Treatment of the Aortic Valve in the Modern Era—A Review of TAVR vs. SAVR
Abstract
:1. Introduction
2. Methods
3. SAVR Overview
3.1. History
3.2. Procedure Details
Small Aortic Annulus/Root Enlargement
3.3. Indications
3.4. Complications and Contraindications
4. TAVR Overview
4.1. History
4.2. Procedure Details
4.3. Indications
4.4. Complications and Contraindications
4.5. TAVR Explant
5. Current Guidelines
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lindman, B.R.; Clavel, M.-A.; Mathieu, P.; Iung, B.; Lancellotti, P.; Otto, C.M.; Pibarot, P. Calcific aortic stenosis. Nat. Rev. Dis. Primers 2016, 2, 16006. [Google Scholar] [CrossRef]
- Joseph, J.; Naqvi, S.Y.; Giri, J.; Goldberg, S. Aortic Stenosis: Pathophysiology, Diagnosis, and Therapy. Am. J. Med. 2017, 130, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J. Aortic stenosis. BMJ 2005, 330, 801–802. [Google Scholar] [CrossRef]
- Stewart, R.L.; Chan, K.L. Management of asymptomatic severe aortic stenosis. Curr. Cardiol. Rev. 2009, 5, 29–35. [Google Scholar] [CrossRef]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Guyton, R.A.; O’gara, P.T.; Ruiz, C.E.; Skubas, N.J.; Sorajja, P.; et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, e57–e185, Erratum in J. Am. Coll. Cardiol. 2014, 63, 2489. [Google Scholar] [CrossRef]
- Otto, C.M.; Kumbhani, D.J.; Alexander, K.P.; Calhoon, J.H.; Desai, M.Y.; Kaul, S.; Lee, J.C.; Ruiz, C.E.; Vassileva, C.M. 2017 ACC Expert Consensus Decision Pathway for Transcatheter Aortic Valve Replacement in the Management of Adults with Aortic Stenosis: A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J. Am. Coll. Cardiol. 2017, 69, 1313–1346, Erratum in J. Am. Coll. Cardiol. 2017, 69, 1362. [Google Scholar] [CrossRef] [PubMed]
- Kvidal, P.; Bergström, P.; Hörte, L.-G.; Ståhle, E. Observed and relative survival after aortic valve replacement. J. Am. Coll. Cardiol. 2000, 35, 747–756. [Google Scholar] [CrossRef]
- Chiang, Y.P.; Chikwe, J.; Moskowitz, A.J.; Itagaki, S.; Adams, D.H.; Egorova, N.N. Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years. JAMA 2014, 312, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Carrel, T.; Heinisch, P.P. History, development and clinical perspectives of sutureless and rapid deployment surgical aortic valve replacement. Ann. Cardiothorac. Surg. 2020, 9, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Mc Morrow, R.; Kriza, C.; Urbán, P.; Amenta, V.; Amaro, J.A.B.; Panidis, D.; Chassaigne, H.; Griesinger, C.B. Assessing the safety and efficacy of TAVR compared to SAVR in low-to-intermediate surgical risk patients with aortic valve stenosis: An overview of reviews. Int. J. Cardiol. 2020, 314, 43–53. [Google Scholar] [CrossRef]
- Sharma, T.; Krishnan, A.M.; Lahoud, R.; Polomsky, M.; Dauerman, H.L. National Trends in TAVR and SAVR for Patients with Severe Isolated Aortic Stenosis. J. Am. Coll. Cardiol. 2022, 80, 2054–2056. [Google Scholar] [CrossRef]
- Effler, D.B.; Favaloro, R.; Groves, L.K. Heart Valve Replacement. Clinical Experience. Ann. Thorac. Surg. 1965, 1, 4–24. [Google Scholar] [CrossRef]
