The 2020 Italian Spring Lockdown: A Multidisciplinary Analysis over the Milan Urban Area
Abstract
:1. Introduction
2. Literature Review
2.1. Environment and Economy
2.2. Societal Effects of the COVID-19 Lockdown
2.2.1. Impact of COVID-19 Lockdown on the Environment
2.2.2. Impact of COVID-19 Lockdown on Mobility
2.2.3. Impact of COVID-19 Lockdown on the Economy
3. Reference Scenario
4. Results
4.1. NO Pollution
4.2. Economic and Mobility Impacts
5. Discussion and Conclusions
- The pandemic-related lockdown forced people to stay at home and economic activities to stop.
- NO emissions, mainly related to transport, consequently decreased.
- Freely available TROPOMI satellite measurements, ground-based measurements, and model estimates were used.
- A correlation between NO emission levels, the mobility habits (e.g., movements) of people, and economic activities was observed
- Policymakers could take inspiration from this extreme and unavoidable scenario for developing sustainable mobility policies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARPA | Environmental Protection Regional Agency |
ATM | Milan Transport Company (Azienda Trasporti Milanesi) |
BSC | Barcelona Supercomputing Center |
CAMS | Copernicus Atmosphere Monitoring Service |
CNA | National Confederation of Artesanship |
DLR | German Aerospace Center |
ESA | European Space Agency |
EU | European Union |
FDI | Foreign Direct Investment |
FUR | Functional Urban Region |
GDP | Gross Domestic Product |
GLM | General Linear Model |
GPS | Global Positioning System |
ICT | Information Communication Technology |
ICU | Intensive Care Unit |
I–O | Input–Output |
ISL | Italian Spring Lockdown |
LAU | Local Administrative Unit |
LPT | Local Public Transport |
MDCEV | Multiple Discrete Choice Extreme Value |
MNE | Multinational Enterprise |
NUTS | Nomenclature of Territorial Units for Statistics |
SUMP | Sustainable Urban Mobility Plan |
TROPOMI | TROPOspheric Monitoring Instrument |
WHO | World Health Organization |
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard Overview. 2021. Available online: https://covid19.who.int/?gclid=Cj0KCQiAnKeCBhDPARIsAFDTLTJFDA61RwxLM818L3iP0nplp3OgGNfUXNeyvM3ZryY5_s_s0KeCkbMaApuxEALw_wcB (accessed on 26 July 2021).
- Rahman, M.A.; Zaman, N.; Asyhari, A.T.; Al-Turjman, F.; Bhuiyan, M.Z.A.; Zolkipli, M.F. Data-driven dynamic clustering framework for mitigating the adverse economic impact of Covid-19 lockdown practices. Sustain. Cities Soc. 2020, 62, 102372. [Google Scholar] [CrossRef]
- Chaudhrya, R.; Dranitsarisb, G.; Mubashirc, T.; Bartoszkoa, J.; Riazi, S. A country level analysis measuring the impact of government actions, country preparedness and socioeconomic factors on COVID-19 mortality and related health outcomes. EClinicalMedicine 2020, 25, 100464. [Google Scholar] [CrossRef] [PubMed]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Alwan, N.A.; Burgess, R.A.; Ashworth, S.; Beale, R.; Bhadelia, N.; Bogaert, D.; Dowd, J.; Eckerle, I.; Goldman, L.R.; Greenhalgh, T.; et al. Scientific consensus on the COVID-19 pandemic: We need to act now. Lancet 2020, 396, e71–e72. [Google Scholar] [CrossRef]
- Vismara, F. Reflections on COVID-19—Views from Italy. Restructuring GlobalView. 17 September 2020. Available online: https://www.restructuring-globalview.com/2020/09/reflections-on-covid-19-views-from-italy/ (accessed on 27 July 2021).
- Colvile, R.N.; Hutchinson, E.J.; Mindell, J.S.; Warren, R.F. The transport sector as a source of air pollution. Atmos. Environ. 2001, 35, 1537–1565. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Shindell, D. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. [Google Scholar]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Butland, B.K.; Anderson, H.R.; Maynard, R.L. Long-term concentrations of nitrogen dioxide and mortality: A meta-analysis of cohort studies. Epidemiology 2018, 29, 460–472. [Google Scholar] [CrossRef]
- Eurostat. EEA Air Pollutants by Source Sector. 2021. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_air_emis&lang=en (accessed on 27 July 2021).
