Could We Stop Killing?—Exploring a Post-Lethal Vegan or Vegetarian Agriculture
Abstract
:1. Introduction
2. Driving Factors
2.1. Demand Side
2.2. Supply Side
3. Substituting Animal-Based Nutrients for Crops
3.1. The Biocyclic-Vegan Standard
3.2. Conventional Vegan Nutrient Management
- Working solely with mineral fertilizer may be a viable way. This approach does not necessarily mean that more mineral fertilizer would be applied. To the contrary, field experiments by Görlitz and Asmus [52] showed that the yield-maximizing effect of mineral fertilizer application is higher if 50 kg/ha organic fertilizer is also added. However, it can be expected that yields without organic fertilizer would decline by around 10%. The effect of skipping organic fertilization on soil composition would be more significant. C/N ratios in soils without organic fertilizer are low [53], NH3-N is low [54] and bacteria concentration rather high [55], while microbial biomass is low [56]. Long-term experiments of using only mineral fertilizer show that the productive capacity of soils remains more or less intact, even if the organic content declines [57,58].
- It is certainly advantageous, in terms of both yield and organic substance in the soil, if the manure of animal origin can be substituted with vegetal matter. The biocyclic-vegan standard is just a case in point in this practice, but vegetal fertilizer can be combined with mineral substance, and it also can be used in different stages. In a paper on vegan greenhouse production, for example, Schmutz and Foresi [59] mentioned “plant-based composts, mulches and other biomass”. Wastewater from the processing of crops, such as cassava wastewater [60], would also fall into this category. Although a lot of positive experience with a broad variety of vegetal fertilizers is available [61,62,63], a vegan system on a broader scale would face the challenge of organizing enough vegetal substance for organic fertilization. It is yet unclear, for example, whether more investment in catch crops would be necessary compared with today’s situation to maintain soil fertility.
- Petterson and Wikström [64] reported from a trial that one person produces human fertilizer amounting to a value of EUR 50 per year. In an agricultural system in which animal manure becomes unavailable, it is likely that this value rather rises than falls. However, with the current sewage systems, the use of human fertilizer poses serious issues of hygiene and toxicity [65]. Mahon et al. [66] and Li et al. [67] recently reported problems of microplastics in sewage sludge, whereas problems of toxic metal residues [68] or phenolic compounds [69] have been known for a longer time. Several countries reacted to these and similar problems by banning the use of sewage sludge in agriculture, and others imposed severe restrictions. The incentive to invest in more sustainable systems of utilizing sewage sludge may become a worthwhile issue in a vegan society.
4. The Fate of Grassland
4.1. Substitution
4.2. Post-Lethal Grassland Management
5. Beekeeping
6. Discussion: Emerging Post-Lethal Systems
- Vegan-organic agriculture will be able to overcome the challenge of substituting organic manure. The proponents of biocyclic-vegan agriculture have shown compost as an option. Other options involve less composted vegetal materials like leaves or straw, but possibly also sewage sludge.
- Vegan-conventional agriculture would continue to cover the major part of nutrient losses from harvests through mineral fertilizer. However, to keep the organic content up in arable soils, the same substitutes as in vegan-organic agriculture would be applied.
- Post-lethal vegetarian agriculture, being organic or not, would continue to use animals, especially for grassland management, but would not kill them. Even chicken and bees might be part of such a system to secure the future supply of eggs and honey to the table, even though production costs would exceed today’s costs by several factors.
