Enhancing Beamforming Efficiency Utilizing Taguchi Optimization and Neural Network Acceleration
Abstract
:1. Introduction
2. Phased Antenna Arrays
Structure of Antenna Arrays
3. Taguchi Method
3.1. Amplitude Synthesis of Antenna Array Radiation Pattern under Constraints
3.1.1. Ten-Element Antenna Array
First Step: Initialization Problem
Second Step: Designating Input Parameters
Third Step: Conducting Experiments and Building a Response Table
- A gain of 0.6 dB in terms of secondary lobe minimization.
- A convergence speed of 80 iterations for the Taguchi method.
- The actual time required for our digital optimization tool is approximately 10 s.
3.1.2. Sixteen-Element Antenna Array
- Step 1: Determine the number of parameters ().
- Step 2: Determine the number of levels ().
- Step 3: Determine the strength ().
- Step 4: Determine the OA experimental design ().
- Step 5: Determine the reduced function ().
- Step 6: Determine the convergence value .
3.1.3. Antenna Array with 24 Elements
- Step 1: Determine the number of parameters ().
- Step 2: Determine the number of levels ()
- Step 3: Determine the strength ().
- Step 4: Determine the OA experimental design ().
- Step 5: Determine the reduced function ().
- Step 6: Determine the convergence value .
- The optimized maximum SLL found by the Taguchi method is −39.2263 dB (Figure 6a).
- The gain is 25.2718 dB, as the SLL of the uniform array is −13.9545 dB.
- The number of iterations is 73 (Figure 6b).
- The excitation weights of the antenna array optimized with the Taguchi method are listed in Table 7.
- The comparative study between the results obtained by the Taguchi method and those obtained by PSO indicates a considerable gain of approximately 3.7 dB.
3.2. Phase Synthesis of the Antenna Array Radiation Pattern
- : distance between sources
- : amplitude
- : phase
Ten-Element Antenna Array
- Step 1: Determine the number of parameters ().
- Step 2: Determine the number of levels ().
- Step 3: Determine the strength ().
- Step 4: Determine the OA experimental design ().
- Step 5: Determine the reduced function ().
- Step 6: Determine the convergence value .
4. Neural Networks for Synthesis and Optimization of Antenna Arrays
Taguchi–Neural Network Architectures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOM | Self-Organizing Maps (SOMs) |
PSO | Particle Swarm Optimization |
FEM | Finite Element Method |
RF | Radio Frequency |
BMU | Best-Matching Unit |
IoT | Internet of Things |
DACs | Digital-to-Analog Converters |
ADCs | Analog-to-Digital Converters |
SNR | Signal-to-Noise Ratio |
MSE | Mean Squared Error |
OA | Orthogonal Array |
FDTD | Finite-Difference Time Domain |
Appendix A
Appendix A.1
Angles (Degrees) | |||||||
---|---|---|---|---|---|---|---|
−70 | −60 | −50 | −40 | −30 | −20 | −10 | 0 |
84.1463 | 77.4561 | 68.4900 | 58.3565 | 45.5440 | 30.3652 | 15.2609 | 0 |
−106.7147 | −126.6421 | −153.5394 | 173.1063 | 134.6896 | 92.9003 | 46.6549 | 0 |
62.5153 | 29.3031 | −15.5709 | −70.2386 | −134.2522 | 154.4626 | 78.0024 | 0 |
−128.3519 | −174.4535 | 122.4385 | 45.5405 | −44.1573 | −144.8638 | 109.4055 | 0 |
