AI-Enhanced Tools and Strategies for Airborne Disease Prevention in Cultural Heritage Sites
Abstract
:1. Introduction
2. AI Application in Cultural Heritage Sites
3. Challenges and Limitations
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Piscitelli, P.; Miani, A.; Setti, L.; De Gennaro, G.; Rodo, X.; Artinano, B.; Vara, E.; Rancan, L.; Arias, J.; Passarini, F.; et al. The Role of Outdoor and Indoor Air Quality in the Spread of SARS-CoV-2: Overview and Recommendations by the Research Group on COVID-19 and Particulate Matter (RESCOP Commission). Environ. Res. 2022, 211, 113038. [Google Scholar] [CrossRef]
- Buonanno, G.; Morawska, L.; Stabile, L. Quantitative Assessment of the Risk of Airborne Transmission of SARS-CoV-2 Infection: Prospective and Retrospective Applications. Environ. Int. 2020, 145, 106112. [Google Scholar] [CrossRef] [PubMed]
- Greco, E.; Ciliberto, E.; Verdura, P.D.; Lo Giudice, E.; Navarra, G. Nanoparticle-Based Concretes for the Restoration of Historical and Contemporary Buildings: A New Way for CO2 Reduction in Architecture. Appl. Phys. A Mater. Sci. Process. 2016, 122, 524. [Google Scholar] [CrossRef]
- Ilieș, D.C.; Safarov, B.; Caciora, T.; Ilieș, A.; Grama, V.; Ilies, G.; Huniadi, A.; Zharas, B.; Hodor, N.; Sandor, M.; et al. Museal Indoor Air Quality and Public Health: An Integrated Approach for Exhibits Preservation and Ensuring Human Health. Sustainability 2022, 14, 2462. [Google Scholar] [CrossRef]
- Lazaridis, M.; Katsivela, E.; Kopanakis, I.; Raisi, L.; Panagiaris, G. Indoor/Outdoor Particulate Matter Concentrations and Microbial Load in Cultural Heritage Collections. Herit. Sci. 2015, 3, 34. [Google Scholar] [CrossRef]
- Saridaki, A.; Glytsos, T.; Raisi, L.; Katsivela, E.; Tsiamis, G.; Kalogerakis, N.; Lazaridis, M. Airborne Particles, Bacterial and Fungal Communities Insights of Two Museum Exhibition Halls with Diverse Air Quality Characteristics. Aerobiologia 2023, 39, 69–86. [Google Scholar] [CrossRef]
- Poydenot, F.; Abdourahamane, I.; Caplain, E.; Der, S.; Haiech, J.; Jallon, A.; Khoutami, I.; Loucif, A.; Marinov, E.; Andreotti, B. Risk Assessment for Long- and Short-Range Airborne Transmission of SARS-CoV-2, Indoors and Outdoors. PNAS Nexus 2022, 1, pgac223. [Google Scholar] [CrossRef]
- Richter, W.R.; Sunderman, M.M.; Mera, T.O.; O’Brien, K.A.; Morgan, K.; Streams, S. Evaluation of Environmental Conditions as a Decontamination Approach for SARS-CoV-2 When Applied to Common Library, Archive and Museum-related Materials. J. Appl. Microbiol. 2022, 132, 3405–3415. [Google Scholar] [CrossRef]
- Henriques, A.; Mounet, N.; Aleixo, L.; Elson, P.; Devine, J.; Azzopardi, G.; Andreini, M.; Rognlien, M.; Tarocco, N.; Tang, J. Modelling Airborne Transmission of SARS-CoV-2 Using CARA: Risk Assessment for Enclosed Spaces. Interface Focus 2022, 12, 20210076. [Google Scholar] [CrossRef]
- Antara, N.; Sen, S. The Impact of COVID-19 on Museum and the Way Forward to Be Resilience. J. Int. Museum Educ. 2020, 2, 54–61. [Google Scholar]
- de Peuter, G.; Oakley, K.; Trusolino, M. The Pandemic Politics of Cultural Work: Collective Responses to the COVID-19 Crisis. Int. J. Cult. Policy 2023, 29, 377–392. [Google Scholar] [CrossRef]
- Capolongo, S.; Rebecchi, A.; Buffoli, M.; Appolloni, L.; Signorelli, C.; Fara, G.M.; D’Alessandro, D. COVID-19 and Cities: From Urban Health Strategies to the Pandemic Challenge. A Decalogue of Public Health Opportunities. Acta Bio Medica Atenei Parm. 2020, 91, 13. [Google Scholar] [CrossRef]
