Figure 1.
Electronic-scanning of the space with a secondary lobe level of −8 dB for a circular antenna array of 24 elements.
Figure 2.
Electronic-scanning of the space with a secondary lobe level of −28 dB for a circular antenna array of 16 elements.
Figure 3.
Geometry of the proposed antenna.
Figure 4.
Design and simulation of a circular antenna array with 10 elements.
Figure 5.
Reflection coefficient of the proposed antenna and 3D radiation pattern at 2.45 GHz.
Figure 6.
Polar radiation patterns for a circular antenna array with 10-elements at 2.45 GHz.
Figure 7.
Simulated results for 3D circular antenna array radiation pattern synthesis with 10-elements using PSO and GA algorithms at 2.45 GHz.
Figure 8.
Circular antenna array with 16-elements at 2.45 GHz. (a) Uniform excitation (16 antennas). (b) Taguchi excitation (16 antennas).
Figure 9.
Circular antenna array with 24-elements at 2.45 GHz. (a) Uniform excitation (24-antennas). (b) Taguchi excitation (24-antennas).
Figure 10.
Circular antenna array in concentric rings with isotropic elements.
Figure 11.
Simulation results of a concentric ring array (, , and ).
Figure 12.
Simulation results of a concentric ring array (, , and ).
Figure 13.
Simulation results of a concentric ring array (, , and ).
Figure 14.
Simulation results of a concentric ring array (, , and ).
Figure 15.
Simulation results of a concentric ring array (, , , and ).
Figure 16.
Reduction of the side-lobe level for concentric ring arrays.
Figure 17.
Optimal excitation values found using the Taguchi method.
Figure 18.
Synthesis of 3D radiation patterns for an 18-element array (, , and ) at 2.45 GHz. (a) Structure of the concentric ring array (, , and ). (b) Uniform excitations. (c) Excitations with Evolutionary Programming (EP). (d) Excitations with Firefly Algorithm (FA). (e) Excitations with Taguchi method.
Figure 19.
Synthesis of 3D radiation patterns for a 24-element array (, , and ) at 2.45 GHz. (a) Structure of the concentric ring array (, , and ). (b) Uniform excitations. (c) Excitations with Taguchi method.
Figure 20.
Synthesis of 3D radiation patterns for a 30-element array (, , and ) at 2.45 GHz. (, , and ), (a) Structure of the concentric ring array and (b) Uniform excitations. (c) Excitations with Evolutionary Programming (EP). (d) Excitations with the Firefly Algorithm (FA). (e) Excitations with Taguchi.
Figure 21.
Synthesis of 3D radiation patterns for a 36-element array (, , , and ) at GHz. (a) Structure of the concentric ring array (, , , and ). (b) Uniform excitations. (c) Excitations with Taguchi optimization.
Table 1.
Results of optimal excitation values from different algorithms for a circular antenna array ( and ).
Number of Elements | Uniform | PSO [22] | GA [23] | FA [24] | Taguchi |
---|
1 | 1.0000 | 1.0000 | 0.9545 | 0.7081 | 0.1369 |
2 | 1.0000 | 0.7529 | 0.4283 | 0.2682 | 0.3710 |
3 | 1.0000 | 0.7519 | 0.3392 | 0.3713 | 0.3796 |
4 | 1.0000 | 1.0000 | 0.9074 | 0.4100 | 1.0000 |
5 | 1.0000 | 0.5062 | 0.8086 | 0.8800 | 0.6311 |
6 | 1.0000 | 1.0000 | 0.4533 | 0.9665 | 0.1369 |
7 | 1.0000 | 0.7501 | 0.5634 | 0.4165 | 0.3710 |
8 | 1.0000 | 0.7524 | 0.6015 | 0.5813 | 0.3796 |
9 | 1.0000 | 1.0000 | 0.7045 | 0.7494 | 1.0000 |
10 | 1.0000 | 0.5067 | 0.5948 | 0.5403 | 0.6311 |
Table 2.
Experimental results of the performance evaluation of the CCAA method.