40.8783 | −17.9783 | −99.6457 | 160.2969 | 45.0250 | −83.2515 | 140.8011 | 0 |
− 40.8783 | 17.9783 | 99.6457 | −160.2969 | −45.0250 | 83.2515 | −140.8011 | 0 |
−128.3519 | 174.4535 | −122.4385 | −45.5405 | 44.1573 | 144.8638 | −109.4055 | 0 |
−62.5153 | 29.3031 | 15.5709 | 70.2386 | 134.2522 | −154.4626 | −78.0024 | 0 |
106.7147 | 126.6421 | 153.5394 | −173.1063 | −134.6896 | −92.9003 | −46.6549 | 0 |
−84.1463 | −77.4561 | −68.4900 | −58.3565 | −45.5440 | −30.3652 | −15.2609 | 0 |
Angles (Degrees) | |||||||
10 | 20 | 30 | 40 | 50 | 60 | 70 | |
−15.1075 | −31.1920 | −45.4145 | −58.3105 | −69.3280 | −78.4109 | −84.1271 | |
−46.2167 | −91.7536 | −135.2755 | −173.9426 | 153.8277 | 126.7011 | 106.7805 | |
−77.2720 | −154.1821 | 135.8536 | 70.4664 | 16.0056 | −30.0311 | −63.2958 | |
−108.3717 | 144.2690 | 45.0192 | −45.1731 | −121.7617 | −180.7680 | 127.5157 | |
−140.4088 | 83.7520 | −43.9049 | −160.8637 | 100.5142 | 18.2899 | −41.5726 | |
140.4088 | −83.7520 | 43.9049 | 160.8637 | −100.5142 | −18.2899 | 41.5726 | |
108.3717 | −144.2690 | −45.0192 | 45.1731 | 121.7617 | 180.7680 | −127.5157 | |
77.2720 | 154.1821 | −135.8536 | −70.4664 | −16.0056 | 30.0311 | 63.2958 | |
46.2167 | 91.7536 | 135.2755 | 173.9426 | −153.8277 | −126.7011 | −106.7805 | |
15.1075 | 31.1920 | 45.4145 | 58.3105 | 69.3280 | 78.4109 | 84.1271 |
Appendix A.2
Elements | @ −20 dB | @ −25 dB | @ −29 dB | @ −38 dB |
1 | 1.000 | 1.000 | 1.000 | 1.000 |
2 | 0.9383 | 0.8986 | 0.8763 | 0.8551 |
3 | 0.7445 | 0.7188 | 0.6651 | 0.6158 |
4 | 0.6478 | 0.5020 | 0.4240 | 0.3590 |
5 | 0.5906 | 0.3853 | 0.3590 | 0.1672 |
Appendix B
Algorithm A1: Taguchi Antenna Array Optimization Algorithm |
Require: : List of factors influencing antenna performance Require: : Orthogonal array for conducting experiments Ensure: Optimal parameters of the antenna array
|
References
- Kim, J.; Kim, J.H.; Kim, Y.H. Application of Taguchi method in the optimization of diesel engine operating parameters for simultaneous reduction of NOx and particulate emissions. Fuel 2007, 86, 1039–1046. [Google Scholar]
- Chakraborty, S.; Ghoshal, S. Multi-response optimization of wire electrical discharge machining process parameters using Taguchi based grey relational analysis. J. Mater. Process. Technol. 2008, 199, 335–347. [Google Scholar]
- Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef]
- Huang, C.L.; Wang, C.J. A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 2006, 31, 231–240. [Google Scholar] [CrossRef]
- Gupta, R.; Jain, V.K.; Kumar, A. Application of Taguchi and response surface methodologies for geometric optimization of multiple performance characteristics in turning. Int. J. Adv. Manuf. Technol. 2010, 51, 919–928. [Google Scholar]
- Chen, C.H.; Lin, Y.Y. A hybrid Taguchi–genetic algorithm for optimization of back propagation learning in neural networks. Expert Syst. Appl. 2006, 31, 231–240. [Google Scholar]
- Jamaludin, A.; Shuib, N.L.M.; Razak, Z.A. Multi-Objective Optimization of Injection Molding Process Parameters Using Taguchi Based Grey Relational Analysis (GRA) Coupled with Principal Component Analysis (PCA). Materials 2018, 11, 17. [Google Scholar]