- Beirle, S.; Platt, U.; Wenig, M.; Wagner, T. Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources. Atmos. Chem. Phys. 2003, 3, 2225–2232. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Coronavirus Disease (COVID-19) Outbreak. 2020. Available online: who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 27 July 2021).
- Horowitz, J. Italy Locks Down Much of the Country’s North Over the Coronavirus. The New York Times. 11 March 2020. Available online: nytimes.com/2020/03/07/world/europe/coro-navirus-italy.html (accessed on 27 July 2021).
- Kim, S. How South Korea Lost Control of Its Coronavirus Outbreak. The New Yorker. 4 March 2020. Available online: newyorker.com/news/news-desk/how-south-korea-lost-control-of-its-coronavirusoutbreak (accessed on 27 July 2021).
- Leggett, T. Coronavirus: Global Growth ‘Could Halve’ if Outbreak Intensifies. BBC. 2 March 2020. Available online: bbc.com/news/business-51700935 (accessed on 27 July 2021).
- Banister, D. The sustainable mobility paradigm. Transp. Policy 2008, 15, 73–80. [Google Scholar] [CrossRef]
- Victor, P.A. Pollution: Economy and Environment; Routledge: London, UK, 1972. [Google Scholar]
- Gradus, R.; Smulders, S. The trade-off between environmental care and long-term growth pollution in three prototype growth models. J. Econ. 1993, 58, 25–51. [Google Scholar] [CrossRef] [Green Version]
- Smulders, S.; Gradus, R. Pollution abatement and long-term growth. Eur. J. Politics Econ. 1996, 12, 505–532. [Google Scholar] [CrossRef] [Green Version]
- Moser, E.; Seidl, A.; Feichtinger, G. History-dependence in production-pollution-trade-off models: A multi-stage approach. Ann. Oper. Res. 2014, 222, 457–481. [Google Scholar] [CrossRef]
- Mildenberger, M.; Leiserowitz, A. Public opinion on climate change: Is there an economy–environment tradeoff? Environ. Politics 2017, 26, 801–824. [Google Scholar] [CrossRef]
- Renstrom, T.I.; Spataro, L.; Marsiliani, L. Can subsidies rather than pollution taxes break the trade-off between economic output and environmental protection? Energy Econ. 2021, 95, 105084. [Google Scholar] [CrossRef]
- Chakraborty, I.; Maity, P. COVID-19 outbreak: Migration, effects on society, global environment and prevention. Sci. Total Environ. 2020, 728, 138882. [Google Scholar] [CrossRef] [PubMed]
- Saadat, S.; Rawtani, D.; Hussain, C.M. Environmental perspective of COVID-19. Sci. Total Environ. 2020, 728, 138870. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef]
- Donzelli, G.; Cioni, L.; Cancellieri, M.; Morales, A.; Suarez-Varela, M.M.M. The Effect of the Covid-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities. Atmosphere 2020, 11, 1118. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abba, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miinoa, M. Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S. Nonlinear impact of COVID-19 on pollutions—Evidence from Wuhan, New York, Milan, Madrid, Bandra, London, Tokyo and Mexico City. Sustain. Cities Soc. 2021, 65, 102629. [Google Scholar] [CrossRef]
- Duncan, B.N.; Lamsal, L.N.; Thompson, A.M.; Yoshida, Y.; Lu, Z.; Streets, D.; Hurwitz, M.; Pickering, K.E. A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005–2014). J. Geophys. Res. 2016, 121, 976–996. [Google Scholar] [CrossRef] [Green Version]
- De Foy, B.; Lu, Z.; Streets, D. Satellite NO2 retrievals suggest China has exceeded its NOx reduction goals from the twelfth Five-Year Plan. Nat. Sci. Rep. 2016, 6, 35912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der A, R.J.; Mijling, B.; Ding, J.; Koukouli, M.; Liu, F.; Li, Q.; Mao, H.; Theys, N. Cleaning up the air: Effectiveness of air quality policy for SO2 and NOx emissions in China. Atmos. Chem. Phys. 2017, 17, 1775–1789. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, P.; Boersma, K.F. Reductions in nitrogen oxides over Europe driven by environmental policy and economic recession. Nat. Sci. Rep. 2012, 2, 265. [Google Scholar] [CrossRef]