- Thourani, V.H.; Habib, R.; Szeto, W.Y.; Sabik, J.F.; Romano, J.C.; MacGillivray, T.E.; Badhwar, V. Survival After Surgical Aortic Valve Replacement in Low-Risk Patients: A Contemporary Trial Benchmark. Ann. Thorac. Surg. 2024, 117, 106–112. [Google Scholar] [CrossRef]
- Rodriguez-Gabella, T.; Voisine, P.; Dagenais, F.; Mohammadi, S.; Perron, J.; Dumont, E.; Puri, R.; Asmarats, L.; Côté, M.; Bergeron, S.; et al. Long-Term Outcomes Following Surgical Aortic Bioprosthesis Implantation. J. Am. Coll. Cardiol. 2018, 71, 1401–1412. [Google Scholar] [CrossRef]
- Kumar, N.; Ramphul, K.; Bawna, F.; Paray, N.B.; Dulay, M.S.; Dhaliwal, J.S.; Aggarwal, S.; Mactaggart, S.; Chennapragada, S.S.; Sombans, S.; et al. Trends in mortality among the geriatric population undergoing Surgical aortic valve replacement (SAVR) and potential racial disparities: A 20-year perspective via the National (Nationwide) Inpatient Sample. J. Geriatr. Cardiol. 2024, 21, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Dimagli, A.; Sinha, S.; Caputo, M.; Angelini, G.D.; Benedetto, U. Trend in morbidity and mortality in surgical aortic valve replacement: A retrospective, observational, single-centre study. Interact. Cardiovasc. Thorac. Surg. 2020, 31, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Leviner, D.B.; Abraham, D.; Ronai, T.; Sharoni, E. Mechanical Valves: Past, Present, and Future—A Review. J. Clin. Med. 2024, 13, 3768. [Google Scholar] [CrossRef]
- Head, S.J.; Çelik, M.; Kappetein, A.P. Mechanical versus bioprosthetic aortic valve replacement. Eur. Heart J. 2017, 38, 2183–2191. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.W.; Horns, J.J.; Sharma, V.; Goodwin, M.L.; Kagawa, H.; Pereira, S.J.; McKellar, S.H.; Selzman, C.H.; Glotzbach, J.P. Minimally Invasive versus Full Sternotomy SAVR in the Era of TAVR: An Institutional Review. J. Clin. Med. 2022, 11, 547. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Spelde, A.E.; Carter, T.I.; Patel, P.A.; Desai, N. The Ross Operation in the Adult: What, Why, and When? J. Cardiothorac. Vasc. Anesth. 2018, 32, 1885–1891. [Google Scholar] [CrossRef]
- Mazine, A.; El-Hamamsy, I.; Verma, S.; Peterson, M.D.; Bonow, R.O.; Yacoub, M.H.; David, T.E.; Bhatt, D.L. Ross Procedure in Adults for Cardiologists and Cardiac Surgeons: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2761–2777. [Google Scholar] [CrossRef] [PubMed]
- Mazine, A.; David, T.E.; Rao, V.; Hickey, E.J.; Christie, S.; Manlhiot, C.; Ouzounian, M. Long-Term Outcomes of the Ross Procedure Versus Mechanical Aortic Valve Replacement: Propensity-Matched Cohort Study. Circulation 2016, 134, 576–585. [Google Scholar] [CrossRef]
- Pibarot, P.; Dumesnil, J.G. Prosthesis-patient mismatch: Definition, clinical impact, and prevention. Heart 2006, 92, 1022–1029. [Google Scholar] [CrossRef]
- Sá, M.P.; Jacquemyn, X.; Van den Eynde, J.; Chu, D.; Serna-Gallegos, D.; Ebels, T.; Clavel, M.A.; Pibarot, P.; Sultan, I. Impact of Prosthesis-Patient Mismatch After Surgical Aortic Valve Replacement: Systematic Review and Meta-Analysis of Reconstructed Time-to-Event Data of 122 989 Patients with 592 952 Patient-Years. J. Am. Heart Assoc. 2024, 13, e033176. [Google Scholar] [CrossRef] [PubMed]
