217–219. [Google Scholar] [CrossRef]
- Vitiello, L.; Ilari, S.; Sansone, L.; Belli, M.; Cristina, M.; Marcolongo, F.; Tomino, C.; Gatta, L.; Mollace, V.; Bonassi, S.; et al. Preventive measures against pandemics from the beginning of civilization to nowadays-How everything has remained the same over the millennia. J. Clin. Med. 2022, 11, 1960. [Google Scholar] [CrossRef]
- Rodríguez-Frías, F.; Quer, J.; Tabernero, D.; Cortese, M.F.; Garcia-Garcia, S.; Rando-Segura, A.; Pumarola, T. Microorganisms as shapers of human civilization, from pandemics to even our genomes: Villains or friends? A historical approach. Microorganisms 2021, 9, 2518. [Google Scholar] [CrossRef]
- Bodner, K. Mouse trap: A text-critical problem with rodents in the ark narrative. J. Theol. Stud. 2008, 59, 634–649. [Google Scholar] [CrossRef]
- Asensi, V.; Fierer, J. Of rats and men: Poussin’s plague at Ashdod. Emerg. Infect. Dis. 2018, 24, 186–187. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, B.; Rambaut, A.; Gilbert, M.T. No proof that typhoid caused the Plague of Athens (a reply to Papagrigorakis et al.). Int. J. Infect. Dis. 2006, 10, 334–335. [Google Scholar] [CrossRef] [Green Version]
- Derat, M.-L. Du lexique aux talismans: Occurrences de la peste dans la Corne de l’Afrique du XIIIe au XVe siècle. Afriques 2018, 9, 2090. [Google Scholar] [CrossRef]
- Connor, B.A.; Schwartz, E. Typhoid and paratyphoid fever in travellers. Lancet Infect. Dis. 2005, 5, 623–628. [Google Scholar] [CrossRef]
- Manesh, A.; Meltzer, E.; Jin, C.; Britto, C.; Deodhar, D.; Radha, S.; Schwartz, E.; Rupali, P. Typhoid and paratyphoid fever: A clinical seminar. J. Travel Med. 2021, 28, taab012. [Google Scholar] [CrossRef] [PubMed]
- Bergen op Zoom, Begraaflijsten Krankenbezoeker 1701–1804, Map 5 (1709–1716, 1746–1747, 1797, 1802–1804). Available online: westbrabantsarchief.nl/collectie/bladeren-in-bronnen/registers (accessed on 22 July 2022).
- Van der Kuyl, A.C. The Dutch Cholera Epidemic of 1832 as Seen through 19th Century Medical Publications; Eburon Academic Publishers: Utrecht, The Netherlands, 2021. [Google Scholar]
- Arntzenius, D.J.A. Bijdragen tot de Kennis en Behandeling van den Aziatischen Braakloop in Nederland; Van der Vinne: Amsterdam, The Netherlands, 1832. [Google Scholar]
- Heyman, P.; Cochez, C.; Hukić, M. The English sweating sickness: Out of sight, out of mind? Acta Med. Acad. 2018, 47, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Cheshire, W.P.; van Gerpen, J.A.; Sejvar, J.J. Sudor Anglicus: An epidemic targeting the autonomic nervous system. Clin. Auton. Res. 2020, 30, 317–323. [Google Scholar] [CrossRef]
- Black, J. A boke or counseill against the disease commonly called the Sweate or the Sweating Sickness. BMJ 2007, 335, 1159. [Google Scholar] [CrossRef] [Green Version]
- Buchner, W.F. Aanteekeningen en Opmerkingen Betrekkelijk den Aziatischen Braakloop te Gouda; R. J. Berntrop: Amsterdam, The Netherlands, 1833. [Google Scholar]
- Thwaites, G.; Taviner, M.; Gant, V. The English sweating sickness, 1485 to 1551. N. Engl. J. Med. 1997, 336, 580–582. [Google Scholar] [CrossRef]
- Taviner, M.; Thwaites, G.; Gant, V. The English sweating sickness, 1485–1551: A viral pulmonary disease? Med. Hist. 1998, 42, 96–98. [Google Scholar] [CrossRef] [Green Version]
