Robotic Innovations in Orthopedics: A Growing Landscape, Challenges, and Implications for Care
Abstract
:1. Introduction
2. Current Robotics in Orthopedics
3. Future of Robotics in Orthopedics
4. Challenges and Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spencer, E.H. The ROBODOC clinical trial: A robotic assistant for total hip arthroplasty. Orthop. Nurs. 1996, 15, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Badre, A.; Alambeigi, F.; Tavakoli, M. Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review. Appl. Sci. 2023, 13, 9768. [Google Scholar] [CrossRef]
- Ahern, D.P.; Gibbons, D.; Schroeder, G.D.; Vaccaro, A.R.; Butler, J.S. Image-guidance, Robotics, and the Future of Spine Surgery. Clin. Spine Surgery 2020, 33, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Yuk, F.J.; Carr, M.T.; Schupper, A.J.; Lin, J.; Tadros, R.; Wiklund, P.; Sfakianos, J.; Steinberger, J. Da Vinci Meets Globus Excelsius GPS: A Totally Robotic Minimally Invasive Anterior and Posterior Lumbar Fusion. World Neurosurg. 2023, 180, 29–35. [Google Scholar] [CrossRef]
- Innocenti, B.; Bori, E. Robotics in orthopaedic surgery: Why, what and how? Arch. Orthop. Trauma Surg. 2021, 141, 2035–2042. [Google Scholar] [CrossRef]
- Karuppiah, K.; Sinha, J. Robotics in trauma and orthopedics. Ann. R. Coll. Surg. Engl. 2018, 100 (Suppl. S6), 8–15. [Google Scholar] [CrossRef]
- Beyaz, S. A brief history of artificial intelligence and robotic surgery in orthopedics & traumatology and future expectations. Jt. Dis. Relat. Surg. 2020, 31, 653–655. [Google Scholar] [CrossRef]
- Yeung, S.H. Minimally invasive surgery in orthopedics. Small is beautiful? Hong Kong Med. J. 2008, 14, 303–307. [Google Scholar]
- Jacofsky, D.J.; Allen, M. Robotics in Arthroplasty: A Comprehensive Review. J. Arthroplast. 2016, 31, 2353–2363. [Google Scholar] [CrossRef]
- Troccaz, J.; Dagnino, G.; Yang, G.-Z. Frontiers of Medical Robotics: From Concept to Systems to Clinical Translation. Annu. Rev. Biomed. Eng. 2019, 21, 193–218. [Google Scholar] [CrossRef]
- Shahi, P.M.; Subramanian, T.B.; Araghi, K.B.; Singh, S.M.; Asada, T.; Maayan, O.B.; Korsun, M.B.; Singh, N.M.; Tuma, O.B.; Dowdell, J.; et al. Comparison of Robotics and Navigation for Clinical Outcomes After Minimally Invasive Lumbar Fusion. Spine 2023, 48, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Nolte, L.-P. Computer-Aided Orthopedic Surgery: State-of-the-Art and Future Perspectives. Adv. Exp. Med. Biol. 2018, 1093, 1–20. [Google Scholar] [CrossRef]
- Ewurum, C.H.; Guo, Y.; Pagnha, S.; Feng, Z.; Luo, X. Surgical Navigation in Orthopedics: Workflow and System Review. Adv. Exp. Med. Biol. 2018, 1093, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Mathew, K.K.; Marchand, K.B.; Tarazi, J.M.; Salem, H.S.; Degouveia, W.; O Ehiorobo, J.; Sodhi, N.; A Mont, M. Computer-Assisted Navigation in Total Knee Arthroplasty. Surg. Technol. Int. 2020, 36, 323–330. [Google Scholar]
- Farhadi, F.; Barnes, M.R.; Sugito, H.R.; Sin, J.M.; Henderson, E.R.; Levy, J.J. Applications of artificial intelligence in orthopaedic surgery. Front. Med. Technol. 2022, 4, 995526. [Google Scholar] [CrossRef]