- Mijling, B.; Boersma, R.J.v.A.K.F.; Roozendael, M.V.; Smedt, I.D.; Kelder, H.M. Reductions of NO2 detected from space during the 2008 Beijing Olympic Games. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Guo, S.; Hu, M.; Guo, Q.; Zhang, X.; Schauer, J.J.; Zhang, R. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics. Atmos. Chem. Phys. 2013, 13, 8303–8314. [Google Scholar] [CrossRef] [Green Version]
- Hao, N.; Valks, P.; Loyola, D.; Cheng, Y.F.; Zimmer, W. Space-based measurements of air quality during the World Expo 2010 in Shanghai. Environ. Res. Lett. 2011, 6, 044004. [Google Scholar] [CrossRef] [Green Version]
- Peskoe-Yang, L. Yes, COVID-19 Shutdowns Improved Air Quality Worldwide. Inst. News IEEE 2020, 44, 12–13. [Google Scholar]
- Wang, T.; Yuan, Y.; Wang, Q.; Liu, C.; Zhi, Q.; Cao, J. Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. Sci. Total Environ. 2020, 731, 1–8. [Google Scholar] [CrossRef]
- Beria, P.; Lunkar, V. Presence and mobility of the population during the first wave of Covid-19 outbreak and lockdown in Italy. Sustain. Cities Soc. 2021, 65, 102616. [Google Scholar] [CrossRef]
- Aloi, A.; Alonso, B.; Benavente, J.; Cordera, R.; Echaniz, E.; Gonzalez, F.; Ladisa, C.; Lezama-Romanelli, R.; Lopez-Parra, A.; Mazzei, V.; et al. Effects of the COVID-19 lockdown on urban mobility: Empirical evidence from the city of Santander (Spain). Sustainability 2020, 12, 3870. [Google Scholar] [CrossRef]
- Orro, A.; Novales, M.; Monteagudo, A.; Perez-Lopez, J.B.; Bugarin, M.R. Impact on city bus transit services of the COVID-19 lockdown and return to the new Normal: The case of La Coruna (Spain). Sustainability 2020, 12, 7206. [Google Scholar] [CrossRef]
- Baldasano, J.M. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Sci. Total. Environ. 2020, 741, 140353. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.; LaRock, T.; McCabe, S.; Torres, L.; Privitera, F.; Lake, B.; Kraemer, M.U.G.; Brownstein, J.S.; Lazer, D.; Eliassi-Rad, T.; et al. Assessing Changes in Commuting and Individual Mobility in Major Metropolitan Areas in the United States during the COVID-19 Outbreak. 2020. Available online: https://www.networkscienceinstitute.org/publications/assessing-changes-in-commuting-and-individual-mobility-in-major-metropolitan-areas-in-the-united-states-during-the-covid-19-outbreak (accessed on 27 July 2021).
- Bhaduri, E.; Manoj, B.S.; Wadud, Z.; Goswami, A.K.; Choudhury, C.F. Modelling the effects of COVID-19 on travel mode choice behaviour in India. Transp. Res. Interdiscip. 2020, 8, 100273. [Google Scholar]
- Hu, S.; Chen, P. Who left riding transit? Examining socioeconomic disparities in the impact of COVID-19 on ridership. Transp. Res. Part D Transp. Environ.. 2021, 90, 102654. [Google Scholar] [CrossRef]
- Tan, L.; Ma, C. Choice behavior of commuters’ rail transit mode during the COVID-19 pandemic based on logistic model. J. Traffic Transp. Eng. 2020, 8, 186–195, in print. [Google Scholar] [CrossRef]
- Borkowski, P.; Jazdzewska-Gutta, M.; Szmelter-Jarosz, A. Lockdowned: Everyday mobility changes in response to COVID-19. J. Transp. Geogr. 2021, 90, 102906. [Google Scholar] [CrossRef]
- Wielechowski, M.; Czech, K.; Grzeda, L. Decline in Mobility: Public Transport in Poland in the time of the COVID-19 Pandemic. Economies 2020, 8, 78. [Google Scholar] [CrossRef]
- Fountas, G.; Sun, Y.Y.; Akizu-Gardoki, O.; Pomponi, F. How do people move around? National data on transport modal shares for 131 countries. World 2020, 1, 34–43. [Google Scholar] [CrossRef]
- De Haas, M.; Faber, R.; Hamersma, M. How COVID-19 and the Dutch ‘intelligent lockdown’ change activities, work and travel behaviour: Evidence from longitudinal data in the Netherlands. Transp. Res. Interdiscip. Perspect. 2020, 6, 100150. [Google Scholar] [CrossRef]
- Engle, S.; Stromme, J.; Zhou, A. Staying at Home: Mobility Effects of COVID-19. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3565703 (accessed on 27 July 2021).