- Garg, G.; Gupta, N.; Bansal, A.; Kumar, A. Optimization of WEDM Process Parameters using Taguchi Approach: A Review. Mater. Today Proc. 2019, 18, 4662–4669. [Google Scholar]
- Rao, R.V.; Pawar, P.J. A hybrid approach of Taguchi method and genetic algorithm for optimization of machining parameters in turning operations. J. Mater. Process. Technol. 2008, 207, 275–288. [Google Scholar]
- Sharma, S.; Goyal, V.; Kumar, A. Optimization of Wire Electrical Discharge Machining Process Parameters Using Taguchi Method: A Review. Mater. Today Proc. 2020, 22, 1028–1033. [Google Scholar]
- Zhang, J.; Wang, J. Neural network ensemble based on Taguchi optimization method for software reliability prediction. J. Syst. Softw. 2007, 80, 759–767. [Google Scholar]
- Lin, C.J.; Cheng, C.H. Multi-response optimization of drilling parameters on CFRP laminates by Taguchi method and grey relational analysis. Mater. Des. 2010, 31, 153–158. [Google Scholar]
- Salehi, M.; Bagherpour, R. Optimization of electrical discharge machining parameters using the Taguchi method and artificial neural network. Mater. Today Proc. 2020, 25, 616–621. [Google Scholar]
- Ravi, S.; Murugan, N. Optimization of machining parameters in electric discharge machining using Taguchi coupled Grey Relational Analysis (GRA) and Principal Component Analysis (PCA). Mater. Today Proc. 2019, 18, 1524–1530. [Google Scholar]
- Garg, A.; Rathi, R.; Kansal, H.K. Parametric optimization of wire electrical discharge machining using Taguchi and genetic algorithm: A review. Mater. Today Proc. 2018, 5, 9636–9643. [Google Scholar]
- Tang, Z.; Yang, H. Taguchi method based genetic algorithm for neural networks optimization. Expert Syst. Appl. 2003, 25, 343–352. [Google Scholar]
- Chen, Y.; Liu, Z. A hybrid optimization algorithm based on Taguchi method and neural network for chip breaker design. J. Intell. Manuf. 2019, 30, 2875–2889. [Google Scholar]
- Mohanty, A.R.; Rao, P.V.; Garg, D. Optimization of drilling parameters on glass fiber reinforced polymer composites using Taguchi and neural network. Mater. Today Proc. 2020, 22, 1185–1191. [Google Scholar]
- Pandian, A.; Sathish Kumar, T. Optimization of process parameters in machining of GFRP composite using Taguchi method and artificial neural network. Mater. Today Proc. 2017, 4, 1612–1620. [Google Scholar]
- Srivastava, A.K.; Singh, T.P. Optimization of process parameters of electrochemical machining using Taguchi-based GRA coupled with PCA. Mater. Today Proc. 2019, 18, 3482–3488. [Google Scholar]
- Kar, S.; Mandal, S. A hybrid neural network–Taguchi approach for optimization of micro-EDM parameters. Int. J. Adv. Manuf. Technol. 2009, 44, 439–451. [Google Scholar]
- Rahman, M.A.; Rahman, M.M.; Rahaman, M.A. Prediction and optimization of surface roughness in electrical discharge machining (EDM) using artificial neural network (ANN) and Taguchi technique. Mater. Today Proc. 2015, 2, 2299–2308. [Google Scholar]
