Hindfoot Valgus and First Ray Insufficiency: Is There Correlation?
Abstract
:1. Introduction
2. First Ray Insufficiency or First Ray Hypermobility?
3. Anatomy
4. Biomechanics
5. Clinical Findings
6. First Ray Insufficiency and Its Impact on Hindfoot Valgus
7. Radiological Evidence
8. Treatment Approaches
8.1. Conservative Management
8.2. Surgical Management
9. Limitations of the Study
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FR | first ray |
FRI | first ray insufficiency |
HV | hindfoot valgus |
MTP1 | first metatarsophalangeal |
PTTD | posterior tibial tendon dysfunction |
TMT | tarsometatarsal |
AAFD | adult-acquired flatfoot deformity |
CT | Computed Tomography |
MRI | Magnetic Resonance Imaging |
FFF | flexible flatfoot |
AFO | ankle–foot orthosis |
AOFAS | American Orthopaedic Foot & Ankle Society |
MIS | minimally invasive surgery |
MDCO | medial displacement calcaneus osteotomy |
TNU | talonavicular uncoverage |
FADI | Foot and Ankle Disability Index |
References
- Christensen, J.C.; Jennings, M.M. Normal and abnormal function of the first ray. Clin. Podiatr. Med. Surg. 2009, 26, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, S.; Cohen, B. Calcaneal Osteotomies: Pearls and Pitfalls. Foot Ankle Clin. 2017, 22, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.H. The mechanics of the foot: I. The joints. J. Anat. 1953, 87, 345–357. [Google Scholar] [PubMed]
- Root, M.L. Planovalgus foot deformity revisited. J. Am. Podiatr. Med. Assoc. 1999, 89, 268–269. [Google Scholar] [CrossRef]
- Davis, B.; Crow, M.; Berki, V.; Ciltea, D. Shear and pressure under the first ray in neuropathic diabetic patients: Implications for support of the longitudinal arch. J. Biomech. 2017, 52, 176–178. [Google Scholar] [CrossRef]
- Brockett, C.L.; Chapman, G.J. Biomechanics of the ankle. Orthop. Trauma 2016, 30, 232–238. [Google Scholar] [CrossRef]
- Greisberg, J. Foot and ankle anatomy and biomechanics. In Core Knowledge in Orthopedics Foot and Ankle; DiGiovanni, C., Greisberg, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 6, 7, 12, 15. [Google Scholar]
- Hensl, H.; Sands, A.K. Hallux valgus in Core Knowledge. In Orthopedics Foot and Ankle; DiGiovanni, C., Greisberg, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 106–107. [Google Scholar]
- Yokozuka, M.; Okazaki, K. Characteristics of hindfoot morphology and ankle range of motion in young women with Hallux valgus. J. Foot Ankle Res. 2023, 16, 64. [Google Scholar] [CrossRef]
- Colò, G.; Fusini, F.; Zoccola, K.; Samaila, E.M.; Magnan, B. The influence of first ray instability and hindfoot valgus in developing hallux rigidus: State of art. Acta Biomed. 2023, 94 (Suppl. S2), e2023116. [Google Scholar] [CrossRef]
- Bakshi, N.; Steadman, J.; Philippi, M.; Arena, C.; Leake, R.; Saltzman, C.L.; Barg, A. Association Between Hindfoot Alignment and First Metatarsal Rotation. Foot Ankle Int. 2022, 43, 105–112. [Google Scholar] [CrossRef]
- Kohls-Gatzoulis, J.; Angel, J.; Singh, D. Tibialis posterior dysfunction as a cause of flatfeet in elderly patients. Foot 2004, 14, 207–209. [Google Scholar] [CrossRef]
- Heng, M.L.; Krishnasamy, P.; Kong, P.W. First ray mobility and posterior tibial tendon dysfunction (PTTD) in persons with flatfoot: A case control study. Foot 2018, 37, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Takeda, R.; Uchio, A.; Mizuhara, H.; Omata, Y.; Juji, T.; Tanaka, S. Associated correction of forefoot alignment with hindfoot fusion for pes planovalgus deformity. Foot Ankle Surg. 2023, 29, 280–287. [Google Scholar] [CrossRef]
- Colò, G.; Fusini, F.; Zoccola, K.; Rava, A.; Samaila, E.M.; Magnan, B. May footwear be a predisposing factor for the development of hallux rigidus? A review of recent findings. Acta Biomed. 2021, 92 (Suppl. S3), e2021010. [Google Scholar] [CrossRef]
- Biz, C.; Maso, G.; Malgarini, E.; Tagliapietra, J.; Ruggieri, P. Hypermobility of the First Ray: The Cinderella of the measurements conventionally assessed for correction of Hallux Valgus. Acta Biomed. 2020, 91, 47–59. [Google Scholar] [CrossRef]
- Walker, A.K.; Harris, T.G. The Role of First Ray Insufficiency in the Development of Metatarsalgia. Foot Ankle Clin. 2019, 24, 641–648. [Google Scholar] [CrossRef]
- D’Amico, J. Understanding the First Ray. Orthot. Biomech. 2016, 109–120. Available online: https://www.podiatrym.com/cme/CME1_916.pdf (accessed on 11 March 2025).