- Nygren, D.; Norén, J.; De Marinis, Y.; Holmberg, A.; Fraenkel, C.J.; Rasmussen, M. Association between SARS-CoV-2 and Exposure Risks in Health Care Workers and University Employees—A Cross-Sectional Study. Infect. Dis. 2021, 53, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Camic, P.M.; Chatterjee, H.J. Museums and Art Galleries as Partners for Public Health Interventions. Perspect. Public Health 2013, 133, 66–71. [Google Scholar] [CrossRef]
- Marcianò, A.; Chen, D.; Fabrocini, F.; Fields, C.; Greco, E.; Gresnigt, N.; Jinklub, K.; Lulli, M.; Terzidis, K.; Zappala, E. Quantum Neural Networks and Topological Quantum Field Theories. Neural Netw. 2022, 153, 164–178. [Google Scholar] [CrossRef]
- Mumtaz, R.; Zaidi, S.M.H.; Shakir, M.Z.; Shafi, U.; Malik, M.M.; Haque, A.; Mumtaz, S.; Zaidi, S.A.R. Internet of Things (Iot) Based Indoor Air Quality Sensing and Predictive Analytic—A COVID-19 Perspective. Electron. 2021, 10, 184. [Google Scholar] [CrossRef]
- Cattai, F.; D’Orazio, A.; Sbardella, G. A Systematic Review on the Application of Ultraviolet Germicidal Irradiation to HVAC Systems. Energies 2023, 16, 7569. [Google Scholar] [CrossRef]
- Pigeot-Remy, S.; Lazzaroni, J.C.; Simonet, F.; Petinga, P.; Vallet, C.; Petit, P.; Vialle, P.J.; Guillard, C. Survival of Bioaerosols in HVAC System Photocatalytic Filters. Appl. Catal. B Environ. 2014, 144, 654–664. [Google Scholar] [CrossRef]
- Mathur, G. Energy Consumption of Titanium Dioxide & Ultraviolet Germicidal (UV-C) Photocatalytic Air Purification System for Automotive Cabins. In SAE Technical Papers; SAE International: Warrendale, PA, USA, 2023. [Google Scholar]
- D’Orazio, A.; D’Alessandro, D. Air Bio-Contamination Control in Hospital Environment by UV-C Rays and HEPA Filters in HVAC Systems. Ann. Ig. Med. Prev. Comunita 2020, 32, 449–461. [Google Scholar] [CrossRef]
- Greco, E.; Ciliberto, E.; Cirino, A.M.E.; Capitani, D.; Di Tullio, V. A New Preparation of Doped Photocatalytic TiO2 Anatase Nanoparticles: A Preliminary Study for the Removal of Pollutants in Confined Museum Areas. Appl. Phys. A Mater. Sci. Process. 2016, 122, 530. [Google Scholar] [CrossRef]
- Greco, E.; Shang, J.; Zhu, J.; Zhu, T. Synthesis of Polyacetylene-like Modified Graphene Oxide Aerogel and Its Enhanced Electrical Properties. ACS Omega 2019, 4, 20948–20954. [Google Scholar] [CrossRef]
- Greco, E.; Balsamo, S.A.; Maccarrone, G.; Mello, D.; Ciliberto, E.; Shang, J.; Zhu, T. Gold-Core Lithium-Doped Titania Shell Nanostructures for Plasmon-Enhanced Visible Light Harvesting with Photocatalytic Activity. J. Nanoparticle Res. 2020, 22, 164. [Google Scholar] [CrossRef]
- Ali, M.A.; Ali, M.F.; Ciliberto, E.; Greco, E.; Mello, D.; Viscuso, E. A New Method for the Preparation of Gelatin Nanolayer: A Possible Approach to the In Situ Consolidation of Damaged Gelatin Photographic Emulsions. Appl. Phys. A Mater. Sci. Process. 2016, 122, 552. [Google Scholar] [CrossRef]
- Perles, A.; Pérez-Marín, E.; Mercado, R.; Segrelles, J.D.; Blanquer, I.; Zarzo, M.; Garcia-Diego, F.J. An Energy-Efficient Internet of Things (IoT) Architecture for Preventive Conservation of Cultural Heritage. Futur. Gener. Comput. Syst. 2018, 81, 566–581. [Google Scholar] [CrossRef]
- Mitro, N.; Krommyda, M.; Amditis, A. Smart Tags: IoT Sensors for Monitoring the Micro-Climate of Cultural Heritage Monuments. Appl. Sci. 2022, 12, 2315. [Google Scholar] [CrossRef]