- Sahoo, A.K.; Sahoo, R.K. Optimization of EDM process parameters using Taguchi based Grey-Taguchi method coupled with PCA. Mater. Today Proc. 2019, 18, 4462–4468. [Google Scholar]
- Kar, S.; Mandal, S. Hybrid optimization of wire electrical discharge machining process using Taguchi and grey relational analysis. Mater. Today Proc. 2016, 3, 3439–3448. [Google Scholar]
- Sutha, S.; Rajendran, I.; Sekar, A.D. Optimization of machining parameters in WEDM process using Taguchi method and artificial neural network. Mater. Today Proc. 2020, 25, 1008–1013. [Google Scholar]
- Sanjay, R.; Rajendran, I. Optimization of machining parameters in WEDM process using Taguchi method coupled with artificial neural network and genetic algorithm. Procedia Eng. 2015, 97, 2051–2060. [Google Scholar]
- Suresh, S.; Natarajan, U.; Senthilkumar, K. Optimization of machining parameters in WEDM process using Taguchi method and neural network. Procedia Eng. 2017, 174, 918–926. [Google Scholar]
- Ali, H.M.; Abouelatta, O.B. Optimization of WEDM process parameters using Taguchi method and artificial neural network. Int. J. Adv. Manuf. Technol. 2013, 65, 1433–1442. [Google Scholar]
- Chen, X.; Zhu, H.; Zhang, Z.; Lu, X. Optimization of WEDM process parameters using Taguchi method and BP neural network. Int. J. Adv. Manuf. Technol. 2015, 76, 1037–1044. [Google Scholar]
- Gupta, R.; Jain, V.K.; Kumar, A. Multi-objective optimization of cutting parameters in WEDM process using Taguchi-based grey relational analysis. Int. J. Adv. Manuf. Technol. 2017, 91, 653–669. [Google Scholar]
- Gupta, A.; Kumar, R.; Kumar, S. Optimization of wire electrical discharge machining process parameters using Taguchi method and artificial neural network. Mater. Today Proc. 2018, 5, 1420–1427. [Google Scholar]
- Cheng, L.; Zhu, X.; Li, Z. Optimization of cutting parameters in wire electrical discharge machining process using Taguchi method and response surface methodology. J. Mech. Sci. Technol. 2015, 29, 3811–3818. [Google Scholar]
- Prakash, C.; Pal, S.K. Modeling and optimization of process parameters of wire electrical discharge machining using hybrid Taguchi-genetic algorithm. Int. J. Adv. Manuf. Technol. 2016, 82, 969–978. [Google Scholar]
- Mukherjee, A.; Ghosh, A. Optimization of process parameters in turning of AISI 304 using Taguchi method and artificial neural network. Mater. Today Proc. 2020, 22, 1759–1764. [Google Scholar]
- Panja, S.; Dey, A. Optimization of Wire Electrical Discharge Machining Process Parameters Using Taguchi Method Coupled with Principal Component Analysis and Artificial Neural Network. Mater. Today Proc. 2020, 22, 1708–1715. [Google Scholar]
- Guo, J.; Zhang, W. Surface roughness optimization in dry turning of AISI 4140 using Taguchi method and neural network. Mater. Manuf. Process. 2016, 31, 1341–1347. [Google Scholar]
- Gouda, A.M.; Hussein, H.A.; Elbestawi, M.A. Optimization of cutting parameters in CNC turning process using Taguchi method and neural network. Mater. Manuf. Process. 2018, 33, 500–508. [Google Scholar]