- Manouguian, S.; Seybold-Epting, W. Patch enlargement of the aortic valve ring by extending the aortic incision into the anterior mitral leaflet: New operative technique. J. Thorac. Cardiovasc. Surg. 1979, 78, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Ghita, C.; Palmer, S. Y-incision aortic root enlargement with modified aortotomy upsizing the annulus by 5 valve sizes. Ann. Thorac. Surg. 2022, 114, e479–e481. [Google Scholar] [CrossRef]
- Konno, S.; Imai, Y.; Iida, Y.; Nakajima, M.; Tatsuno, K. A new method for prosthetic valve replacement in congenital aortic stenosis associated with hypoplasia of the aortic valve ring. J. Thorac. Cardiovasc. Surg. 1975, 70, 909–917. [Google Scholar] [CrossRef]
- Juarez-Casso, F.M.; Crestanello, J.A. The Evolving Role of Surgical Aortic Valve Replacement in the Era of Transcatheter Valvular Procedures. J. Clin. Med. 2023, 12, 5299. [Google Scholar] [CrossRef] [PubMed]
- Maeda, S.; Toda, K.; Shimamura, K.; Yoshioka, D.; Maeda, K.; Yamada, Y.; Igeta, M.; Sakata, Y.; Sawa, Y.; Miyagawa, S. Long-term survival after surgical or transcatheter aortic valve replacement for low or intermediate surgical risk aortic stenosis: Comparison with general population. J. Cardiol. 2023, 81, 68–75. [Google Scholar] [CrossRef]
- Moawad, K.R.; Mohamed, S.; Hammad, A.; Barker, T. The Clinical Impact of Paravalvular Leaks with Transcutaneous Aortic Valve Implantation (TAVI) Versus Surgical Aortic Valve Replacement (SAVR): A Systematic Review and Meta-Analysis. Heart Lung Circ. 2024, 33, 1319–1330. [Google Scholar] [CrossRef]
- Donnellan, E.; Masri, A.; Johnston, D.R.; Pettersson, G.B.; Rodriguez, L.L.; Popovic, Z.B.; Roselli, E.E.; Smedira, N.G.; Svensson, L.G.; Griffin, B.P.; et al. Long-Term Outcomes of Patients with Mediastinal Radiation-Associated Severe Aortic Stenosis and Subsequent Surgical Aortic Valve Replacement: A Matched Cohort Study. J. Am. Heart Assoc. 2017, 6, e005396. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Garg, A.; Parashar, A.; Svensson, L.G.; Tuzcu, E.M.; Navia, J.L.; Mick, S.; Kapadia, S.R. In-hospital mortality and stroke after surgical aortic valve replacement: A nationwide perspective. J. Thorac. Cardiovasc. Surg. 2015, 150, 571–578.e8. [Google Scholar] [CrossRef] [PubMed]
- Bendayan, M.; Messas, N.; Perrault, L.P.; Asgar, A.W.; Lauck, S.; Kim, D.H.; Arora, R.C.; Langlois, Y.; Piazza, N.; Martucci, G.; et al. Frailty and Bleeding in Older Adults Undergoing TAVR or SAVR: Insights From the FRAILTY-AVR Study. JACC Cardiovasc. Interv. 2020, 13, 1058–1068. [Google Scholar] [CrossRef] [PubMed]
- Woodman, R.C.; Harker, L.A. Bleeding complications associated with cardiopulmonary bypass. Blood 1990, 76, 1680–1697. [Google Scholar] [CrossRef]
- Synnott, P.; Murphy, R.P.; Judge, C.; Costello, M.; Reddin, C.; Dennehy, K.; Loughlin, E.; Smyth, A.; Mylotte, D.; O'Donnell, M.J.; et al. Stroke Severity in Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement: A Systematic Review and Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2021, 30, 105927. [Google Scholar] [CrossRef] [PubMed]