- Lambrechts, A.; Wirix-Speetjens, R.; Maes, F.; Van Huffel, S. Artificial Intelligence Based Patient-Specific Preoperative Planning Algorithm for Total Knee Arthroplasty. Front. Robot. AI 2022, 9, 840282. [Google Scholar] [CrossRef]
- Rossi, S.M.P.; Mancino, F.; Sangaletti, R.; Perticarini, L.; Lucenti, L.; Benazzo, F. Augmented Reality in Orthopedic Surgery and Its Application in Total Joint Arthroplasty: A Systematic Review. Appl. Sci. 2022, 12, 5278. [Google Scholar] [CrossRef]
- Jud, L.; Fotouhi, J.; Andronic, O.; Aichmair, A.; Osgood, G.; Navab, N.; Farshad, M. Applicability of augmented reality in orthopedic surgery—A systematic review. BMC Musculoskelet. Disord. 2020, 21, 103. [Google Scholar] [CrossRef]
- Wu, K.; Pan, H.H.; Lin, C.H. Robotic exoskeletons and total knee arthroplasty: The future of knee rehabilitation and replacement—A meta-analysis. Medicine 2024, 103, e37876. [Google Scholar] [CrossRef]
- Losina, E.; Katz, J.N. Total knee arthroplasty on the rise in younger patients: Are we sure that past performance will guarantee future success? Arthritis Rheum. 2012, 64, 339–341. [Google Scholar] [CrossRef]
- Safali, S.; Berk, T.; Makelov, B.; Acar, M.A.; Gueorguiev, B.; Pape, H.-C. The Possibilities of Personalized 3D Printed Implants—A Case Series Study. Medicina 2023, 59, 249. [Google Scholar] [CrossRef]
- Armand, M.; Armiger, R.; Mendat, D.; Lepistö, J.; Tallroth, K.; Mears, S.; Belkoff, S.; Taylor, R.; Murphy, R.; Chintalapani, G.; et al. Computer-Assisted Orthopedic Surgery with Real-Time Biomechanics. Johns Hopkins APL Tech. Dig. 2010, 28, 214–215. [Google Scholar] [PubMed]
- Mattei, L.; Pellegrino, P.; Calò, M.; Bistolfi, A.; Castoldi, F. Patient specific instrumentation in total knee arthroplasty: A state of the art. Ann. Transl. Med. 2016, 4, 126. [Google Scholar] [CrossRef] [PubMed]
- Heyse, T.J.; Tibesku, C.O. Improved tibial component rotation in TKA using patient-specific instrumentation. Arch. Orthop. Trauma Surg. 2015, 135, 697–701. [Google Scholar] [CrossRef]
- Haglin, J.M.; Eltorai, A.E.M.; A Gil, J.; E Marcaccio, S.; Botero-Hincapie, J.; Daniels, A.H. Patient-Specific Orthopaedic Implants. Orthop. Surg. 2016, 8, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Ner, E.B.; Dosani, S.M.M.; Biant, L.C.; Tawy, G.F. Custom Implants in TKA Provide No Substantial Benefit in Terms of Outcome Scores, Reoperation Risk, or Mean Alignment: A Systematic Review. Clin. Orthop. Relat. Res. 2021, 479, 1237–1249. [Google Scholar] [CrossRef]
- Rivero-Moreno, Y.; Rodriguez, M.; Losada-Muñoz, P.; Redden, S.; Lopez-Lezama, S.; Vidal-Gallardo, A.; Machado-Paled, D.; Guilarte, J.C.; Teran-Quintero, S. Autonomous Robotic Surgery: Has the Future Arrived? Cureus 2024, 16, e52243. [Google Scholar] [CrossRef]
- Stryker. Stryker Launches Industry’s Only Fully Autonomous Guidance System. 2023. Available online: https://www.stryker.com/us/en/about/news/2023/stryker-launches-industry-s-only-fully-autonomous-guidance-syste.html (accessed on 15 October 2024).
- Monogram Orthopaedics. (n.d.). Monogram Orthopaedics’ Next-Generation Surgical Robotic System Enters Verification Phase. Available online: https://www.monogramtechnologies.com/post/monogram-orthopaedics-next-generation-surgical-robotic-system-enters-verification-phase (accessed on 15 October 2024).