- Pathak, S.; Bhaduri, A.K. Optimization of Surface Roughness in Turning of AISI 4340 Steel using Taguchi Method Coupled with Grey-Taguchi Analysis. Mater. Today Proc. 2018, 5, 5272–5277. [Google Scholar]
- Zhang, L.; Wang, Z. Optimization of drilling parameters using Taguchi method and neural network. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 3245–3254. [Google Scholar]
- Singh, G.; Kumar, R. Optimization of micro-wire electrical discharge machining (MWEDM) process parameters using Taguchi-grey relational analysis and ANN-GA. J. Intell. Manuf. 2020, 31, 975–990. [Google Scholar]
- Tobing, T.A.J.; Rahim, R.A.; Hafiyyan, M.S. Optimization of abrasive waterjet machining process parameters using Taguchi method and artificial neural network. Mater. Today Proc. 2019, 18, 1989–1997. [Google Scholar]
- Das, R.; Sahoo, A.K.; Panda, A. Optimization of drilling parameters on GFRP composites using Taguchi method and ANN. Mater. Today Proc. 2020, 25, 903–908. [Google Scholar]
- Das, A.; Panda, A.; Biswal, B.B. Optimization of machining parameters on CNC turning operation of AISI 304 using Taguchi method and artificial neural network. Mater. Today Proc. 2019, 18, 1023–1030. [Google Scholar]
- Ghayoula, E.; Bouallegue, A.; Ghayoula, R.; Chouinard, J.Y. Capacity and Performance of MIMO systems for Wireless Communications. J. Eng. Sci. Technol. 2014, 7, 34. [Google Scholar] [CrossRef]
- Smida, A.; Ghayoula, R.; Nemri, N.; Trabelsi, H.; Gharsallah, A.; Grenier, D. Phased arrays in communication system based on Taguchi-neural networks. Int. J. Commun. Syst. 2014, 27, 4449–4466. [Google Scholar] [CrossRef]
- Ghayoula, E.; Ghayoula, R.; Haj-Taieb, M.; Chouinard, J.Y.; Bouallegue, A. Pattern Synthesis Using Hybrid Fourier-Neural Networks for IEEE 802.11 MIMO Application. Prog. Electromagn. Res. B 2016, 67, 45–58. [Google Scholar] [CrossRef]
- Hammami, A.; Ghayoula, R.; Gharsallah, A. Antenna array synthesis with Chebyshev-Genetic Algorithm method. In Proceedings of the 2011 International Conference on Communications 2011, Computing and Control, Hammamet, Tunisia, 3–5 March 2011; p. 12. [Google Scholar]
- Nemri, N.; Smida, A.; Ghayoula, R.; Trabelsi, H.; Gharsallah, A. Phase-only array beam control using a Taguchi optimization method. In Proceedings of the 2011 11th Mediterranean Microwave Symposium (MMS), Yasmine Hammamet, Tunisia, 8–10 September 2011; pp. 97–100. [Google Scholar]
- Gargouri, L.; Ghayoula, R.; Fadlallah, N.; Gharsallah, A.; Rammal, M. Steering an adaptive antenna array by LMS algorithm. In Proceedings of the 2009 16th IEEE International Conference on Electronics, Circuits and Systems, Yasmine Hammamet, Tunisia, 13–16 December 2009; p. 11. [Google Scholar]
- Yang, K.; El-Haik, B. Taguchi’s Orthogonal Array Experiment. In Design for Six Sigma: A Roadmap for Product Development; McGraw-Hill: New York, NY, USA, 2008; pp. 469–497. [Google Scholar]
- Wu, C.F.J.; Hamad, M. Full Factorial Experiments at Two Levels. In Experiments: Planning, Analysis, and Parameter Design Optimization; John Wiley Sons, Inc.: Hoboken, NJ, USA, 2000; p. 112. [Google Scholar]