- Pullano, G.; Valdano, E.; Scarpa, N.; Rubrichi, S.; Colizza, V. Population Mobility Reductions during COVID-19 Epidemic in France under Lockdown. 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.05.29.20097097v1.full.pdf (accessed on 27 July 2021).
- Mishra, M.K. The World after COVID-19 and Its Impact on Global Economy; ZBW—Leibniz Information Centre for Economics: Kiel, Germany, 2020. [Google Scholar]
- Lenzen, M.; Li, M.; Malik, A.; Pomponi, F.; Sun, Y.Y.; Wiedmann, T.; Faturay, F.; Fry, J.; Gallego, B.; Geschke, A.; et al. Global socio-economic losses and environmental gains from the Coronavirus pandemic. PLoS ONE 2020, 15, e0235654. [Google Scholar] [CrossRef]
- Bonaccorsi, G.; Pierri, F.; Cinelli, M.; Flori, A.; Galeazzi, A.; Porcelli, F.; Schmidt, A.L.; Valensise, C.M.; Scala, A.; Quattrociocchi, W.; et al. Economic and social consequences of human mobility restrictions under COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 15530–15535. [Google Scholar] [CrossRef]
- Spelta, A.; Flori, A.; Pierri, F.; Bonaccorsi, G.; Pammolli, F. After the lockdown: Simulating mobility, public health and economic recovery scenarios. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Eurostat. Population & Demographics 2021. Available online: https://ec.europa.eu/eurostat/web/population-demography/demography-population-stock-balance/database (accessed on 27 July 2021).
- Holden, E. Achieving Sustainable Mobility, 1st ed.; Taylor & Francis: Aldershot, UK, 2007. [Google Scholar]
- Maltese, I.; Mariotti, I.; Oppio, A. An ex-post assessment of sustainable mobility: The case of European neighbourhoods. In Territorio; Franco Angeli: Milano, Italy, 2011; pp. 51–58. [Google Scholar]
- Eurostat. Luxembourg—Most Cars per Inhabitant in the EU. 2020. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20200611-2?inheritRedirect=true&redirect=%2Feurosta%2Fnews%2Fwhats-new (accessed on 27 July 2021).
- Maltese, I.; Gatta, V.; Marcucci, E. Active Travel in Sustainable Urban Mobility Plans. An Italian overview. Res. Transp. Bus. Manag. 2021, 100621. [Google Scholar] [CrossRef]
- SCRAT Euromobility. Osservatorio 50 Città Italiane. 2019. Available online: https://www.xn--osservatorio50citt-wrb.it/searchIndicator_NEW/index.php?ind=58&year=2019 (accessed on 27 July 2021).
- Laker, L. Milan Announces Ambitious Scheme to Reduce Car Use after Lockdown. The Guardian. 21 April 2020. Available online: https://www.theguardian.com/world/2020/apr/21/milan-seeks-to-prevent-post-crisis-return-of-traffic-pollution (accessed on 27 July 2021).
- Bertuccio, L.; Piras, V. Osservatorio Mobilità Sostenibile in Italia. 2019. Available online: https://www.euromobility.org/wp-content/uploads/2019/11/50-città2019.pdf (accessed on 27 July 2021).
- Chianese, E.; Camastra, F.; Ciaramella, A.; Landi, T.C.; Staiano, A.; Riccio, A. Spatio-temporal learning in predicting ambient particulate matter concentration by multi-layer perceptron. Ecol. Inform. 2019, 49, 54–61. [Google Scholar] [CrossRef]
- Chianese, E.; Galletti, A.; Giunta, G.; Landi, T.C.; Marcellino, L.; Montella, R.; Riccio, A. Spatiotemporally resolved ambient particulate matter concentration by fusing observational data and ensemble chemical transport model simulations. Ecol. Model. 2018, 385, 173–181. [Google Scholar] [CrossRef]
- Lamsal, L.N.; Duncan, B.N.; Yoshida, Y.; Krotkov, N.A.; Pickering, K.E.; Streets, D.G.; Lu, Z.U.S. NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI). Atmos. Environ. 2015, 110, 130–143. [Google Scholar] [CrossRef]
- European Space Agency. Coronavirus Lockdown Leading to Drop in Pollution across Europe. 2020. Available online: www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/ (accessed on 27 July 2021).