- Wang, C.S.; Tzeng, Y.H.; Yang, T.C.; Lin, C.C.; Chang, M.C.; Chiang, C.C. First-Ray Radiographic Changes After Flexible Adult Acquired Flatfoot Deformity Correction. Foot Ankle Int. 2022, 43, 55–65. [Google Scholar] [CrossRef]
- Colò, G.; Bignotti, B.; Costa, G.; Signori, A.; Tagliafico, A.S. Ultrasound or MRI in Evaluating Anterior Talofibular Ligament (ATFL) Injuries: Systematic Review and Meta-Analysis. Diagnostics 2023, 13, 2324. [Google Scholar] [CrossRef]
- Colò, G.; Fusini, F.; Alessio-Mazzola, M.; Samaila, E.M.; Formica, M.; Magnan, B. Interposition arthroplasty with bovine collagenous membrane for hallux rigidus: A long-term results retrospective study. Foot Ankle Surg. 2022, 28, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Kubota, M.; Kihara, T.; Suzuki, N.; Hattori, A.; Saito, M. First ray mobility in hallux rigidus, Hallux valgus, and normal feet based on weightbearing computed tomography and three-dimensional analysis: A case-control study. J. Orthop. Sci. 2024, 30, 320–324. [Google Scholar] [CrossRef]
- Wong, D.W.; Zhang, M.; Yu, J.; Leung, A.K. Corrigendum to ‘Biomechanics of first ray hypermobility: An investigation on joint force during walking using finite element analysis’. Med. Eng. Phys. 2014, 36, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Glasoe, W.M. An Operational Definition of First Ray Hypermobility. Foot Ankle Spec. 2022, 15, 494–496. [Google Scholar] [CrossRef] [PubMed]
- Myerson, M.S.; Badekas, A. Hypermobility of the first ray. Foot Ankle Clin. 2000, 5, 469–484. [Google Scholar]
- Root, M.L.; Orien, W.P.; Weed, J.H. Motion of the Joints of the Foot: The First Ray; Clinical Biomechanics Corporation: Los Angeles, CA, USA, 1977. [Google Scholar]
- Hicks, J.H. The mechanics of the foot. II. The plantar aponeurosis and the arch. J. Anat. 1954, 88, 25–30. [Google Scholar] [PubMed]
- Koutsogiannis, P.; Frane, N.; Aliyev, T.; Regala, P.; Tarazi, J.M.; Bitterman, A.D. Peroneus Longus and Peroneus Brevis: A Review on Pathology and Updated Treatments. JBJS Rev. 2022, 10, e21. [Google Scholar] [CrossRef]
- Delcogliano, M.; Marin, R.; Deabate, L.; Previtali, D.; Filardo, G.; Surace, M.F.; Candrian, C.; Gaffurini, P. Arthroscopically assisted and three-dimensionally modeled minimally invasive rim plate osteosynthesis via modified anterolateral approach for posterolateral tibial plateau fractures. Knee 2020, 27, 1093–1100. [Google Scholar] [CrossRef]
- Rush, S.M.; Christensen, J.C.; Johnson, C.H. Biomechanics of the first ray. Part II: Metatarsus primus varus as a cause of hypermobility. A three-dimensional kinematic analysis in a cadaver model. J. Foot Ankle Surg. 2000, 39, 68–77. [Google Scholar] [CrossRef]
- Grebing, B.R.; Coughlin, M.J. The effect of ankle position on the exam for first ray mobility. Foot Ankle Int. 2004, 25, 467–475. [Google Scholar] [CrossRef]
- Morton, D.J. Structural factors in static disorders of the foot. Am. J. Surg. 1930, 9, 315–326. [Google Scholar]
- Donatelli, R.A. Abnormal biomechanics. In The Biomechanics of the Foot and Ankle, 2nd ed.; Donatelli, R.A., Ed.; FA Davis Co: Philadelphia, PA, USA, 1996; pp. 34–72. [Google Scholar]
- Viladot, A. The metatarsals. In Disorders of the Foot and Ankle, 2nd ed.; Wickland, E., Ed.; WB Saunders Co: Philadelphia, PA, USA, 1991; pp. 1229–1254. [Google Scholar]