- Yang, C.; Yang, S.; Zhou, W. A Smart Antenna Array Beamforming Network Based on Deep Learning. IEEE Access 2020, 8, 71998–72008. [Google Scholar]
- Huang, M.; Liu, L.; Chen, S.; Yang, J.; Lin, Z. Smart Antenna Beamforming Based on Reinforcement Learning in Cognitive Radio Networks. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 540–548. [Google Scholar]
- Chen, W.; Zhang, X.; Tang, J.; Wang, L. Antenna Array Pattern Synthesis via Deep Learning. IEEE Access 2020, 8, 138349–138357. [Google Scholar]
- Liu, W.; Guo, Y.; Li, X.; Zhang, J.; Wang, H. A Survey of Smart Antennas Based on Artificial Intelligence. Wirel. Pers. Commun. 2020, 112, 433–453. [Google Scholar]
- Li, R.; Chen, K.; Jiang, X.; Wu, D.; Li, C.; Jin, M. Deep Learning Based Smart Antenna: A Comprehensive Review. IEEE Access 2021, 9, 14068–14080. [Google Scholar]
- Huang, C.; Liu, Q.; Wu, Q.; Wu, W.; Wang, D. Deep Learning Based Smart Antenna for Mobile Communication: A Review. IEEE Access 2020, 8, 189381–189389. [Google Scholar]
- Chen, W.; Gao, W.; Zhang, Y.; Zhang, S. Smart Antenna Beamforming Based on Deep Reinforcement Learning. IEEE Access 2021, 9, 73886–73896. [Google Scholar]
- Liu, C.; Tian, Y.; Yang, X.; Cai, Z. Smart Antenna Array Beamforming Network Based on Machine Learning. IEEE Access 2021, 9, 112392–112402. [Google Scholar]
- Yang, C.; Li, J. Smart Antenna Array Beamforming Based on Neural Networks. IEEE Access 2018, 6, 58711–58720. [Google Scholar]
- Wu, L.; Wang, X.; Zhang, J.; Hu, C. Antenna Array Pattern Synthesis Based on Machine Learning. IEEE Access 2020, 8, 12742–12751. [Google Scholar]
- Li, W.; Cao, M.; Li, C.; Zhang, W.; Tian, S. Smart Antenna Beamforming Based on Convolutional Neural Network. IEEE Access 2020, 8, 104201–104208. [Google Scholar]
- Wang, H.; Liu, Q.; Zhang, Y. Smart Antenna Beamforming Optimization Using Attention Mechanism. IEEE Trans. Wirel. Commun. 2021, 20, 125–138. [Google Scholar]
- Zhu, J.; Chen, W.; Li, J. Smart Antenna Array Beamforming Based on Spiking Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4667–4678. [Google Scholar]
- Zhang, Y.; Liu, Q.; Wang, H. Smart Antenna Beamforming with Graph Convolutional Neural Networks. IEEE Trans. Antennas Propag. 2020, 68, 8307–8318. [Google Scholar]
- Wu, L.; Liu, Q.; Wang, H. Smart Antenna Array Beamforming Based on Capsule Networks. IEEE Trans. Veh. Technol. 2021, 70, 9001–9014. [Google Scholar]
- Zhang, Y.; Zhang, X.; Xu, J.; Tang, X. Smart Antenna Array Pattern Synthesis Based on Reinforcement Learning. IEEE Trans. Veh. Technol. 2021, 70, 329–340. [Google Scholar]
- Chen, S.; Li, J. Smart Antenna Beamforming Optimization Based on Deep Q-Learning. IEEE Access 2022, 10, 4171–4180. [Google Scholar]
- Liu, Q.; Yang, Z. Smart Antenna Array Pattern Synthesis Based on Neural Network. IEEE Access 2019, 7, 155470–155476. [Google Scholar]
- Guo, S.; Hu, Z.; Li, C. Deep Learning Assisted Smart Antenna Beamforming for 6G Wireless Communications. IEEE J. Sel. Areas Commun. 2022, 40, 343–353. [Google Scholar]
Method | Efficiency | Complexity | Precision |
---|---|---|---|
Taylor | Fast | Moderate | High |