7. Open Questions
Funding
Conflicts of Interest
References
- Richards, M.P.; Pettitt, P.B.; Trinkaus, E.; Smith, F.H.; Paunović, M.; Karavanić, I. Neanderthal diet at Vindija and Neanderthal predation: The evidence from stable isotopes. Proc. Natl. Acad. Sci. USA 2000, 97, 7663–7666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, B.L.; Kulig, J.; Kalischuk, R.G. Rural youth and violence: A gender perspective. Rural Remote Health 2011, 11, 1716. [Google Scholar] [PubMed]
- Pavlova, G.; Petrova-Geretto, E. Agression against medical doctors—Genesis and management approaches. Trakia J. Sci. 2018, 16, 46–51. [Google Scholar] [CrossRef]
- McNally, R.J. The Ontology of Posttraumatic Stress Disorder: Natural Kind, Social Construction, or Causal System? Clin. Psychol. Sci. Pract. 2012, 19, 220–228. [Google Scholar] [CrossRef]
- Pettersson, T.; Högbladh, S.; Öberg, M. Organized violence, 1989–2018 and peace agreements. J. Peace Res. 2019, 56, 589–603. [Google Scholar] [CrossRef] [Green Version]
- Van Zanten, H.H.E.; Meerburg, B.G.; Bikker, P.; Herrero, M.; de Boer, I.J. Opinion paper: The role of livestock in a sustainable diet: A land-use perspective. Animal 2016, 10, 547–549. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; Gerber, P.; Vellinga, T.; Garnett, T.; Leip, A.; Opio, C.; Westhoek, H.; Thornton, P.; Olesen, J.; Hutchings, N.J.; et al. Livestock and greenhouse gas emissions: The importance of getting the numbers right. Anim. Feed Sci. Technol. 2011, 166, 779–782. [Google Scholar] [CrossRef] [Green Version]
- Visak, T. Vegan agriculture: Animal-friendly and sustainable. In Sustainable Food Production and Ethics; Zollitsch, W., Winckler, C., Waiblinger, S., Haslberger, A., Eds.; Wageningen University Press: Wageningen, The Netherlands, 2007; pp. 179–196. [Google Scholar]
- Springmann, M.; Godfray, H.G.J.; Rayner, M.; Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [Green Version]
- Glick-Bauer, M.; Yeh, M.-C. The Health Advantage of a Vegan Diet: Exploring the Gut Microbiota Connection. Nutrients 2014, 6, 4822–4838. [Google Scholar] [CrossRef] [Green Version]
- Clarys, P.; Deliens, T.; Huybrechts, I.; Deriemaeker, P.; Vanaelst, B.; De Keyzer, W.; Hebbelinck, M.; Mullie, P. Comparison of Nutritional Quality of the Vegan, Vegetarian, Semi-Vegetarian, Pesco-Vegetarian and Omnivorous Diet. Nutrients 2017, 6, 1318. [Google Scholar] [CrossRef]
- Kristensen, N.B.; Madsen, M.L.; Hansen, T.H.; Allin, K.H.; Hoppe, C.; Fagt, S.; Lausten, M.S.; Gøbel, R.J.; Vestergaard, H.; Hansen, T.B.; et al. Intake of macro- and micronutrients in Danish vegans. Nutr. J. 2015, 14, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twine, R. A Practice Theory Framework for Understanding Vegan Transition. Anim. Stud. J. 2017, 6, 192–224. [Google Scholar]
- Singer, P. Animal Liberation: A New Ethics for Our Treatment of Animals; Avon Books: New York, NY, USA, 1975. [Google Scholar]
- Regan, T. The Case of Animal Rights; University of California Press: Berkeley, CA, USA, 1983. [Google Scholar]
- Hansen, B.N.G. The Ethical Egoist Case for Dietary Veganism, or the Individual Animal and His Will to Live; University of Agder Press: Agder, Norway, 2017. [Google Scholar]
- Pilgrim, K. ‘Happy Cows,’ ‘Happy Beef’: A Critique of the Rationales for Ethical Meat. Environ. Humanit. 2013, 3, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Rowe, B.D. Animal Rights and Human Growth: Intellectual Courage and Extending the Moral Community. Philos. Stud. Educ. 2009, 40, 153–166. [Google Scholar]
- Kiley-Worthington, M. Ecological, ethological, and ethically sound environments for animals: Toward symbiosis. J. Agric. Environ. Ethic 1989, 2, 323–347. [Google Scholar] [CrossRef]
- Tester, K. Animals and Society; Routledge: London, UK, 1991. [Google Scholar]
- Donaldson, S.; Kymlicka, W. Zoopolis: A Political Theory of Animal Rights; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Kotzmann, J.; Pendergrast, N. Animal Rights: Time to Start Unpacking What Rights and for Whom. Mitchell Hamile Law Rev. 2019, 46, 6. [Google Scholar]
- Fisher, A. Against Killing “Happy” Animals. In Ethical Vegetarianism and Veganism; Routledge: New York, NY, USA, 2019. [Google Scholar]
- Višak, T. Killing Happy Animals: Explorations in Animal Ethics; Palgrave: London, UK, 2013. [Google Scholar]
- Swabe, J.M.; Rutgers, B.L.; Noordhuizen-Stassen, E.N. Cultural attitudes towards killing animals. In The Human-Animal Relationship; de Jonge, F.H., van den Boos, R., Eds.; Uitgeverei van Gorkum: Amsterdam, The Netherlands, 2005. [Google Scholar]
- TNS Emnid (2015): Akzeptiertes Töten von Tieren. Available online: https://static3.evangelisch.de/get/ccd/1FmeQ3l4IC4qX8C3Atv1oJTk00108260/download (accessed on 11 February 2020).