- Thyregod, H.G.H.; Steinbrüchel, D.A.; Ihlemann, N.; Nissen, H.; Kjeldsen, B.J.; Petursson, P.; Chang, Y.; Franzen, O.W.; Engstrøm, T.; Clemmensen, P.; et al. Transcatheter Versus Surgical Aortic Valve Replacement in Patients with Severe Aortic Valve Stenosis: 1-Year Results from the All-Comers NOTION Randomized Clinical Trial. J. Am. Coll. Cardiol. 2015, 65, 2184–2194. [Google Scholar] [CrossRef] [PubMed]
- Mehaffey, J.H.; Haywood, N.S.; Hawkins, R.B.; Kern, J.A.; Teman, N.R.; Kron, I.L.; Yarboro, L.T.; Ailawadi, G. Need for Permanent Pacemaker After Surgical Aortic Valve Replacement Reduces Long-Term Survival. Ann. Thorac. Surg. 2018, 106, 460–465. [Google Scholar] [CrossRef]
- Singh, K.; Anderson, E.; Harper, J.G. Overview and management of sternal wound infection. Semin. Plast. Surg. 2011, 25, 25–33. [Google Scholar] [CrossRef]
- Gummert, J.F.; Barten, M.J.; Hans, C.; Kluge, M.; Doll, N.; Walther, T.; Hentschel, B.; Schmitt, D.V.; Mohr, F.W.; Diegeler, A. Mediastinitis and cardiac surgery--an updated risk factor analysis in 10,373 consecutive adult patients. Thorac. Cardiovasc. Surg. 2002, 50, 87–91. [Google Scholar] [CrossRef]
- Liu, D.; Liu, B.; Liang, Z.; Yang, Z.; Ma, F.; Yang, Y.; Hu, W. Acute Kidney Injury following Cardiopulmonary Bypass: A Challenging Picture. Oxid. Med. Cell Longev. 2021, 2021, 8873581. [Google Scholar] [CrossRef] [PubMed]
- Elhmidi, Y.; Piazza, N.; Mazzitelli, D.; Wottke, M.; Lange, R.; Bleiziffer, S. Sex-related differences in 2197 patients undergoing isolated surgical aortic valve replacement. J. Card. Surg. 2014, 29, 772–778. [Google Scholar] [CrossRef]
- Caponcello, M.G.; Banderas, L.M.; Ferrero, C.; Bramlage, C.; Thoenes, M.; Bramlage, P. Gender differences in aortic valve replacement: Is. surgical aortic valve replacement riskier and transcatheter aortic valve replacement safer in women than in men? J. Thorac. Dis. 2020, 12, 3737–3746. [Google Scholar] [CrossRef] [PubMed]
- Myllykangas, M.E.; Aittokallio, J.; Gunn, J.; Sipilä, J.; Rautava, P.; Kytö, V. Sex Differences in Long-Term Outcomes After Surgical Aortic Valve Replacement: A Nationwide Propensity-matched Study. J. Cardiothorac. Vasc. Anesth. 2020, 34, 932–939. [Google Scholar] [CrossRef]
- Cribier, A.; Eltchaninoff, H.; Bash, A.; Borenstein, N.; Tron, C.; Bauer, F.; Derumeaux, G.; Anselme, F.; Laborde, F.; Leon, M.B. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: First human case description. Circulation 2002, 106, 3006–3008. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef] [PubMed]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- FDA. FDA Expands Indication for Several Transcatheter Heart Valves to Patients at Low Risk for Death or Major Complications Associated with Open-Heart Surgery; FDA: Silver Spring, MD, USA, 2020. Available online: https://www.fda.gov/news-events/press-announcements/fda-expands-indication-several-transcatheter-heart-valves-patients-low-risk-death-or-major (accessed on 1 November 2024).