- Heyman, P.; Simons, L.; Cochez, C. Were the English sweating sickness and the Picardy sweat caused by hantaviruses? Viruses 2014, 6, 151–171. [Google Scholar] [CrossRef]
- Umapathi, T.; Poh, M.Q.W.; Fan, B.E.; Li, K.F.C.; George, J.; Tan, J.Y.L. Acute hyperhidrosis and postural tachycardia in a COVID-19 patient. Clin. Auton. Res. 2020, 30, 571–573. [Google Scholar] [CrossRef]
- Scala, I.; Rizzo, P.A.; Bellavia, S.; Brunetti, V.; Colò, F.; Broccolini, A.; Della Marca, G.; Calabresi, P.; Luigetti, M.; Frisullo, G. Autonomic dysfunction during acute SARS-CoV-2 infection: A systematic review. J. Clin. Med. 2022, 11, 3883. [Google Scholar] [CrossRef]
- Nandi, S.; Negi, B.S. Bovine ephemeral fever: A review. Comp. Immunol. Microbiol. Infect. Dis. 1999, 22, 81–91. [Google Scholar] [CrossRef]
- Burgess, G.W.; Spradbrow, P.B. Studies on the pathogenesis of bovine ephemeral fever. Aust. Vet. J. 1977, 53, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.H.; Pān, H.; Chiu, C.Y.; Stremlau, M. Human tibroviruses: Commensals or lethal pathogens? Viruses 2020, 12, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edridge, A.W.D.; Abd-Elfarag, G.; Deijs, M.; Jebbink, M.F.; Boele van Hensbroek, M.; van der Hoek, L. Divergent rhabdovirus discovered in a patient with new-onset Nodding Syndrome. Viruses 2022, 14, 210. [Google Scholar] [CrossRef]
- Stremlau, M.H.; Andersen, K.G.; Folarin, O.A.; Grove, J.N.; Odia, I.; Ehiane, P.E.; Omoniwa, O.; Omoregie, O.; Jiang, P.P.; Yozwiak, N.L.; et al. Discovery of novel rhabdoviruses in the blood of healthy individuals from West Africa. PLoS Negl. Trop. Dis. 2015, 9, e0003631. [Google Scholar] [CrossRef] [PubMed]
- Guy, P.L. Prospects for analyzing ancient RNA in preserved materials. Wiley Interdiscip. Rev. RNA 2014, 5, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, A.; Kryštufek, B.; Sludsky, A.; Schmid, B.V.; AMP, D.E.A.; Lei, X.; Ramasindrazana, B.; Bertherat, E.; Yeszhanov, A.; Stenseth, N.C.; et al. Plague reservoir species throughout the world. Integr. Zool. 2021, 16, 820–833. [Google Scholar] [CrossRef]
- Key, F.M.; Posth, C.; Esquivel-Gomez, L.R.; Hübler, R.; Spyrou, M.A.; Neumann, G.U.; Furtwängler, A.; Sabin, S.; Burri, M.; Wissgott, A.; et al. Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat. Ecol. Evol. 2020, 4, 324–333. [Google Scholar] [CrossRef]
- Dunstan, S.J.; Hue, N.T.; Han, B.; Li, Z.; Tram, T.T.; Sim, K.S.; Parry, C.M.; Chinh, N.T.; Vinh, H.; Lan, N.P.; et al. Variation at HLA-DRB1 is associated with resistance to enteric fever. Nat. Genet. 2014, 46, 1333–1336. [Google Scholar] [CrossRef]
- Haller, M.; Bonczarowska, J.H.; Rieger, D.; Lenz, T.L.; Nebel, A.; Krause-Kyora, B. Ancient DNA study in medieval Europeans shows an association between HLA-DRB1*03 and paratyphoid fever. Front. Immunol. 2021, 12, 691475. [Google Scholar] [CrossRef]
- Raoult, D.; Ndihokubwayo, J.B.; Tissot-Dupont, H.; Roux, V.; Faugere, B.; Abegbinni, R.; Birtles, R.J. Outbreak of epidemic typhus associated with trench fever in Burundi. Lancet 1998, 352, 353–358. [Google Scholar] [CrossRef]
- Tarasevich, I.; Rydkina, E.; Raoult, D. Outbreak of epidemic typhus in Russia. Lancet 1998, 352, 1151. [Google Scholar] [CrossRef]