- Riffikin, R. In U.S., More Say Animals Should Have Same Rights as People. Available online: https://news.gallup.com/poll/183275/say-animals-rights-people.aspx (accessed on 10 February 2020).
- Wikipedia (2020): Vegetarianism by Country. Available online: https://en.wikipedia.org/wiki/Vegetarianism_by_country (accessed on 11 February 2020).
- Mann, S.; Višak, T. Biogas or salami? An ethical analysis of two chains for end-of-lay hens. Int. J. Soc. Econ. 2019, 46, 838–848. [Google Scholar] [CrossRef]
- Örnebring, H. A Necessary Profession for the Modern Age? Nineteenth Century News, Journalism and the Public Sphere. In Media and Public Spheres; Butsch, R., Ed.; Palgrave: New York, NY, USA, 2007. [Google Scholar]
- Lacourrége, D. Huhn, gepflanzt. Coop Zeitung, 20 April 2020; 32–35. [Google Scholar]
- Jiang, H. I Tried the Plant-Based Burger Nestlé Is Launching to Compete with Beyond Meat and Impossible Foods. Here’s What It Tastes Like. Available online: https://www.businessinsider.com/nestle-competes-beyond-meat-impossible-foods-plant-based-meat-2019-8?r=US&IR=T (accessed on 11 February 2020).
- Semuels, A. Feeding a changing world. TIME Magazine, 2 March 2020; 62–67. [Google Scholar]
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of insect use for feed and food: Life Cycle Assessment perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- Stoichevski, W. French Start-Up Launches Vegan Smoked Salmon. Available online: https://salmonbusiness.com/french-start-up-launches-vegan-smoked-salmon/ (accessed on 20 August 2020).
- Elzerman, J.E.; Van Boekel, M.A.J.S.; Luning, P.A. Exploring meat substitutes: Consumer experiences and contextual factors. Br. Food J. 2013, 115, 700–710. [Google Scholar] [CrossRef]
- Elzerman, J.E.; Hoek, A.C.; Van Boekel, M.A.; Luning, P.A. Consumer acceptance and appropriateness of meat substitutes in a meal context. Food Qual. Prefer. 2011, 22, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Berkovici, J. Why This Cardiologist Is Betting That His Lab-Grown Meat Startup Can Solve the Global Food Crisis. Inc. 24 November 2017. [Google Scholar]
- Galusky, W. Technology as Responsibility: Failure, Food Animals, and Lab-grown Meat. J. Agric. Environ. Ethic 2014, 27, 931–948. [Google Scholar] [CrossRef]
- Apostolidis, C.; McLeay, F. Should we stop meating like this? Reducing meat consumption through substitution. Food Policy 2016, 65, 74–89. [Google Scholar] [CrossRef] [Green Version]
- Vanhonacker, F.; Van Loo, E.J.; Gellynck, X.; Verbeke, W. Flemish consumer attitudes towards more sustainable food choices. Appetite 2013, 62, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.biocyclic-vegan.org/ (accessed on 13 August 2020).
- Available online: https://www.ifoam.bio/our-work/how/standards-certification/organic-guarantee-system/ifoam-family-standards (accessed on 20 August 2020).
- Rusch, H.P. Die Naturwissenschaft von Morgen; Hans-Georg Müller: Krailing, Germany, 1955. [Google Scholar]
- Rusch, H.P. Bodenfruchtbarkeit—Eine Studie Biologischen Denkens; H.G. Haug: Heidelberg, Germany, 1968. [Google Scholar]
- Kirchmann, H.; Kätterer, T.; Bergström, L. Nutrient Supply in Organic Agriculture—Plant Availability, Sources and Recycling. In Organic Crop Production—Ambitions and Limitations; Kirchmann, H., Bergström, L., Eds.; Springer: Heidelberg, Germany, 2009. [Google Scholar]
- Boeringa, R. Alternative Methods of Agriculture; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Available online: http://www.biocyclic-vegan.org/partners/the-biocyclic-vegan-standard/ (accessed on 13 August 2020).