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Pibarot, P.; Hahn, R.T.; Genereux, P.; Kodali, S.K.; Kapadia, S.R.; Cohen, D.J.; Pocock, S.J.; et al. Transcatheter Aortic-Valve Replacement in Low-Risk Patients at Five Years. N. Engl. J. Med. 2023, 389, 1949–1960. [Google Scholar] [CrossRef] [PubMed]
- Forrest, J.K.; Deeb, G.M.; Yakubov, S.J.; Gada, H.; Mumtaz, M.A.; Ramlawi, B.; Bajwa, T.; Teirstein, P.S.; Tchétché, D.; Huang, J.; et al. 4-Year Outcomes of Patients with Aortic Stenosis in the Evolut Low Risk Trial. J. Am. Coll. Cardiol. 2023, 82, 2163–2165. [Google Scholar] [CrossRef]
- Ando, T.; Ashraf, S.; Villablanca, P.; Kuno, T.; Pahuja, M.; Shokr, M.; Afonso, L.; Grines, C.; Briasoulis, A.; Takagi, H. Meta-Analysis of Effectiveness and Safety of Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Low-to-Intermediate Surgical Risk Cohort. Am. J. Cardiol. 2019, 124, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Greenbaum, A.B.; Babaliaros, V.C.; Chen, M.Y.; Stine, A.M.; Rogers, T.; O’neill, W.W.; Paone, G.; Thourani, V.H.; Muhammad, K.I.; Leonardi, R.A.; et al. Transcaval Access and Closure for Transcatheter Aortic Valve Replacement: A Prospective Investigation. J. Am. Coll. Cardiol. 2017, 69, 511–521. [Google Scholar] [CrossRef]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef] [PubMed]
- Halabi, M.; Ratnayaka, K.; Faranesh, A.Z.; Chen, M.Y.; Schenke, W.H.; Lederman, R.J. Aortic access from the vena cava for large caliber transcatheter cardiovascular interventions: Pre-clinical validation. J. Am. Coll. Cardiol. 2013, 61, 1745–1746. [Google Scholar] [CrossRef]
- Quagliana, A.; Montarello, N.J.; Willemen, Y.; Bække, P.S.; Jørgensen, T.H.; De Backer, O.; Sondergaard, L. Commissural Alignment and Coronary Access after Transcatheter Aortic Valve Replacement. J. Clin. Med. 2023, 12, 2136. [Google Scholar] [CrossRef]
- Sengupta, A.; Alexis, S.L.; Lee, T.; Zaid, S.; Krishnamoorthy, P.M.; Khera, S.; Lerakis, S.; Anastasius, M.; Dangas, G.D.; Sharma, S.K.; et al. Cusp Overlap Technique: Should It Become the Standard Implantation Technique for Self-expanding Valves? Curr. Cardiol. Rep. 2021, 23, 154. [Google Scholar] [CrossRef] [PubMed]
- Kotronias, R.A.; Teitelbaum, M.; Bagur, R. Pre-implantation balloon-aortic valvuloplasty before transcatheter aortic valve implantation: Is. this still needed? J. Thorac. Dis. 2018, 10 (Suppl. S30), S3599–S3603. [Google Scholar] [CrossRef]
- Zhong, J.; Kamp, N.; Bansal, A.; Kumar, A.; Puri, R.; Krishnaswamy, A.; Kapadia, S.; Reed, G.W. Balloon Aortic Valvuloplasty in the Modern Era: A Review of Outcomes, Indications, and Technical Advances. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 2, 101002. [Google Scholar] [CrossRef]
- Kronzon, I.; Jelnin, V.; Ruiz, C.E.; Saric, M.; Williams, M.R.; Kasel, A.M.; Shivaraju, A.; Colombo, A.; Kastrati, A. Optimal imaging for guiding TAVR: Transesophageal or transthoracic echocardiography, or just fluoroscopy? JACC Cardiovasc. Imaging 2015, 8, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Bernard, S.; Yucel, E. Paravalvular Leaks-From Diagnosis to Management. Curr. Treat. Options Cardiovasc. Med. 2019, 21, 67. [Google Scholar] [CrossRef]
- Lázaro, C.; Hinojar, R.; Zamorano, J.L. Cardiac imaging in prosthetic paravalvular leaks. Cardiovasc. Diagn. Ther. 2014, 4, 307–313. [Google Scholar] [CrossRef]