- McCormick, D.W.; Rowan, S.E.; Pappert, R.; Yockey, B.; Dietrich, E.A.; Petersen, J.M.; Hinckley, A.F.; Marx, G.E. Bartonella seroreactivity among persons experiencing homelessness during an outbreak of Bartonella quintana in Denver, Colorado, 2020. Open Forum Infect. Dis. 2021, 8, ofab230. [Google Scholar] [CrossRef] [PubMed]
- Smith, O.; Clapham, A.; Rose, P.; Liu, Y.; Wang, J.; Allaby, R.G. A complete ancient RNA genome: Identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci. Rep. 2014, 4, 4003. [Google Scholar] [CrossRef] [Green Version]
- Peyambari, M.; Warner, S.; Stoler, N.; Rainer, D.; Roossinck, M.J. A 1000-Year-Old RNA Virus. J. Virol. 2019, 93, e01188-18. [Google Scholar] [CrossRef] [Green Version]
- Smith, O.; Dunshea, G.; Sinding, M.S.; Fedorov, S.; Germonpre, M.; Bocherens, H.; Gilbert, M.T.P. Ancient RNA from Late Pleistocene permafrost and historical canids shows tissue-specific transcriptome survival. PLoS Biol. 2019, 17, e3000166. [Google Scholar] [CrossRef] [Green Version]
- Enard, D.; Petrov, D.A. Ancient RNA virus epidemics through the lens of recent adaptation in human genomes. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2020, 375, 20190575. [Google Scholar] [CrossRef]
- Van der Kuyl, A.C.; Berkhout, B. Viruses in the reproductive tract: On their way to the germ line? Virus Res. 2020, 286, 198101. [Google Scholar] [CrossRef]
- Horie, M.; Honda, T.; Suzuki, Y.; Kobayashi, Y.; Daito, T.; Oshida, T.; Ikuta, K.; Jern, P.; Gojobori, T.; Coffin, J.M.; et al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 2010, 463, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Chase, A.F.; Chase, D.Z.; Fisher, C.T.; Leisz, S.J.; Weishampel, J.F. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. Proc. Natl. Acad. Sci. USA 2012, 109, 12916–12921. [Google Scholar] [CrossRef]
- Prümers, H.; Betancourt, C.J.; Iriarte, J.; Robinson, M.; Schaich, M. Lidar reveals pre-Hispanic low-density urbanism in the Bolivian Amazon. Nature 2022, 606, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Albitar, O.; Ballouze, R.; Ooi, J.P.; Sheikh Ghadzi, S.M. Risk factors for mortality among COVID-19 patients. Diabetes Res. Clin. Pract. 2020, 166, 108293. [Google Scholar] [CrossRef] [PubMed]
- Dessie, Z.G.; Zewotir, T. Mortality-related risk factors of COVID-19: A systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect. Dis. 2021, 21, 855. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. Divided by DNA: The uneasy relationship between archaeology and ancient genomics. Nature 2018, 555, 573–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downes, S.M. The role of ancient DNA research in archaeology. Topoi 2021, 40, 285–293. [Google Scholar] [CrossRef]
- Rayo, E.; Ferrari, G.; Neukamm, J.; Akgül, G.; Breidenstein, A.M.; Cooke, M.; Phillips, C.; Bouwman, A.S.; Rühli, F.J.; Schuenemann, V.J. Non-destructive extraction of DNA from preserved tissues in medical collections. Biotechniques 2022, 72, 60–64. [Google Scholar] [CrossRef]
Source | What Can be Retrieved? 1 | What is Difficult to Determine? | Level of Study |
---|---|---|---|
Contemporary genomic DNA | Germ line infiltrating (retro)viruses | Disease symptoms | Pathogen, transmission dynamics |
Prevalence of protective alleles | Pathogen | Indirect evidence of epidemic | |