- Eisenbach, L. First Field Experiments Using Biocyclic Humus Soil for Processing Tomato and Sweet Potato. Available online: http://www.biocyclic-vegan.org/wp-content/uploads/2019/01/biocyclic-lydiaGGI40.pdf (accessed on 17 February 2020).
- De Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Brumfield, R.G.; Rimal, A.; Reiners, S. Comparative Cost Analyses of Conventional, Integrated Crop Management, and Organic Methods. HortTechnology 2000, 10, 785–793. [Google Scholar] [CrossRef]
- Görlitz, H.; Asmus, E. Einfluss organischer und mineralischer Düngung auf Pflanzenertrag und Stickstoffnutzung auf einer Tieflehm-Felderde. Arch. Acker Pflanzenbau Bodenkd. 1978, 22, 109–122. [Google Scholar]
- Marschner, P.; Kandeler, E.; Marschner, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 2003, 35, 453–461. [Google Scholar] [CrossRef]
- Xu, Y.C.; Shen, Q.R.; Ran, W. Content and distribution of forms of organic N in soil and particle size fractions after long-term fertilization. Chemosphere 2003, 50, 739–745. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Pu, Y.; Li, T.; Xu, X.; Jia, Y.; Deng, Q.; Gong, G. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil Tillage Res. 2016, 155, 289–297. [Google Scholar] [CrossRef]
- Birk, J.J.; Steiner, C.; Teixiera, W.C.; Zech, W.; Glaser, B. Microbial Response to Charcoal Amendments and Fertilization of a Highly Weathered Tropical Soil. In Amazonian Dark Earths: Wim Sombroek’s Vision; Woods, W.I., Teixeira, W.G., Lehmann, J., Steiner, C., WinklerPrins, A., Rebellato, L., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 309–324. [Google Scholar]
- Berecz, K.; Kismányoky, Z.; Debreczeni, K. Effect of Organic Matter Recycling in Long-Term Fertilization Trials and Model Pot Experiments. Commun. Soil Sci. Plant Anal. 2005, 36, 191–202. [Google Scholar] [CrossRef]
- Sekhon, K.S.; Singh, J.P.; Mehla, D.S. Long-term effect of manure and mineral fertilizer application on the distribution of organic nitrogen fractions in soil under a rice—Wheat cropping system. Arch. Agron. Soil Sci. 2011, 57, 705–714. [Google Scholar] [CrossRef]
- Schmutz, U.; Foresi, L. Vegan organic horticulture—Standards, challenges, socio-economics and impact on global food security. Acta Hortic. 2017, 1164, 475–484. [Google Scholar] [CrossRef]
- Ferreira-Ribas, M.M.; Pascoli Cereda, M.; Villas Boas, R.L. Use of cassava wastewater treated anaerobically with alkaline agents as fertilizer for maize (Zea mays L.). Braz. Arch. Biol. Technol. 2010, 53, 55–62. [Google Scholar] [CrossRef]
- Bonfim-Silva, E.M.; Weimar Castro, H.A.; de Rezende, P.F.; Giumaraez Favare, H.; Araujo Dorado, L.G. Wood Ash as a Corrective and Fertilizer in the Cultivation of Mombaça and Massai Grass in Oxisol. J. Exp. Agric. Int. 2018, 21, 1–10. [Google Scholar] [CrossRef]
- Pellejero, G.; Miglierina, A.; Aschkar, G.; Turcato, M.; Iñigo, V. Effects of the onion residue compost as an organic fertilizer in a vegetable culture in the Lower Valley of the Rio Negro. Int. J. Recycl. Org. Waste Agric. 2017, 11, 141–166. [Google Scholar] [CrossRef]
- Xu, L.Y.; Wang, M.Y.; Shi, X.Z.; Yu, Q.B.; Shi, Y.; Xu, S.; Sun, W. Effect of long-term organic fertilization on the soil pore characteristics of greenhouse vegetable fields converted from rice-wheat rotation fields. Sci. Total Environ. 2018, 631, 1243–1250. [Google Scholar] [CrossRef]
- Pettersson, J.; Wikstrom, J. Human Fertilizer and the Productivity of Farming Households. Agroecol. Sustain. Food Syst. 2015, 40, 48–68. [Google Scholar] [CrossRef]
