Performance Analysis of Generalized Quadrature Spatial Modulation with Quasi-Orthogonal Space-Time Block Codes Under Nakagami m-Fading Channels
Abstract
:1. Introduction
2. System Model
Algorithm 1 Transmit Receive antennas correlation Algorithm |
|
3. Detection Techniques
3.1. Detection Technique I
3.2. Detection Technique II
3.3. Detection Technique III
- To get the final values of and , substitute and in Equation (32).
4. Theoretical Analysis of Different Detection Schemes
- : received signal vector,
- : MIMO channel matrix,
- : GQSM-QOSTBC encoded transmit signal,
- : additive white Gaussian noise.
4.1. BER Analysis of D-QR Detection
4.2. BER Analysis of LCML Detection
4.3. BER Analysis of D-QR-IC Detection
5. Result and Discussion
6. Conclusions
7. Potential Future Research Direction
8. Potential Implementation Constraints
9. Research Work Limitation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Dang, S.; Amin, M.G.; Shihada, B.; Alouini, M.-S. What should 6G be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef]
- Saad, W.; Bennis, M.; Chen, M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Netw. 2019, 34, 134–142. [Google Scholar] [CrossRef]
- Souza, C.; Falcão, M.; Balieiro, A.; Alves, E.; Taleb, T. Dynamic resource allocation for URLLC and eMBB in MEC-NFV 5G networks. Comput. Netw. 2025, 260, 111127. [Google Scholar] [CrossRef]
- Pradhan, A.; Das, S.; Piran, M.J.; Han, Z. A Survey on Security of Ultra/Hyper Reliable Low Latency Communication: Recent Advancements, Challenges, and Future Directions. IEEE Access 2024, 12, 112320–112353. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 86–195. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M. 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Nidagundi, P.; Darvekar, A.; Amber, M.; R, R. A Comparative Study of Ultra-Massive MIMO Intelligent Receivers with Adversarial Robustness and Energy Efficiency for 6G Applications. Results Eng. 2025, 26, 105409. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L.; Hoydis, J. Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits. IEEE Trans. Inf. Theory 2017, 63, 2451–2477. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, X.; Wang, Q. Spectral efficiency analysis of massive MIMO systems employing spatial modulation. IEEE Wirel. Commun. Lett. 2016, 5, 508–511. [Google Scholar]
- Mesleh, R.Y.; Haas, H.; Sinanovic, S.; Ahn, C.W.; Yun, S. Spatial modulation. IEEE Trans. Veh. Technol. 2008, 57, 2228–2241. [Google Scholar] [CrossRef]
- Jeganathan, J.; Ghrayeb, A.; Szczecinski, L.; Ceron, A. Space shift keying modulation for MIMO channels. IEEE Trans. Wirel. Commun. 2009, 8, 3692–3703. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; You, X. Generalized quadrature spatial modulation for MIMO systems. IEEE Commun. Lett. 2020, 24, 1233–1237. [Google Scholar]
- Patel, S.; Chauhan, D.; Bhalani, J.; Trivedi, Y.N. Novel detection schemes for generalized quadrature spatial modulation. Int. J. Commun. Syst. 2021, 34, e5001. [Google Scholar] [CrossRef]
- Nakagami, M. The m-distribution: A general formula of intensity distribution of rapid fading. In Statistical Methods in Radio Wave Propagation, Proceedings of a Symposium, Los Angeles, CA, USA, 18–20 June 1958; Elsevier: Amsterdam, The Netherlands, 1960. [Google Scholar]
- Simon, M.K.; Alouini, M.-S. Digital Communication over Fading Channels; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Yoo, H.; Goldsmith, A. Capacity and power allocation for fading MIMO channels with channel estimation error. IEEE Trans. Inf. Theory 2006, 52, 2203–2214. [Google Scholar]
- Shafi, M.; Zhang, J.; Tataria, H.; Molisch, A.F.; Sun, S.; Rappaport, T.S.; Tufvesson, F.; Wu, S.; Kitao, K. Microwave vs. millimeter-wave propagation channels: Key differences and impact on 5G cellular systems. IEEE Commun. Mag. 2018, 56, 14–20. [Google Scholar] [CrossRef]
- He, S.; Du, J.; Liao, Y. Multi-User Scheduling for 6G V2X Ultra-Massive MIMO System. Sensors 2021, 21, 6742. [Google Scholar] [CrossRef]
- Björnson, E.; Chae, C.-B.; Heath, R.W., Jr.; Marzetta, T.L.; Mezghani, A.; Sanguinetti, L.; Rusek, F.; Castellanos, M.R.; Jun, D.; Demir, Ö.T. Towards 6G MIMO: Massive Spatial Multiplexing, Dense Arrays, and Interplay Between Electromagnetics and Processing. arXiv 2024. [Google Scholar] [CrossRef]