- Lee, W.; Lee, D.H. Cultural Heritage and the Intelligent Internet of Things. J. Comput. Cult. Herit. 2019, 12, 21. [Google Scholar] [CrossRef]
- Alouani, D.J.; Rajapaksha, R.R.P.; Jani, M.; Rhoads, D.D.; Sadria, N. Specificity of SARS-CoV-2 Real-Time PCR Improved by Deep Learning Analysis. J. Clin. Microbiol. 2021, 59, 10-1128. [Google Scholar] [CrossRef]
- Khan, R.S.; Rehman, I.U. Spectroscopy as a Tool for Detection and Monitoring of Coronavirus (COVID-19). Expert Rev. Mol. Diagn. 2020, 20, 647–649. [Google Scholar] [CrossRef]
- Barauna, V.G.; Singh, M.N.; Barbosa, L.L.; Marcarini, W.D.; Vassallo, P.F.; Mill, J.G.; Ribeiro-Rodrigues, R.; Campos, L.C.G.; Warnke, P.H.; Martin, F.L. Ultrarapid on-Site Detection of SARS-CoV-2 Infection Using Simple ATR-FTIR Spectroscopy and an Analysis Algorithm: High Sensitivity and Specificity. Anal. Chem. 2021, 93, 2950–2958. [Google Scholar] [CrossRef] [PubMed]
- Keshta, I. AI-Driven IoT for Smart Health Care: Security and Privacy Issues. Inform. Med. Unlocked 2022, 30, 100903. [Google Scholar] [CrossRef]
- Williamson, S.M.; Prybutok, V. Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Appl. Sci. 2024, 14, 675. [Google Scholar] [CrossRef]
- Vamseekrishna, A.; Nishitha, R.; Kumar, T.A.; Hanuman, K.; Supriya, C.G. Prediction of Temperature and Humidity Using IoT and Machine Learning Algorithm. In Proceedings of the Advances in Intelligent Systems and Computing, Península de Santa Elena, Ecuador, 10–12 February 2021; Springer: Singapore, 2021; Volume 1312, pp. 271–279. [Google Scholar]
- Rahman, R.A.; Hashim, U.R.; Ahmad, S. IoT Based Temperature and Humidity Monitoring Framework. Bull. Electr. Eng. Inform. 2020, 9, 229–237. [Google Scholar] [CrossRef]
- Varshini, B.; Yogesh, H.; Pasha, S.D.; Suhail, M.; Madhumitha, V.; Sasi, A. IoT-Enabled Smart Doors for Monitoring Body Temperature and Face Mask Detection. Glob. Transit. Proc. 2021, 2, 246–254. [Google Scholar] [CrossRef]
- Rahman, M.S.; Safa, N.T.; Sultana, S.; Salam, S.; Karamehic-Muratovic, A.; Overgaard, H.J. Role of Artificial Intelligence-Internet of Things (AI-IoT) Based Emerging Technologies in the Public Health Response to Infectious Diseases in Bangladesh. Parasite Epidemiol. Control 2022, 18, e00266. [Google Scholar] [CrossRef] [PubMed]
- Popkova, E.G.; Sergi, B.S. Digital Public Health: Automation Based on New Datasets and the Internet of Things. Socioecon. Plann. Sci. 2022, 80, 101039. [Google Scholar] [CrossRef]
- Sahu, K.S.; Majowicz, S.E.; Dubin, J.A.; Morita, P.P. NextGen Public Health Surveillance and the Internet of Things (IoT). Front. Public Health 2021, 9, 756675. [Google Scholar] [CrossRef] [PubMed]
- Tham, K.W. Indoor Air Quality and Its Effects on Humans—A Review of Challenges and Developments in the Last 30 Years. Energy Build. 2016, 130, 637–650. [Google Scholar] [CrossRef]
- Ahmed Abdul–Wahab, S.A.; En, S.C.F.; Elkamel, A.; Ahmadi, L.; Yetilmezsoy, K. A Review of Standards and Guidelines Set by International Bodies for the Parameters of Indoor Air Quality. Atmos. Pollut. Res. 2015, 6, 751–767. [Google Scholar] [CrossRef]
AI Application | Description | Limitations |
---|---|---|
Indoor Air Quality Monitoring | AI-driven systems integrate with HVAC to optimize air filtration and circulation, detect patterns indicating deteriorating air quality, and deploy advanced purification technologies. | Technical hurdles due to architectural constraints, reliance on data quality, and continuous need for updates. |