- Buchauer, K. Hygienische Standards für die Verwertung von Klärschlamm in der Landwirtschaft—Ein Internationaler Vergleich; ARA Consult: Innsbruck, Austria, 2007. [Google Scholar]
- Mahon, A.M.; O’Connell, B.; Healy, M.G.; O’Connor, I.; Officer, R.; Nash, R.; Morrison, L. Microplastics in Sewage Sludge: Effects of Treatment. Environ. Sci. Technol. 2017, 51, 810–818. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Mei, Q.; Dong, B.; Dai, X.; Ding, G.; Zeng, E.Y. Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res. 2018, 142, 75–85. [Google Scholar] [CrossRef]
- McBride, M. Toxic metals in sewage sludge-amended soils: Has promotion of beneficial use discounted the risks? Adv. Environ. Res. 2003, 8, 5–19. [Google Scholar] [CrossRef]
- Lee, H.-B.; Peart, T.E. Organic Contaminants in Canadian Municipal Sewage Sludge. Part I. Toxic or Endocrine-Disrupting Phenolic Compounds. Water Qual. Res. J. 2002, 37, 681–696. [Google Scholar] [CrossRef]
- Umweltbundesamt Grünlandumbruch. Available online: https://www.umweltbundesamt.de/daten/land-forstwirtschaft/gruenlandumbruch#gefahrdung-des-grunlands (accessed on 19 February 2020).
- Vellinga, T.V.; van den Pol-van Dasselaar, A.; Kuikman, P. The impact of grassland ploughing on CO2 and N2O emissions in the Netherlands. Nutr. Cycl. Agroecosyst. 2004, 70, 33–45. [Google Scholar] [CrossRef]
- Mendes, P.; Meireles, C.; Vila-Viçosa, C.; Musarella, C.; Pinto-Gomes, C. Best management practices to face degraded territories occupied by Cistus ladanifer shrublands—Portugal case study. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2015, 149, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Farley, K.A. Grasslands to Tree Plantations: Forest Transition in the Andes of Ecuador. Ann. Assoc. Am. Geogr. 2007, 97, 755–771. [Google Scholar] [CrossRef]
- Borsdorf, A.; Bender, O. Kulturlandschaftsverlust durch Verbuschung und Verwaldung im subalpinen und hochmontanen Höhenstockwerk: Die Folgen des klimatischen und sozioökonomischen Wandels. In Alpine Kulturlandschaft im Wandel: Hugo Penz zum 65. Geburtstag; Innsbrucker Geographische Gesellschaft, Ed.; Geographie Innsbruck: Innsbruck, Austria, 2007; pp. 29–50. [Google Scholar]
- Magura, T.; Tóthmérész, B.; Molnár, T. Forest edge and diversity: Carabids along forest-grassland transects. Biodivers. Conserv. 2001, 10, 287–300. [Google Scholar] [CrossRef]
- Yu, X.-D.; Luo, T.-H.; Zhou, H.-Z.; Yang, J. Distribution of Carabid Beetles (Coleoptera: Carabidae) Across a Forest-Grassland Ecotone in Southwestern China. Environ. Entomol. 2007, 36, 348–355. [Google Scholar] [CrossRef]
- Ángel, P.; Herrero, L.; Del Río, S. Valuation methods in vegetation and its use in land management. Acta Bot. Gall. 2010, 157, 735–748. [Google Scholar] [CrossRef] [Green Version]
- Cano-Ortiz, A.; Garcia-Fuentes, A.; Torres, J.A.; Montilla, R.; Ruiz, L.; Salazar, C.; Cano, E. Floristic stability of pasturesin the Sierra Magina nature reserve, Andalusia, Spain. In Silvopastoralism and Sustainable Land Management: Proceedings of an International Congress on Silvopastoralism and Sustainable Management Held in Lugo, Spain, in April 2004; Riguero-Rodriguez, A., Ed.; CAB International: Wallingford, UK, 2005. [Google Scholar]
- Křůmalová, V. Evaluation of chosen benefits on environment and landscape coming from Czech agriculture. Agric. Econ. (Czech) 2012, 48, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Marangon, F.; Visintin, F. Rural landscape valuation in a cross-border region. Cah. d’Economie Sociol. Rural. 2007, 84, 113–132. [Google Scholar]