- Padilla-Castañeda, M.A.; Sotgiu, E.; Barsotti, M.; Frisoli, A.; Orsini, P.; Martiradonna, A.; Laddaga, C.; Bergamasco, M. An Orthopaedic Robotic-Assisted Rehabilitation Method of the Forearm in Virtual Reality Physiotherapy. J. Health Eng. 2018, 2018, 7438609. [Google Scholar] [CrossRef]
- Albanese, G.A.; Taglione, E.; Gasparini, C.; Grandi, S.; Pettinelli, F.; Sardelli, C.; Catitti, P.; Sandini, G.; Masia, L.; Zenzeri, J. Efficacy of wrist robot-aided orthopedic rehabilitation: A randomized controlled trial. J. Neuroeng. Rehabilit. 2021, 18, 130. [Google Scholar] [CrossRef]
- Pareek, A.; Carey, J.L.; Reardon, P.J.; Peterson, L.; Stuart, M.J.; Krych, A.J. Long-Term Outcomes after Autologous Chondrocyte Implantation: A Systematic Review at Mean Follow-Up of 11.4 Years. Cartilage 2016, 7, 298–308. [Google Scholar] [CrossRef]
- Lipskas, J.; Deep, K.; Yao, W. Robotic-Assisted 3D Bio-printing for Repairing Bone and Cartilage Defects through a Minimally Invasive Approach. Sci. Rep. 2019, 9, 3746. [Google Scholar] [CrossRef] [PubMed]
- Maintz, M.; Tomooka, Y.; Eugster, M.; Gerig, N.; Sharma, N.; Thieringer, F.M.; Rauter, G. In situ minimally invasive 3D printing for bone and cartilage regeneration—A scoping review. Curr. Dir. Biomed. Eng. 2024, 10, 66–70. [Google Scholar] [CrossRef]
- Burns, G.T.; King, B.W.; Holmes, J.R.; Irwin, T.A. Evaluating Internal Fixation Skills Using Surgical Simulation. J. Bone Jt. Surg. 2017, 99, e21. [Google Scholar] [CrossRef]
- LeRoy, T.E.; Puzzitiello, R.; Ho, B.; Van Schuyver, P.R.; Ii, J.J.K. Orthopaedic Trainee Views on Robotic Technologies in Orthopaedics: A Survey-Based Study. J. Knee Surg. 2023, 36, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Tergas, A.I.; Sheth, S.B.; Green, I.C.; Giuntoli, R.L., 2nd; Winder, A.D.; Fader, A.N. A Pilot Study of Surgical Training Using a Virtual Robotic Surgery Simulator. JSLS J. Soc. Laparosc. Robot. Surg. 2013, 17, 219–226. [Google Scholar] [CrossRef]
- Christen, B.; Tanner, L.; Ettinger, M.; Bonnin, M.P.; Koch, P.P.; Calliess, T. Comparative Cost Analysis of Four Different Computer-Assisted Technologies to Implant a Total Knee Arthroplasty over Conventional Instrumentation. J. Pers. Med. 2022, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Schopper, C.; Proier, P.; Luger, M.; Gotterbarm, T.; Klasan, A. The learning curve in robotic assisted knee arthroplasty is flattened by the presence of a surgeon experienced with robotic assisted surgery. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 760–767. [Google Scholar] [CrossRef]
- Reddy, K.; Gharde, P.; Tayade, H.; Patil, M.; Reddy, L.S.; Surya, D. Advancements in Robotic Surgery: A Comprehensive Overview of Current Utilizations and Upcoming Frontiers. Cureus 2023, 15, e50415. [Google Scholar] [CrossRef]
- Ali, M.; Phillips, D.; Kamson, A.; Nivar, I.; Dahl, R.; Hallock, R. Learning Curve of Robotic-Assisted Total Knee Arthroplasty for Non-Fellowship-Trained Orthopedic Surgeons. Arthroplast. Today 2022, 13, 194–198. [Google Scholar] [CrossRef]
- Elendu, C.; Amaechi, D.C.M.; Elendu, T.C.B.; Jingwa, K.A.M.; Okoye, O.K.M.; Okah, M.M.J.; Ladele, J.A.M.; Farah, A.H.; Alimi, H.A.M. Ethical implications of AI and robotics in healthcare: A review. Medicine 2023, 102, e36671. [Google Scholar] [CrossRef]
- Rajesh, D.A.; Witvoet, S.; Coppolecchia, A.; Scholl, L.; Chen, A.F. Length of Stay and Discharge Disposition After Total Hip Arthroplasty: A Large Multicenter Propensity Matched Comparison of Robotic-Assisted and Manual Techniques. J. Arthroplast. 2024, 39, S117–S123. [Google Scholar] [CrossRef] [PubMed]