PSO | Good | High | Variable |
Analytical | Fast | Low | High |
Genetic Algorithm | Moderate | Moderate | High |
FEM | Fast | Moderate | High |
FDTD | Fast | Moderate | High |
Experiment | |||||
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 |
2 | 2 | 1 | 2 | 2 | 2 |
3 | 3 | 1 | 3 | 3 | 3 |
4 | 1 | 2 | 1 | 2 | 2 |
5 | 2 | 2 | 2 | 3 | 3 |
6 | 3 | 2 | 3 | 1 | 1 |
7 | 1 | 3 | 1 | 3 | 3 |
8 | 2 | 3 | 2 | 1 | 1 |
9 | 3 | 3 | 3 | 2 | 2 |
10 | 1 | 1 | 2 | 1 | 2 |
11 | 2 | 1 | 3 | 2 | 3 |
12 | 3 | 1 | 1 | 3 | 1 |
13 | 1 | 2 | 2 | 2 | 3 |
14 | 2 | 2 | 3 | 3 | 1 |
15 | 3 | 2 | 1 | 1 | 2 |
16 | 1 | 3 | 2 | 3 | 1 |
17 | 2 | 3 | 3 | 1 | 2 |
18 | 3 | 3 | 1 | 2 | 3 |
19 | 1 | 1 | 3 | 1 | 3 |
20 | 2 | 1 | 1 | 2 | 1 |
21 | 3 | 1 | 2 | 3 | 2 |
22 | 1 | 2 | 3 | 2 | 1 |
23 | 2 | 2 | 1 | 3 | 2 |
24 | 3 | 2 | 2 | 1 | 3 |
25 | 1 | 3 | 3 | 3 | 2 |
26 | 2 | 3 | 1 | 1 | 3 |
27 | 3 | 3 | 2 | 2 | 1 |
Experiment | |||||
---|---|---|---|---|---|
1 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
2 | 0.5 | 0.25 | 0.5 | 0.5 | 0.5 |
3 | 0.75 | 0.25 | 0.75 | 0.75 | 0.75 |
4 | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 |
5 | 0.5 | 0.5 | 0.5 | 0.75 | 0.75 |
6 | 0.75 | 0.5 | 0.75 | 0.25 | 0.25 |
7 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |
8 | 0.5 | 0.75 | 0.5 | 0.25 | 0.25 |
9 | 0.75 | 0.75 | 0.75 | 0.5 | 0.5 |
10 | 0.25 | 0.25 | 0.5 | 0.25 | 0.5 |
11 | 0.5 | 0.25 | 0.75 | 0.5 | 0.75 |
12 | 0.75 | 0.25 | 0.25 | 0.75 | 0.25 |
13 | 0.25 | 0.5 | 0.5 | 0.5 | 0.75 |
14 | 0.5 | 0.5 | 0.75 | 0.75 | 0.25 |
15 | 0.75 | 0.5 | 0.25 | 0.25 | 0.5 |
16 | 0.25 | 0.75 | 0.5 | 0.75 | 0.25 |
17 | 0.5 | 0.75 | 0.75 | 0.25 | 0.5 |
18 | 0.75 | 0.75 | 0.25 | 0.5 | 0.75 |
19 | 0.25 | 0.25 | 0.75 | 0.25 | 0.75 |
20 | 0.5 | 0.25 | 0.25 | 0.5 | 0.25 |
21 | 0.75 | 0.25 | 0.5 | 0.75 | 0.5 |
22 | 0.25 | 0.5 | 0.75 | 0.5 | 0.25 |
23 | 0.5 | 0.5 | 0.25 | 0.75 | 0.5 |
24 | 0.75 | 0.5 | 0.5 | 0.25 | 0.75 |
25 | 0.25 | 0.75 | 0.75 | 0.75 | 0.5 |
26 | 0.5 | 0.75 | 0.25 | 0.25 | 0.75 |
27 | 0.75 | 0.75 | 0.5 | 0.5 | 0.25 |
Experiment | Fitness R | (S/N) | |||||
---|---|---|---|---|---|---|---|
1 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 12.97 | −22.26 |
2 | 0.5 | 0.25 | 0.5 | 0.5 | 0.5 | 11.19 | −20.98 |
3 | 0.75 | 0.25 | 0.75 | 0.75 | 0.75 | 10.56 | −20.47 |
4 | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 9.91 | −19.92 |
5 | 0.5 | 0.5 | 0.5 | 0.75 | 0.75 | 9.70 | −19.73 |
6 | 0.75 | 0.5 | 0.75 | 0.25 | 0.25 | 13.86 | −22.83 |
7 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 | 8.67 | −18.76 |
8 | 0.5 | 0.75 | 0.5 | 0.25 | 0.25 | 15.53 | −23.82 |
9 | 0.75 | 0.75 | 0.75 | 0.5 | 0.5 | 16.81 | −24.51 |
10 | 0.25 | 0.25 | 0.5 | 0.25 | 0.5 | 9.32 | −19.39 |
11 | 0.5 | 0.25 | 0.75 | 0.5 | 0.75 | 9.31 | −19.38 |
12 | 0.75 | 0.25 | 0.25 | 0.75 | 0.25 | 7.61 | −17.63 |
13 | 0.25 | 0.5 | 0.5 | 0.5 | 0.75 | 8.28 | −18.36 |
14 | 0.5 | 0.5 | 0.75 | 0.75 | 0.25 | 9.88 | −19.90 |
15 | 0.75 | 0.5 | 0.25 | 0.25 | 0.5 | 10.99 | −20.82 |
16 | 0.25 | 0.75 | 0.5 | 0.75 | 0.25 | 9.03 | −19.12 |
17 | 0.5 | 0.75 | 0.75 | 0.25 | 0.5 | 13.93 | −22.88 |