- Thenail, C.; Dupraz, P.; Pech, M.; Turpin, N.; Ducos, G.; Wincler, L.; Barillé, P.; Joannon, A. How Do Farms Economic and Technical Dynamics Contribute to Landscape Patterns? In Multifunctional Rural Land Management: Economics and Policies; Brouwer, F., van der Heijde, C.M., Eds.; Earthscan: London, UK, 2009. [Google Scholar]
- Umweltschutz, B.L. Kostendatei für Maßnahmen des Naturschutzes und der Landschaftspflege; BLU: Augsburg, Germany, 2011. [Google Scholar]
- Meyer-Glitza, P. Nicht-tötende Rinderhaltung als neue Herausforderung für den Ökologischen Landbau—Eine Fallstudie. In Macht—Eigensinn—Engagement; Pilch-Otega, A., Felbinger, A., Mikula, R., Egger, R., Eds.; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Meyer-Glitza, P. Cattle Husbandry without Slaughtering: Case Studies from Europe and India. In Know Your Food; Dumitras, D.E., Juitea, I.M., Aerts, S., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015. [Google Scholar]
- Stuart, D.; Schewe, R.L.; Gunderson, R. Extending Social Theory to Farm Animals: Addressing Alienation in the Dairy Sector. Sociol. Rural. 2013, 53, 201–222. [Google Scholar] [CrossRef]
- Driessen, C.; Heutinck, L.F.M. Cows desiring to be milked? Milking robots and the co-evolution of ethics and technology on Dutch dairy farms. Agric. Hum. Values 2015, 32, 3–20. [Google Scholar] [CrossRef]
- Milburn, J. Death-Free Dairy? The Ethics of Clean Milk. J. Agric. Environ. Ethic 2018, 31, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Seidel, G.E. Overview of sexing sperm. Theriogenology 2007, 68, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Lamey, A. Food Fight! Davis versus Regan on the Ethics of Eating Beef. J. Soc. Philos. 2008, 38, 331–348. [Google Scholar] [CrossRef]
- Morris, J. The Philosophy of Animal Activism; University of Utrecht: Utrecht, The Netherlands, 2018. [Google Scholar]
- Sumner, D.A.; Boriss, H. Bee-conomics and the leap in pollination fees. Agric. Res. Econ. Update 2006, 9, 9–11. [Google Scholar]
- Desjardins, E.-C.; De Oliveira, D. Commercial Bumble Bee Bombus impatiens (Hymenoptera: Apidae) as a Pollinator in Lowbush Blueberry (Ericale: Ericaceae) Fields. J. Econ. Entomol. 2006, 99, 443–449. [Google Scholar] [CrossRef]
- Barton, H.; Kleiner, D. Innovative Eco-Neighbourhood Projects. In Sustainable Communities; Barton, H., Ed.; Routledge: London, UK, 2013. [Google Scholar]
- Reed, M.G.; Price, M.F. (Eds.) Introducing UNESCO Biosphere Reserves. In UNESCO Biosphere Reserves: Supporting Biocultural Diversity, Sustainability and Society; Routledge: London, UK, 2019. [Google Scholar]
- Mann, S.; Gairing, M. “Loyals” and “Optimizers”: Shedding Light on the Decision for or Against Organic Agriculture among Swiss Farmers. J. Agric. Environ. Ethic 2012, 25, 365–376. [Google Scholar] [CrossRef]
- Sahm, H.; Sanders, J.; Nieberg, H.; Behrens, G.; Kuhnert, H.; Strohm, R.; Hamm, U. Reversion from organic to conventional agriculture: A review. Renew. Agric. Food Syst. 2013, 28, 263–275. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mann, S. Could We Stop Killing?—Exploring a Post-Lethal Vegan or Vegetarian Agriculture. World 2020, 1, 124-134. https://doi.org/10.3390/world1020010
Mann S. Could We Stop Killing?—Exploring a Post-Lethal Vegan or Vegetarian Agriculture. World. 2020; 1(2):124-134. https://doi.org/10.3390/world1020010
Chicago/Turabian StyleMann, Stefan. 2020. "Could We Stop Killing?—Exploring a Post-Lethal Vegan or Vegetarian Agriculture" World 1, no. 2: 124-134. https://doi.org/10.3390/world1020010
APA StyleMann, S. (2020). Could We Stop Killing?—Exploring a Post-Lethal Vegan or Vegetarian Agriculture. World, 1(2), 124-134. https://doi.org/10.3390/world1020010