Archeological and historical sites | Bone and teeth samples for DNA analysis; burial patterns may assist in selection | Pathogen, disease symptoms | Epidemic |
Archeological and historical samples | Ancient DNA | Disease symptoms 2 Prevalence | Pathogen |
Pathology collections | Ancient DNA and RNA | Prevalence | Pathogen |
Historical publications | Outbreaks and disease symptoms | Pathogen identification | Epidemic |
Biological Source | Pathogen Characteristic(s) | Ancient Pathogen Detected | Reference |
---|---|---|---|
Bone | Blood-borne Targeting bone * | HBV | [9,15] |
Mycobacterium leprae | [59,60,62] | ||
Mycobacterium tuberculosis | [63,64,65,67] | ||
Parvovirus B19 | [91] | ||
Salmonella enterica Paratyphi C | [79] | ||
Treponema pallidum | [83,84,129] | ||
Yersinia pestis | [130] | ||
VARV | [89] | ||
Dried tissue, such as mummified skin or organs | Tissue tropism | Helicobacter pylori | [131,132] |
HBV | [9] | ||
Human papilloma virus, HPV | [133] | ||
Mycobacterium tuberculosis | [66,134,135] | ||
VARV | [136,137] | ||
Frozen/fixed—wet—tissue, incl. blood | Tissue tropism | HCV | [138] |
Helicobacter pylori | [139,140] | ||
HIV | [113,114] | ||
Influenza virus | [115,116,118] | ||
Measles virus | [121] | ||
Poliovirus | [120] | ||
VARV | [80] | ||
Vibrio cholerae | [112] | ||
Tooth, dental pulp | Blood-borne | Bartonella quintana | [68,69,70,141,142] |
Bordetella pertussis | [143] | ||
Borrelia recurrentis | [72] | ||
Haemophilus influenzae | [81] | ||
HBV | [14,15] | ||
Mycobacterium leprae | [59,60] | ||
Mycobacterium tuberculosis | [65] | ||
Parvovirus B19 | [91,92] | ||
Rickettsia prowazekii | [68,69] | ||
Salmonella enterica Paratyphi C | [74,76,77,79] | ||
Treponema pallidum spp. | [84] | ||
Yersinia pestis | [10,48,51,52,54,144] | ||
VARV | [89] | ||
Tooth, dental calculus | Presence in oral cavity | Mycobacterium leprae | [145] |
Oral microbiome, including pathogens | [102,103,104,107,146,147,148,149] | ||
Paleofeces | Tropism for gastro-intestinal tract | Intestinal microbiome, including pathogens | [101,103,105,106,108,146,150,151,152,153] |
Helminths | [93,94] | ||
Other: Birch pitch | Presence in the oral cavity/expression in saliva | Epstein–Barr virus, EBV (human gammaherpesvirus 4) | [154] |
Other: Calcified nodules | Presence in genitourinary tissue | Gardnerella vaginalis Staphylococcus saprophyticus | [155] |
Presence in abdominal/pelvic tissue | Brucella melitensis | [156] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Kuyl, A.C. Historic and Prehistoric Epidemics: An Overview of Sources Available for the Study of Ancient Pathogens. Epidemiologia 2022, 3, 443-464. https://doi.org/10.3390/epidemiologia3040034
van der Kuyl AC. Historic and Prehistoric Epidemics: An Overview of Sources Available for the Study of Ancient Pathogens. Epidemiologia. 2022; 3(4):443-464. https://doi.org/10.3390/epidemiologia3040034
Chicago/Turabian Stylevan der Kuyl, Antoinette C. 2022. "Historic and Prehistoric Epidemics: An Overview of Sources Available for the Study of Ancient Pathogens" Epidemiologia 3, no. 4: 443-464. https://doi.org/10.3390/epidemiologia3040034
APA Stylevan der Kuyl, A. C. (2022). Historic and Prehistoric Epidemics: An Overview of Sources Available for the Study of Ancient Pathogens. Epidemiologia, 3(4), 443-464. https://doi.org/10.3390/epidemiologia3040034