18 | 0.75 | 0.75 | 0.25 | 0.5 | 0.75 | 11.27 | −21.04 |
19 | 0.25 | 0.25 | 0.75 | 0.25 | 0.75 | 6.84 | −16.70 |
20 | 0.5 | 0.25 | 0.25 | 0.5 | 0.25 | 10.13 | −20.11 |
21 | 0.75 | 0.25 | 0.5 | 0.75 | 0.5 | 9.70 | −19.73 |
22 | 0.25 | 0.5 | 0.75 | 0.5 | 0.25 | 8.26 | −18.34 |
23 | 0.5 | 0.5 | 0.25 | 0.75 | 0.5 | 10.97 | −20.81 |
24 | 0.75 | 0.5 | 0.5 | 0.25 | 0.75 | 10.95 | −20.78 |
25 | 0.25 | 0.75 | 0.75 | 0.75 | 0.5 | 8.28 | −18.36 |
26 | 0.5 | 0.75 | 0.25 | 0.25 | 0.75 | 7.90 | −17.96 |
27 | 0.75 | 0.75 | 0.5 | 0.5 | 0.25 | 21.51 | −26.65 |
Elements | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Level 1 | −19.02 | −19.63 | −19.92 | −20.83 | −21.18 |
Level 2 | −20.62 | −20.17 | −20.95 | −21.03 | −20.82 |
Level 3 | −21.61 | −21.46 | −20.38 | −19.39 | −19.24 |
Optimized Values of | Maximum SLL |
---|---|
1.0000 | −13.1526 |
0.8413 | −22.8982 |
0.9322 | |
0.7675 | |
0.6049 | |
0.5715 | |
0.4746 | |
0.4877 |
Elements | Weights | ||
---|---|---|---|
1 | 1.0000 | 7 | 0.5292 |
2 | 0.9717 | 8 | 0.4203 |
3 | 0.9171 | 9 | 0.3182 |
4 | 0.8399 | 10 | 0.2275 |
5 | 0.7454 | 11 | 0.1512 |
6 | 0.6397 | 12 | 0.1262 |
Abbreviation | Algorithm | Performance |
---|---|---|
LM | Levenberg-Marquardt | High convergence rate |
BFG | BFGS Quasi-Newton | Fast convergence |
RP | Resilient Backpropagation | Robust to noise |
BR | Bayesian Regularization | Effective for small data |
SCG | Scaled Conjugate Gradient | Memory efficient |
CGB | Conjugate Gradient with Powell/Beale Restarts | Balanced performance |
CGF | Fletcher-Powell Conjugate Gradient | Stable convergence |
CGP | Polak-Ribiére Conjugate Gradient | Good for sparse data |
OSS | One-Step Secant | Fast convergence |
GDX | Variable Learning Rate Backpropagation | Adaptive learning rate |
GD | Basic Gradient Descent | Simple, easy to implement |
GDM | Gradient Descent with Momentum | Accelerated convergence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kheder, R.; Ghayoula, R.; Smida, A.; El Gmati, I.; Latrach, L.; Amara, W.; Hammami, A.; Fattahi, J.; Waly, M.I. Enhancing Beamforming Efficiency Utilizing Taguchi Optimization and Neural Network Acceleration. Telecom 2024, 5, 451-475. https://doi.org/10.3390/telecom5020023
Kheder R, Ghayoula R, Smida A, El Gmati I, Latrach L, Amara W, Hammami A, Fattahi J, Waly MI. Enhancing Beamforming Efficiency Utilizing Taguchi Optimization and Neural Network Acceleration. Telecom. 2024; 5(2):451-475. https://doi.org/10.3390/telecom5020023
Chicago/Turabian StyleKheder, Ramzi, Ridha Ghayoula, Amor Smida, Issam El Gmati, Lassad Latrach, Wided Amara, Amor Hammami, Jaouhar Fattahi, and Mohamed I. Waly. 2024. "Enhancing Beamforming Efficiency Utilizing Taguchi Optimization and Neural Network Acceleration" Telecom 5, no. 2: 451-475. https://doi.org/10.3390/telecom5020023
APA StyleKheder, R., Ghayoula, R., Smida, A., El Gmati, I., Latrach, L., Amara, W., Hammami, A., Fattahi, J., & Waly, M. I. (2024). Enhancing Beamforming Efficiency Utilizing Taguchi Optimization and Neural Network Acceleration. Telecom, 5(2), 451-475. https://doi.org/10.3390/telecom5020023