- Rashid, H.N.; Gooley, R.; McCormick, L.; Zaman, S.; Ramkumar, S.; Jackson, D.; Amiruddin, A.; Nasis, A.; Cameron, J.; Meredith, I.T. Safety and efficacy of valve repositioning during transcatheter aortic valve replacement with the Lotus Valve System. J. Cardiol. 2017, 70, 55–61. [Google Scholar] [CrossRef]
- Popma, J.J.; Adams, D.H.; Reardon, M.J.; Yakubov, S.J.; Kleiman, N.S.; Heimansohn, D.; Hermiller, J., Jr.; Hughes, G.C.; Harrison, J.K.; Coselli, J.; et al. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J. Am. Coll. Cardiol. 2014, 63, 1972–1981. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, S.; Schofer, N.; Abdel-Wahab, M.; Urena, M.; Jean, G.; Renker, M.; Hamm, C.W.; Thiele, H.; Iung, B.; Ooms, J.F.; et al. Transcatheter Aortic Valve Replacement in Patients with Reduced Ejection Fraction and Nonsevere Aortic Stenosis. Circ. Cardiovasc. Interv. 2023, 16, e012768. [Google Scholar] [CrossRef]
- Foroutan, F.; Guyatt, G.H.; Otto, C.M.; A Siemieniuk, R.; Schandelmaier, S.; Agoritsas, T.; O Vandvik, P.; Bhagra, S.; Bagur, R. Structural valve deterioration after transcatheter aortic valve implantation. Heart 2017, 103, 1899–1905. [Google Scholar] [CrossRef]
- Durand, E.; Sokoloff, A.; Urena-Alcazar, M.; Chevalier, B.; Chassaing, S.; Didier, R.; Tron, C.; Litzler, P.-Y.; Bouleti, C.; Himbert, D.; et al. Assessment of Long-Term Structural Deterioration of Transcatheter Aortic Bioprosthetic Valves Using the New European Definition. Circ. Cardiovasc. Interv. 2019, 12, e007597. [Google Scholar] [CrossRef]
- Sedaghat, A.; Neumann, N.; Schahab, N.; Sinning, J.-M.; Hammerstingl, C.; Pingel, S.; Schaefer, C.; Mellert, F.; Schiller, W.; Welz, A.; et al. Routine Endovascular Treatment with a Stent Graft for Access-Site and Access-Related Vascular Injury in Transfemoral Transcatheter Aortic Valve Implantation. Circ. Cardiovasc. Interv. 2016, 9, e003834. [Google Scholar] [CrossRef] [PubMed]
- Van Mieghem, N.M.; Tchetche, D.; Chieffo, A.; Dumonteil, N.; Messika-Zeitoun, D.; van der Boon, R.M.; Vahdat, O.; Buchanan, G.L.; Marcheix, B.; Himbert, D.; et al. Incidence, predictors, and implications of access site complications with transfemoral transcatheter aortic valve implantation. Am. J. Cardiol. 2012, 110, 1361–1367. [Google Scholar] [CrossRef]
- Eker, A.; Sozzi, F.B.; Civaia, F.; Bourlon, F. Aortic annulus rupture during transcatheter aortic valve implantation: Safe aortic root replacement. Eur. J. Cardiothorac. Surg. 2012, 41, 1205. [Google Scholar] [CrossRef]
- Daneault, B.; Kirtane, A.J.; Kodali, S.K.; Williams, M.R.; Genereux, P.; Reiss, G.R.; Smith, C.R.; Moses, J.W.; Leon, M.B. Stroke associated with surgical and transcatheter treatment of aortic stenosis: A comprehensive review. J. Am. Coll. Cardiol. 2011, 58, 2143–2150. [Google Scholar] [CrossRef]
- Bagur, R.; Webb, J.G.; Nietlispach, F.; Dumont, E.; De Larochellière, R.; Doyle, D.; Masson, J.-B.; Gutiérrez, M.J.; Clavel, M.-A.; Bertrand, O.F.; et al. Acute kidney injury following transcatheter aortic valve implantation: Predictive factors, prognostic value, and comparison with surgical aortic valve replacement. Eur. Heart J. 2010, 31, 865–874. [Google Scholar] [CrossRef]
- Binder, R.K.; Webb, J.G.; Toggweiler, S.; Freeman, M.; Barbanti, M.; Willson, A.B.; Alhassan, D.; Hague, C.J.; Wood, D.A.; Leipsic, J. Impact of post-implant SAPIEN XT geometry and position on conduction disturbances, hemodynamic performance, and paravalvular regurgitation. JACC Cardiovasc. Interv. 2013, 6, 462–468. [Google Scholar] [CrossRef]