Experiments | Elements | Fitness | R(S/N)dB |
---|
w1 | w2 | w3 | w4 | w5 | w6 |
---|
1 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | −10.087 | −20.076 |
2 | 0.5 | 0.25 | 0.5 | 0.5 | 0.5 | 0.75 | −10.055 | −20.047 |
3 | 0.75 | 0.25 | 0.75 | 0.75 | 0.75 | 0.5 | −15.006 | −23.525 |
4 | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 0.5 | −7.616 | −17.635 |
5 | 0.5 | 0.5 | 0.5 | 0.75 | 0.75 | 0.25 | −12.581 | −21.994 |
6 | 0.75 | 0.5 | 0.75 | 0.25 | 0.25 | 0.75 | −9.948 | −19.955 |
7 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 | 0.75 | −6.737 | −16.569 |
8 | 0.5 | 0.75 | 0.5 | 0.25 | 0.25 | 0.5 | −7.785 | −17.825 |
9 | 0.75 | 0.75 | 0.75 | 0.5 | 0.5 | 0.25 | −12.268 | −21.775 |
10 | 0.25 | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | −9.706 | −19.757 |
Table 3.
Response table for the first iteration.
| Elements |
---|
| 1 | 2 | 3 | 4 | 5 | 6 |
---|
Level 1 | −19.79 | −20.02 | −17.31 | −18.45 | −19.77 | −21.13 |
Level 2 | −19.65 | −20.04 | −19.73 | −19.95 | −19.71 | −19.60 |
Level 3 | −19.29 | −18.66 | −21.68 | −20.32 | −19.24 | −17.98 |
Table 4.
Optimized excitations of the network (, , and ).
| Elements |
---|
| 1 | 2 | 3 | 4 | 5 | 6 |
---|
Optimized Excitations Optimized | 0.7582 | 0.6303 | 0.9210 | 0.9818 | 0.6175 | 0.2294 |
Table 5.
Optimized excitations of the array (, , and ).
| | | |
---|
Elements | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|
Weights | 0.5417 | 0.4623 | 0.4931 | 1.0000 | 0.8540 | 0.5184 | 0.8743 | 0.5000 | 0.1893 |
Table 6.
Optimized excitations of the array (, , and ).
Elements | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|
Weights | 0.0494 | 0.3509 | 0.3525 | 0.3927 | 0.6435 | 0.0812 | 0.3565 | 0.0847 | 0.7458 |
Elements | 10 | 11 | 12 | |
Weights | 0.6473 | 0.6415 | 0.5892 | |
Table 7.
Optimized excitations of the array (, , and ).
Elements | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|
Weights | 0.5242 | 0.3954 | 0.0986 | 0.3032 | 0.1452 | 0.7845 | 0.9548 | 0.4444 | 0.0443 |
Elements | 10 | 11 | 12 | 13 | 14 | 15 | |
Weights | 0.1995 | 0.7903 | 1.0000 | 0.9712 | 0.9810 | 0.2068 | |
Table 8.
Optimized excitations of the array (, , , and ).
Elements | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|
Weights | 0.2161 | 0.5458 | 0.0633 | 0.3158 | 0.7458 | 0.9851 | 0.1374 | 0.1892 | 0.9548 |
Elements | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Weights | 0.4461 | 0.3158 | 0.5911 | 0.5512 | 0.3254 | 0.5700 | 0.6049 | 0.5443 | 0.4227 |
Table 9.
Comparison of synthesis results.
Synthesis Method by Taguchi | HPBW (deg.) | Reduction of Side-Lobe Level (dB) |
---|
(, , ) | 14.5 | −11.1418 |
(, , ) | 12.4 | −17.6870 |
(, , ) | 11 | −21.2004 |
(, , ) | 9 | −25.1911 |
(, , , ) | 8.3 | −27.5831 |
Table 10.