- Klaue, K.; Hansen, S.T.; Masquelet, A.C. Clinical, quantitative assessment of first tarsometatarsal mobility in the sagittal plane and its relation to Hallux valgus deformity. Foot Ankle Int. 1994, 15, 9–13. [Google Scholar] [CrossRef]
- Jahss, M.H. Disorders of the Hallux and the first ray. In Disorders of the Foot and Ankle, 2nd ed.; Wickland, E., Ed.; WB Saunders Co.: Philadelphia, PA, USA, 1991; pp. 943–946. [Google Scholar]
- Shereff, M.J. Pathophysiology, anatomy, and biomechanics of Hallux valgus. Orthopedic 1990, 13, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Kay, D.B.; Njus, G.; Parrish, W.; Theken, R. Basilar crescentic osteotomy. A three-dimensional computer simulation. Orthop. Clin. North. Am. 1989, 20, 571–582. [Google Scholar] [PubMed]
- Wanivenhaus, A.; Pretterklieber, M. First tarsometatarsal joint: Anatomical biomechanical study. Foot Ankle 1989, 9, 153–157. [Google Scholar] [CrossRef]
- Usuelli, F.G.; Maccario, C.; D’Ambrosi, R.; Surace, M.F.; Vulcano, E. Age-Related Outcome of Mobile-Bearing Total Ankle Replacement. Orthopedics 2017, 40, e567–e573. [Google Scholar] [CrossRef]
- Monestier, L.; Riva, G.; Zabetta, L.C.; Surace, M.F. Outcomes After Unstable Fractures of the Ankle: What’s New? A Systematic Review. Orthop. Rev. 2022, 14, 35688. [Google Scholar] [CrossRef]
- Kawakami, W.; Takahashi, M.; Iwamoto, Y.; Shinkoda, K. Coordination Among Shank, Rearfoot, Midfoot and Forefoot Kinematic Movement During Gait in Individuals with Hallux Valgus. J. Appl. Biomech. 2019, 35, 44–51. [Google Scholar] [CrossRef]
- Colo’, G.; Mazzola, M.A.; Pilone, G.; Dagnino, G.; Felli, L. Lateral open wedge calcaneus osteotomy with bony allograft augmentation in adult acquired flatfoot deformity. Clinical and radiological results. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 1395–1402. [Google Scholar] [CrossRef]
- Morton, D.J. The Human Foot: Its Evolution, Physiology and Functional Disorders; Columbia University Press: New York, NY, USA, 1935. [Google Scholar]
- Rao, S.; Song, J.; Kraszewski, A.; Backus, S.; Ellis, S.J.; Deland, J.T.; Hillstrom, H.J. The effect of foot structure on 1st metatarsophalangeal joint flexibility and hallucal loading. Gait Posture 2011, 34, 131–137. [Google Scholar] [CrossRef]
- Ledoux, W.R.; Shofer, J.B.; Ahroni, J.H.; Smith, D.G.; Sangeorzan, B.J.; Boyko, E.J. Biomechanical differences among pes cavus, neutrally aligned, and pes planus feet in subjects with diabetes. Foot Ankle Int. 2003, 24, 845–850. [Google Scholar] [CrossRef]
- Kirby, K.A. Methods for determination of positional variations in the subtalar joint axis. J. Am. Podiatr. Med. Assoc. 1987, 77, 228–234. [Google Scholar] [CrossRef]
- Kirby, K.A. Rotational equilibrium across the subtalar joint axis. J. Am. Podiatr. Med. Assoc. 1989, 79, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Monestier, L.; Colombo, M.; D’angelo, F.; Surace, M.F. Subtalar arthroeresis with peek endorthesis in juvanile flexible flafoot: Short-term results. Pediatr. Medica Chir. 2022, 44. [Google Scholar] [CrossRef] [PubMed]
- Durrant, M.N.; McElroy, T.; Durrant, L. First metatarsophalangeal joint motion in Homo sapiens: Theoretical association of two-axis kinematics and specific morphometrics. J. Am. Podiatr. Med. Assoc. 2012, 102, 374–389. [Google Scholar] [CrossRef] [PubMed]