- Del Trigo, M.; Muñoz-Garcia, A.J.; Wijeysundera, H.C.; Nombela-Franco, L.; Cheema, A.N.; Gutierrez, E.; Serra, V.; Kefer, J.; Amat-Santos, I.J.; Benitez, L.M.; et al. Incidence, Timing, and Predictors of Valve Hemodynamic Deterioration After Transcatheter Aortic Valve Replacement: Multicenter Registry. J. Am. Coll. Cardiol. 2016, 67, 644–655. [Google Scholar] [CrossRef]
- O’connor, S.A.; Morice, M.-C.; Gilard, M.; Leon, M.B.; Webb, J.G.; Dvir, D.; Rodés-Cabau, J.; Tamburino, C.; Capodanno, D.; D’ascenzo, F.; et al. Revisiting Sex Equality with Transcatheter Aortic Valve Replacement Outcomes: A Collaborative, Patient-Level Meta-Analysis of 11,310 Patients. J. Am. Coll. Cardiol. 2015, 66, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Kaier, K.; Mühlen, C.v.Z.; Zirlik, A.; Schmoor, C.; Roth, K.; Bothe, W.; Hehn, P.; Reinöhl, J.; Zehender, M.; Bode, C.; et al. Sex-Specific Differences in Outcome of Transcatheter or Surgical Aortic Valve Replacement. Can. J. Cardiol. 2018, 34, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Kodali, S.; Williams, M.R.; Doshi, D.; Hahn, R.T.; Humphries, K.H.; Nkomo, V.T.; Cohen, D.J.; Douglas, P.S.; Mack, M.; Xu, K.; et al. Sex-Specific Differences at Presentation and Outcomes Among Patients Undergoing Transcatheter Aortic Valve Replacement: A Cohort Study. Ann. Intern. Med. 2016, 164, 377–384. [Google Scholar] [CrossRef]
- Williams, M.; Kodali, S.K.; Hahn, R.T.; Humphries, K.H.; Nkomo, V.T.; Cohen, D.J.; Douglas, P.S.; Mack, M.; McAndrew, T.C.; Svensson, L.; et al. Sex-related differences in outcomes after transcatheter or surgical aortic valve replacement in patients with severe aortic stenosis: Insights from the PARTNER Trial (Placement of Aortic Transcatheter Valve). J. Am. Coll. Cardiol. 2014, 63, 1522–1528. [Google Scholar] [CrossRef]
- Panoulas, V.F.; Francis, D.P.; Ruparelia, N.; Malik, I.S.; Chukwuemeka, A.; Sen, S.; Anderson, J.; Nihoyannopoulos, P.; Sutaria, N.; Hannan, E.L.; et al. Female-specific survival advantage from transcatheter aortic valve implantation over surgical aortic valve replacement: Meta-analysis of the gender subgroups of randomised controlled trials including 3758 patients. Int. J. Cardiol. 2018, 250, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Mangi, A.A.; Ramchandani, M.; Reardon, M. Surgical Removal and Replacement of Chronically Implanted Transcatheter Aortic Prostheses: How I Teach It. Ann. Thorac. Surg. 2018, 105, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, S.; Brescia, A.A.; Shiomi, S.; Rosati, C.M.; Yang, B.; Kim, K.M.; Deeb, G.M. Surgical explantation of transcatheter aortic bioprostheses: Results and clinical implications. J. Thorac. Cardiovasc. Surg. 2021, 162, 539–547.e1. [Google Scholar] [CrossRef] [PubMed]
- Bapat, V.N.; Zaid, S.; Fukuhara, S.; Saha, S.; Vitanova, K.; Squiers, J.J.; Voisine, P.; Pirelli, L.; von Ballmoos, M.W.; Chu, M.W.; et al. Surgical Explantation After TAVR Failure: Mid-Term Outcomes from the EXPLANT-TAVR International Registry. JACC Cardiovasc. Interv. 2021, 14, 1978–1991. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Thorac. Cardiovasc. Surg. 2021, 162, e183–e353. [Google Scholar] [CrossRef] [PubMed]
Category | TAVR | SAVR |
---|---|---|
Invasiveness | Percutaneous. | Open surgery requiring median sternotomy, hemi-sternotomy, or thoracotomy. |