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Muller, J.-F.; van Gent, J.; Eskes, H.; Levelt, P.F.; van der, A.R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophys. Res. Lett. 2020, 47, e2020GL087978. [Google Scholar] [CrossRef] [PubMed]
- Bassani, C.; Vichi, F.; Esposito, G.; Montagnoli, M.; Giusto, M.; Ianniello, A. Nitrogen dioxide reductions from satellite and surface observations during COVID-19 mitigation in Rome (Italy). Environ. Sci. Pollut. Res. 2021, 28, 22981–23004. [Google Scholar] [CrossRef] [PubMed]
- Van Geffen, J.; Eskes, H.J.; Boersma, K.F.; Maasakkers, J.D.; Veefkind, J.P. TROPOMI ATBD of the Total and Tropospheric NO2 Data Products; Technical Report S5P-KNMI-L2-0005-RP; Royal Netherlands Meteorological Institute: De Bilt, The Netherlands, 2021; Volume 2.2.0. [Google Scholar]
- Van Geffen, J.; Boersma, K.F.; Eskes, H.J.; Sneep, M.; ter Linden, M.; Zara, M.; Veefkind, J.P. S5P/TROPOMI NO2 slant column retrieval: Method, stability, uncertainties and comparisons with OMI. Atmos. Meas. Tech. 2020, 13, 1315–1335. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.L.; Anenberg, S.C.; Griffin, D.; McLinden, C.A.; Lu, Z.; Streets, D.G. Disentangling the Impact of the COVID-19 Lockdowns on Urban NO2 From Natural Variability. Geophys. Res. Lett. 2020, 47, 1–11. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Lin, H.; Feng, X.; Fu, T.-M.; Wang, Y. NOx Emission Reduction and Recovery during COVID-19 in East China. Remote Sens. 2020, 11, 433. [Google Scholar] [CrossRef] [Green Version]
- Cersosimo, A.; Serio, C.; Masiello, G. TROPOMI NO2 Tropospheric Column Data: Regridding to 1 km Grid-Resolution and Assessment of their Consistency with In Situ Surface Observations. Remote Sens. 2020, 12, 2212. [Google Scholar] [CrossRef]
- European Space Agency. Air Pollution in a Post-COVID-19 World. 2020. Available online: www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/Air_pollution_in_a_post-COVID-19_world (accessed on 27 July 2021).
- Zhang, R.; Wang, Y.; Smeltzer, C.; Qu, H.; Koshak, W.; Folkert Boersma, K. Comparing OMI-based and EPA AQS in situ NO2 trends: Towards understanding surface NOx emission changes. Atmos. Meas. Tech. 2018, 11, 3955–3967. [Google Scholar] [CrossRef] [Green Version]
- Tong, D.Q.; Lamsal, L.; Pan, L.; Ding, C.; Kim, H.; Lee, P.; Chai, T.; Pickering, K.E.; Stajner, I. Long-term NOx trends over large cities in the United States during the great recession: Comparison of satellite retrievals, ground observations, and emission inventories. Atmos. Environ. 2015, 107, 70–84. [Google Scholar] [CrossRef]
- Marongiu, A. Stima Preliminare delle Emissoni in Lombardia Durante L’emergenza COVID-19; Technical Report; Agenzia Regionale per la Protezione dell’Ambiente della Lombardia: Milano, Italy, 2020; Available online: https://www.arpalombardia.it/sites/DocumentCenter/Documents/ARIA/report-stima-emissiva-COVID19-lombardia.pdf (accessed on 27 July 2021).
- Atmosphere Monitoring Service. Air Quality Information Confirms Reduced Activity Levels Due to Lockdown in Italy. 2020. Available online: atmosphere.copernicus.eu/air-quality-information-confirms-reduced-activity-levels-due-lockdown-italy (accessed on 27 July 2021).