- Tarokh, V.; Jafarkhani, H.; Calderbank, A.R. Space-time block codes from orthogonal designs. IEEE Trans. Inf. Theory 1999, 45, 1456–1467. [Google Scholar] [CrossRef]
- Dineh, B.; Pakravan, M.R. Performance analysis of spatial modulation over correlated fading channels. IEEE Trans. Wirel. Commun. 2018, 17, 5204–5215. [Google Scholar]
- Faddoul, E.; Kraidy, G.M.; Psomas, C.; Chatzinotas, S.; Krikidis, I. Spatial Modulation with Energy Detection: Diversity Analysis and Experimental Evaluation. IEEE Trans. Green Commun. Netw. 2023, 8, 35–49. [Google Scholar] [CrossRef]
- Alhassoun, S.Y.; Sulyman, A.I. Impact of transmit antenna correlation and imperfect CSI on spatial modulation MIMO systems. Phys. Commun. 2021, 46, 101231. [Google Scholar]
- Abd, M.G.; Abd, A.H.; Hassan, O.E.; Abo-Zahhad, M. Interference-aware modeling and analysis for the secrecy performance of cooperative vehicular relaying networks over mixed Nakagami-m and double Nakagami-m fading channels. Ad Hoc Netw. 2022, 139, 103023. [Google Scholar] [CrossRef]
- Nešić, M.; Milošević, N.; Spalević, P.; Nikolić, Z.; Smilić, M. Wireless Communication System Performance in M2M Nakagami-m Fading Channel. Sustainability 2023, 15, 3211. [Google Scholar] [CrossRef]
- Gvozdarev, A.S. α-Fluctuating Nakagami-m Fading Model for Wireless Communications. Sensors 2025, 25, 3430. [Google Scholar] [CrossRef]
- Ni, Y.; Zhao, H.; Liu, Y.; Wang, J.; Gui, G.; Zhang, H. Analysis of RIS-Aided Communications Over Nakagami-m Fading Channels. IEEE Trans. Veh. Technol. 2023, 72, 8709–8721. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, M.; Wang, S.; Pan, G.; An, J. On the secure performance of Internet of Vehicles in Nakagami-m fading scenarios. Phys. Commun. 2023, 59, 102111. [Google Scholar] [CrossRef]
- Stuber, G.L. Principles of Mobile Communication, 4th ed.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 6th ed.; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Gao, M.; Zhang, L.; Han, C.; Ge, J. Low-Complexity Detection Schemes for QOSTBC with Four-Transmit-Antenna. IEEE Commun. Lett. 2015, 19, 1053–1056. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Yao, Y.; Chen, Z.; Li, X.; Zhang, S. Outage Performance of the Full-Duplex Two-Way DF Relay System Under Imperfect CSI. IEEE Access 2017, 5, 5425–5435. [Google Scholar] [CrossRef]
Index Bit | AAP | Index Bit | AAP | Index Bit | AAP | Index Bit | AAP |
---|---|---|---|---|---|---|---|
00 | 10 | 01 | 11 |
TAS Scheme | SNR Required |
---|---|
No TAS | Not achievable |
Conventional TAS | 1.85 dB |
Best II Random II TAS | 2.9 dB |
Near conventional TAS | 1.85 dB |
Partial CSIR (η) | ML | Technique I | Technique II | Technique III |
---|---|---|---|---|
0.98 (SNR = 9 dB) | 0.0112 | 0.01399125 | 0.01107 | 0.0092475 |
0.98 (SNR = 18 dB) | 0.0037 | 0.000399 | 0.0002837 | 0.000246 |
0.99 (SNR = 9 dB) | 0.008016 | 0.01386125 | 0.01161 | 0.0096875 |
0.99 (SNR = 18 dB) | 0.001515 | 0.0004 | 0.000275 | 0.00027 |
1 (SNR = 9 dB) | 0.005304 | 0.01464375 | 0.01139 | 0.0096425 |
1 (SNR = 18 dB) | 0.0001875 | 0.00032875 | 0.0003275 | 0.0002625 |
Parameter | Technique I | Technique II | Technique III | ML |
---|---|---|---|---|
Search Times | 4 × | 2 × | 6 × | 2m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, S.; Chaudhari, H.B.; Chauhan, D.; Modi, H.; Mewada, H.; Kavaiya, S. Performance Analysis of Generalized Quadrature Spatial Modulation with Quasi-Orthogonal Space-Time Block Codes Under Nakagami m-Fading Channels. Telecom 2025, 6, 43. https://doi.org/10.3390/telecom6020043
Patel S, Chaudhari HB, Chauhan D, Modi H, Mewada H, Kavaiya S. Performance Analysis of Generalized Quadrature Spatial Modulation with Quasi-Orthogonal Space-Time Block Codes Under Nakagami m-Fading Channels. Telecom. 2025; 6(2):43. https://doi.org/10.3390/telecom6020043
Chicago/Turabian StylePatel, Sagarkumar, Harishkumar B. Chaudhari, Dharmendra Chauhan, Hardik Modi, Hiren Mewada, and Sagar Kavaiya. 2025. "Performance Analysis of Generalized Quadrature Spatial Modulation with Quasi-Orthogonal Space-Time Block Codes Under Nakagami m-Fading Channels" Telecom 6, no. 2: 43. https://doi.org/10.3390/telecom6020043
APA StylePatel, S., Chaudhari, H. B., Chauhan, D., Modi, H., Mewada, H., & Kavaiya, S. (2025). Performance Analysis of Generalized Quadrature Spatial Modulation with Quasi-Orthogonal Space-Time Block Codes Under Nakagami m-Fading Channels. Telecom, 6(2), 43. https://doi.org/10.3390/telecom6020043