Visitor Flow Management | AI systems monitor crowd density in real-time using video analytics and IoT sensors, alerting managers to overcrowded areas and predicting peak times for better planning. | Privacy concerns, need for strict adherence to ethical standards, and balancing safety with visitor privacy. |
Predictive Analytics for Health Safety | AI analyzes historical data and current health metrics to forecast potential outbreaks, enabling proactive preventive measures and effective communication with visitors. | Financial constraints, especially for non-profit sites, and the need for specialized knowledge to manage AI systems. |
Pathogen Detection | Real-time PCR and spectroscopic analysis detect the presence of pathogens, aiding in early detection and swift implementation of quarantine and sanitation measures. | Over-reliance on technology may undervalue human expertise and decision-making capabilities. |
Interactive Guides and Educational Tools | Natural language processing and machine learning provide personalized tours and information, enhancing cultural experiences while promoting safety. | Need for tailored solutions to fit the unique context of each site, which can vary widely in terms of size, type, and visitor demographics. |
AI Subject | Description |
---|---|
Environmental Monitoring | Utilizing AI to monitor and control indoor environmental conditions, ensuring optimal air quality and pathogen detection. |
Health Safety Protocols | Implementing AI-driven health safety measures to predict and prevent potential outbreaks and ensure visitor and staff safety. |
Visitor Management | Using AI to manage visitor flows, monitor crowd density, and optimize entry and exit points to maintain social distancing. |
Educational Enhancement | Enhancing visitor experience through AI-powered interactive guides, personalized tours, and educational tools. |
Operational Efficiency | Improving overall site operations through AI applications in environmental monitoring, visitor management, and health safety protocols. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, E.; Gaetano, A.S.; De Spirt, A.; Semeraro, S.; Piscitelli, P.; Miani, A.; Mecca, S.; Karaj, S.; Trombin, R.; Hodgton, R.; et al. AI-Enhanced Tools and Strategies for Airborne Disease Prevention in Cultural Heritage Sites. Epidemiologia 2024, 5, 267-274. https://doi.org/10.3390/epidemiologia5020018
Greco E, Gaetano AS, De Spirt A, Semeraro S, Piscitelli P, Miani A, Mecca S, Karaj S, Trombin R, Hodgton R, et al. AI-Enhanced Tools and Strategies for Airborne Disease Prevention in Cultural Heritage Sites. Epidemiologia. 2024; 5(2):267-274. https://doi.org/10.3390/epidemiologia5020018
Chicago/Turabian StyleGreco, Enrico, Anastasia Serena Gaetano, Alessia De Spirt, Sabrina Semeraro, Prisco Piscitelli, Alessandro Miani, Saverio Mecca, Stela Karaj, Rita Trombin, Rachel Hodgton, and et al. 2024. "AI-Enhanced Tools and Strategies for Airborne Disease Prevention in Cultural Heritage Sites" Epidemiologia 5, no. 2: 267-274. https://doi.org/10.3390/epidemiologia5020018
APA StyleGreco, E., Gaetano, A. S., De Spirt, A., Semeraro, S., Piscitelli, P., Miani, A., Mecca, S., Karaj, S., Trombin, R., Hodgton, R., & Barbieri, P. (2024). AI-Enhanced Tools and Strategies for Airborne Disease Prevention in Cultural Heritage Sites. Epidemiologia, 5(2), 267-274. https://doi.org/10.3390/epidemiologia5020018