Patient Recovery | Shorter recovery times, less postoperative pain. | Longer time in hospital and recovery. |
Durability | Limited long-term data; concerns about durability in younger patients (<65 years). | Proven long-term durability, especially with mechanical valves. |
Complications | Higher risk of vascular injuries, paravalvular leaks, arrhythmias (e.g., heart block requiring pacemaker). Lower risk of major bleeding and atrial fibrillation. | Risks from open-heart surgery, including bleeding, stroke, atrial fibrillation, sternal wound infections, and acute kidney injury. Long-term anticoagulation (mechanical valves). |
Patient Selection | Best suited for older patients (>80 years) or those at high or prohibitive surgical risk. Increasing use in intermediate- and low-risk patients. | Preferred for younger patients (<65 years) or those with long life expectancy (>20 years). Recommended for patients with anatomical challenges (e.g., bicuspid valves, heavy calcification). |
Procedural Risks | Risks include valve malpositioning, coronary compromise, and annular rupture. Requires precise imaging for valve placement. | Higher perioperative mortality and neurologic events in high-risk patients. Risks tied to cardiopulmonary bypass, including embolic events and low cardiac output. |
Reoperation/Explant | May require surgical explantation due to structural valve degeneration, paravalvular leak, or endocarditis. Valve-in-valve TAVR option for future replacement in select patients. | May require surgical explantation due to structural valve degeneration (biological), paravalvular leak, or endocarditis. Valve-in-valve TAVR option for future replacement of biological valves in select patients. |
Procedure Versatility | Limited by vascular anatomy and procedural complexity (e.g., bicuspid valves, small annuli). Less suitable for patients needing additional cardiac procedures. | Can address complex anatomical challenges (e.g., low coronary heights, small annuli). Suitable for concomitant surgical interventions (e.g., CABG, mitral intervention, aortic aneurysm). |
Current Guidelines | Recommended for high-risk or inoperable patients. Expanding indications for intermediate- and low-risk groups based on recent trials (PARTNER 3, EVOLUT Low Risk). | Recommended for low-risk patients and younger individuals. Preferred for those with severe AS and associated high-risk anatomical or functional findings. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dweck, A.; Ferrell, B.E.; Guttman, D.; Spindel, S.M.; Sugiura, T. Treatment of the Aortic Valve in the Modern Era—A Review of TAVR vs. SAVR. Surgeries 2025, 6, 4. https://doi.org/10.3390/surgeries6010004
Dweck A, Ferrell BE, Guttman D, Spindel SM, Sugiura T. Treatment of the Aortic Valve in the Modern Era—A Review of TAVR vs. SAVR. Surgeries. 2025; 6(1):4. https://doi.org/10.3390/surgeries6010004
Chicago/Turabian StyleDweck, Albert, Brandon E. Ferrell, Daniel Guttman, Stephen M. Spindel, and Tadahisa Sugiura. 2025. "Treatment of the Aortic Valve in the Modern Era—A Review of TAVR vs. SAVR" Surgeries 6, no. 1: 4. https://doi.org/10.3390/surgeries6010004
APA StyleDweck, A., Ferrell, B. E., Guttman, D., Spindel, S. M., & Sugiura, T. (2025). Treatment of the Aortic Valve in the Modern Era—A Review of TAVR vs. SAVR. Surgeries, 6(1), 4. https://doi.org/10.3390/surgeries6010004