- Gualtieri, G.; Brilli, L.; Carotenuto, F.; Vagnoli, C.; Zaldei, A.; Gioli, B. Quantifying road traffic impact on air quality in urban areas: A Covid19-induced lockdown analysis in Italy. Environ. Pollut. 2020, 267, 1–10. [Google Scholar] [CrossRef]
- Copernicus Atmosphere Monitoring Service. European Air Quality Information in Support of the COVID-19 Crisis. 2020. Available online: https://atmosphere.copernicus.eu/european-air-quality-information-support-covid-19-crisis (accessed on 27 July 2021).
- Monaci, S. Milano Dopo il Covid: Commercio e Servizi Vanno Peggio della Media Italiana. Il Sole 24 ore. 7 July 2020. Available online: https://www.ilsole24ore.com/art/milano-il-covid-commercio-e-servizi-vanno-peggio-media-italiana-ADqHZnc (accessed on 27 July 2021).
- Assolombarda. Dati e Analisi della Città che Cambia. Available online: https://www.assolombarda.it/centro-studi/your-next-milano-2021 (accessed on 27 July 2021).
- Tirachini, A.; Cats, O. COVID-19 and Public Transportation: Current Assessment, Prospects, and Research Needs. J. Public Transp. 2020, 22, 1–21. [Google Scholar] [CrossRef]
- TomTom. The Effect of the COVID-19 Lockdown on Mobility in Italy. 2020. Available online: https://www.tomtom.com/covid-19/country/italy/ (accessed on 27 July 2021).
- Moovit. L’impatto del Coronavirus (Covid-19) Sull’utilizzo del Trasporto Pubblico. 2020. Available online: https://moovitapp.com/insights/it/Analisi_Moovit_sull_indice_per_la_mobilitá_pubblica-223 (accessed on 27 July 2021).
- Sung, J.; Monschauer, Y. Changes in Transport Behaviour during the COVID-19 Crisis. 2020. Available online: https://www.iea.org/articles/changes-in-transport-behaviour-during-the-covid-19-crisis (accessed on 27 July 2021).
- Boscacci, F.; Maltese, I.; Mariotti, I. Smartness and Italian cities. A cluster analysis. TeMA J. Land Use Mobil. Environ. 2014, 141–162. [Google Scholar] [CrossRef]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef] [PubMed]
- Magazzino, C.; Mele, M.; Sarkodie, S.A. The nexus between COVID-19 deaths, air pollution and economic growth in New York state: Evidence from Deep Machine Learning. J. Environ. 2021, 286, 112241. [Google Scholar]
- Magazzino, C.; Mele, M.; Schneider, N. The relationship between air pollution and COVID-19-related deaths: An application to three French cities. Appl. Energy 2020, 279, 115835. [Google Scholar] [CrossRef] [PubMed]
- Mele, M.; Magazzino, C.; Schneider, N.; Strezov, V. NO2 levels as a contributing factor to COVID-19 deaths: The first empirical estimate of threshold values. Environ. Res. 2021, 194, 110663. [Google Scholar] [CrossRef] [PubMed]
- Perry, T.S. The post-pandemic tech workplace. IEEE Spectr. 2020, 9, 19. [Google Scholar]
City | NO Column (mol/m) March 2019 | NO Column (mol/m) 14–25 March 2020 | Reduction |
---|---|---|---|
Milan | 160 | 110 | 31% |
Turin | 150 | 90 | 40% |
Rome | 130 | 70 | 46% |
Naples | 120 | 85 | 29% |
Florence | 80 | 30 | 63% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliaccio, M.; Buono, A.; Maltese, I.; Migliaccio, M. The 2020 Italian Spring Lockdown: A Multidisciplinary Analysis over the Milan Urban Area. World 2021, 2, 391-414. https://doi.org/10.3390/world2030025
Migliaccio M, Buono A, Maltese I, Migliaccio M. The 2020 Italian Spring Lockdown: A Multidisciplinary Analysis over the Milan Urban Area. World. 2021; 2(3):391-414. https://doi.org/10.3390/world2030025
Chicago/Turabian StyleMigliaccio, Maurizio, Andrea Buono, Ila Maltese, and Margherita Migliaccio. 2021. "The 2020 Italian Spring Lockdown: A Multidisciplinary Analysis over the Milan Urban Area" World 2, no. 3: 391-414. https://doi.org/10.3390/world2030025
APA StyleMigliaccio, M., Buono, A., Maltese, I., & Migliaccio, M. (2021). The 2020 Italian Spring Lockdown: A Multidisciplinary Analysis over the Milan Urban Area. World, 2(3), 391-414. https://doi.org/10.3390/world2030025