- DeRogatis, M.J.; Malige, A.; Wang, N.; Dubin, J.; Issack, P.; Sadler, A.; Brogle, P.; Konopitski, A. Comparative analysis of acute blood loss anemia in robotic assisted vs. manual instrumented total knee arthroplasty. J. Orthop. 2024, 55, 105–108. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, W.; Hou, J.; Hu, X.; Zhang, W. Does robotic-assisted unicompartmental knee arthroplasty have lower complication and revision rates than the conventional procedure? A systematic review and meta-analysis. BMJ Open 2021, 11, e044778. [Google Scholar] [CrossRef]
- Blum, C.L.; Lepkowsky, E.; Hussein, A.; Wakelin, E.A.; Plaskos, C.; Koenig, J.A. Patient expectations and satisfaction in robotic-assisted total knee arthroplasty: A prospective two-year outcome study. Arch. Orthop. Trauma Surg. 2021, 141, 2155–2164. [Google Scholar] [CrossRef]
- Rajan, P.V.; Khlopas, A.; Klika, A.; Molloy, R.; Krebs, V.; Piuzzi, N.S. The Cost-Effectiveness of Robotic-Assisted Versus Manual Total Knee Arthroplasty: A Markov Model–Based Evaluation. J. Am. Acad. Orthop. Surg. 2022, 30, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Namin, A.T.; Jalali, M.S.; Vahdat, V.; Bedair, H.S.; O’Connor, M.I.; Kamarthi, S.; Isaacs, J.A. Adoption of New Medical Technologies: The Case of Customized Individually Made Knee Implants. Value Health 2019, 22, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Peterman, N.J.; Pagani, N.; Mann, R.; Li, R.L.; Gasienica, J.; Naik, A.; Sun, D. Disparities in Access to Robotic Knee Arthroplasty: A Geospatial Analysis. J. Arthroplast. 2024, 39, 864–870. [Google Scholar] [CrossRef]
- Yim, N.H.; McCarter, J.; Haykal, T.; Aral, A.M.; Yu, J.Z.; Reece, E.; Winocour, S. Robotic Surgery and Hospital Reimbursement. Semin. Plast. Surg. 2023, 37, 223–228. [Google Scholar] [CrossRef]
- Han, P.; Chen, C.; Zhang, Z.; Han, Y.; Wei, L.; Li, P.; Wei, X. Robotics-assisted versus conventional manual approaches for total hip arthroplasty: A systematic review and meta-analysis of comparative studies. Int. J. Med. Robot. Comput. Assist. Surg. 2019, 15, e1990. [Google Scholar] [CrossRef]
- Nogalo, C.; Meena, A.; Abermann, E.; Fink, C. Complications and downsides of the robotic total knee arthroplasty: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 736–750. [Google Scholar] [CrossRef]
- Kirchner, G.J.; Stambough, J.B.; Jimenez, E.; Nikkel, L.E. Robotic-assisted TKA is Not Associated With Decreased Odds of Early Revision: An Analysis of the American Joint Replacement Registry. Clin. Orthop. Relat. Res. 2024, 482, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Oettl, F.C.; Zsidai, B.; Oeding, J.F.; Farshad, M.; Hirschmann, M.T.; Samuelsson, K. ESSKA Artificial Intelligence Working Group Robotics in orthopaedic surgery: The end of surgery or its future? Knee Surg. Sports Traumatol. Arthrosc. 2024, 33, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Booth, R.E.; Sharkey, P.F.; Parvizi, J. Robotics in Hip and Knee Arthroplasty: Real Innovation or Marketing Ruse. J. Arthroplast. 2019, 34, 2197–2198. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, R.; Longo, U.G.; Pittman, J.; Nazarian, A. Robotic Innovations in Orthopedics: A Growing Landscape, Challenges, and Implications for Care. Osteology 2025, 5, 13. https://doi.org/10.3390/osteology5020013
Hu R, Longo UG, Pittman J, Nazarian A. Robotic Innovations in Orthopedics: A Growing Landscape, Challenges, and Implications for Care. Osteology. 2025; 5(2):13. https://doi.org/10.3390/osteology5020013
Chicago/Turabian StyleHu, Robin, Umile Giuseppe Longo, Jason Pittman, and Ara Nazarian. 2025. "Robotic Innovations in Orthopedics: A Growing Landscape, Challenges, and Implications for Care" Osteology 5, no. 2: 13. https://doi.org/10.3390/osteology5020013
APA StyleHu, R., Longo, U. G., Pittman, J., & Nazarian, A. (2025). Robotic Innovations in Orthopedics: A Growing Landscape, Challenges, and Implications for Care. Osteology, 5(2), 13. https://doi.org/10.3390/osteology5020013