Results of the optimal excitation values using different algorithms for a concentric ring antenna array (, , and ).
| | Excitations with Different Algorithms |
---|
CCAA | Number of Elements | Uniform | EP [26] | FA [24] | Taguchi |
---|
| 1 | 1.0000 | 0.3416 | 0.7025 | 0.5417 |
2 | 1.0000 | 0.0496 | 0.1410 | 0.4623 |
3 | 1.0000 | 0.3242 | 0.6770 | 0.5417 |
4 | 1.0000 | 0.0283 | 0.1215 | 0.4623 |
| 5 | 1.0000 | 0.5321 | 0.9999 | 0.4931 |
6 | 1.0000 | 0.2114 | 0.4349 | 1.0000 |
7 | 1.0000 | 0.1923 | 0.4084 | 0.8540 |
8 | 1.0000 | 0.4901 | 0.9999 | 0.4931 |
9 | 1.0000 | 0.1876 | 0.4076 | 1.0000 |
10 | 1.0000 | 0.1994 | 0.4305 | 0.8540 |
| 11 | 1.0000 | 0.1204 | 0.2352 | 0.5184 |
12 | 1.0000 | 0.2555 | 0.4789 | 0.8743 |
13 | 1.0000 | 0.3527 | 0.7366 | 0.5000 |
14 | 1.0000 | 0.2450 | 0.4831 | 0.1893 |
15 | 1.0000 | 0.1229 | 0.2542 | 0.5184 |
16 | 1.0000 | 0.2294 | 0.4790 | 0.8743 |
17 | 1.0000 | 0.3449 | 0.7172 | 0.5000 |
18 | 1.0000 | 0.2400 | 0.4730 | 0.1893 |
Table 11.
Optimal excitation values with different algorithms for a concentric ring antenna array (, , and ).
| | Excitations with Different Algorithms |
---|
CCAA | Number of Elements | Uniform | EP [26] | FA [24] | Taguchi |
---|
| 1 | 1.0000 | 0.2242 | 0.9354 | 0.5242 |
2 | 1.0000 | 0.2886 | 0.7716 | 0.3954 |
3 | 1.0000 | 0.1891 | 0.3013 | 0.0986 |
4 | 1.0000 | 0.3336 | 0.7299 | 0.3032 |
5 | 1.0000 | 0.5458 | 0.8924 | 0.5242 |
6 | 1.0000 | 0.3895 | 0.7641 | 0.3954 |
7 | 1.0000 | 0.1000 | 0.3044 | 0.0986 |
8 | 1.0000 | 0.2866 | 0.7999 | 0.3032 |
| 9 | 1.0000 | 0.1595 | 0.5444 | 0.1452 |
10 | 1.0000 | 0.1378 | 0.5686 | 0.7845 |
11 | 1.0000 | 0.1036 | 0.2124 | 0.9548 |
12 | 1.0000 | 0.1000 | 0.1958 | 0.4444 |
13 | 1.0000 | 0.4048 | 0.5901 | 0.0443 |
14 | 1.0000 | 0.2686 | 0.5647 | 0.1452 |
15 | 1.0000 | 0.3090 | 0.6322 | 0.7845 |
16 | 1.0000 | 0.1000 | 0.1498 | 0.9548 |
17 | 1.0000 | 0.1000 | 0.1660 | 0.4444 |
18 | 1.0000 | 0.1696 | 0.6379 | 0.0443 |
| 19 | 1.0000 | 0.2419 | 0.5044 | 0.1995 |
20 | 1.0000 | 0.1183 | 0.4125 | 0.7903 |
21 | 1.0000 | 0.1144 | 0.2457 | 1.0000 |
22 | 1.0000 | 0.4708 | 0.9673 | 0.9712 |
23 | 1.0000 | 0.1685 | 0.2516 | 0.9810 |
24 | 1.0000 | 0.2090 | 0.3827 | 0.2068 |
25 | 1.0000 | 0.2566 | 0.4854 | 0.1995 |
26 | 1.0000 | 0.2200 | 0.3444 | 0.7903 |
27 | 1.0000 | 0.1000 | 0.3209 | 1.0000 |
28 | 1.0000 | 0.4229 | 0.9734 | 0.9712 |
29 | 1.0000 | 0.1273 | 0.3290 | 0.9810 |
30 | 1.0000 | 0.1020 | 0.3651 | 0.2068 |