- Vaggi, S.; Vitali, F.; Zanirato, A.; Quarto, E.; Colò, G.; Formica, M. Minimally invasive surgery in medial displacement calcaneal osteotomy for acquired flatfoot deformity: A systematic review of the literature. Arch. Orthop. Trauma Surg. 2024, 144, 1139–1147. [Google Scholar] [CrossRef]
- Aquino, A.; Payne, C. Function of the windlass mechanism in excessively pronated feet. J. Am. Podiatr. Med. Assoc. 2001, 91, 245–250. [Google Scholar] [CrossRef]
- Bierman, R.A.; Christensen, J.C.; Johnson, C.H. Biomechanics of the first ray. Part III. Consequences of Lapidus arthrodesis on peroneus longus function: A three-dimensional kinematic analysis in a cadaver model. J. Foot Ankle Surg. 2001, 40, 125–131. [Google Scholar] [CrossRef]
- Kohls-Gatzoulis, J.; Angel, J.C.; Singh, D.; Haddad, F.; Livingstone, J.; Berry, G. Tibialis posterior dysfunction: A common and treatable cause of adult acquired flatfoot. BMJ 2004, 329, 1328–1333. [Google Scholar] [CrossRef]
- Morgan, O.J.; Hillstrom, R.; Turner, R.; Day, J.; Thaqi, I.; Caolo, K.; Ellis, S.; Deland, J.T.; Hillstrom, H.J. Is the Planus Foot Type Associated with First Ray Hypermobility? Foot Ankle Orthop. 2022, 7, 24730114221081545. [Google Scholar] [CrossRef]
- Avino, A.; Patel, S.; Hamilton, G.A.; Ford, L.A. The effect of the Lapidus arthrodesis on the medial longitudinal arch: A radiographic review. J. Foot Ankle Surg. 2008, 47, 510–514. [Google Scholar] [CrossRef]
- Chi, T.D.; Toolan, B.C.; Sangeorzan, B.J.; Hansen, S.T., Jr. The lateral column lengthening and medial column stabilization procedures. Clin. Orthop. Relat. Res. 1999, 365, 81–90. [Google Scholar] [CrossRef]
- Mazzotti, A.; Langone, L.; Zielli, S.O.; Artioli, E.; Arceri, A.; Brognara, L.; Traina, F.; Faldini, C. Do First Ray-Related Angles Change following Subtalar Arthroereisis in Pediatric Patients? A Radiographic Study. Children 2024, 11, 760. [Google Scholar] [CrossRef] [PubMed]
- Fusini, F.; Massè, A.; Rava, A.; Zoccola, K.; Felli, L.; Colò, G. Correction to: Aetiology, diagnosis, and treatment of brachymetatarsia: A narrative review. Musculoskelet. Surg. 2022, 106, 475. [Google Scholar] [CrossRef]
- Steadman, J.; Bakshi, N.; Philippi, M.; Arena, C.; Leake, R.; Barg, A.; Saltzman, C.L. Association of Normal vs Abnormal Meary Angle with Hindfoot Malalignment and First Metatarsal Rotation: A Short Report. Foot Ankle Int. 2022, 43, 706–709. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, M.J.; Jones, C.P. Hallux valgus: Demographics, etiology, and radiographic assessment. Foot Ankle Int. 2007, 28, 759–777. [Google Scholar] [CrossRef] [PubMed]
- Eustace, S.; Byrne, J.O.; Beausang, O.; Codd, M.; Stack, J.; Stephens, M.M. Hallux valgus, first metatarsal pronation and collapse of the medial longitudinal arch--a radiological correlation. Skelet. Radiol. 1994, 23, 191–194. [Google Scholar] [CrossRef]
- Flores, D.V.; Mejía Gómez, C.; Fernández Hernando, M.; Davis, M.A.; Pathria, M.N. Adult Acquired Flatfoot Deformity: Anatomy, Biomechanics, Staging, and Imaging Findings. Radiographics 2019, 39, 1437–1460. [Google Scholar] [CrossRef]
- Tay, A.Y.W.; Goh, G.S.; Thever, Y.; Yeo, N.E.M.; Koo, K. Impact of pes planus on clinical outcomes of Hallux valgus surgery. Foot Ankle Surg. 2022, 28, 331–337. [Google Scholar] [CrossRef]
- Greisberg, J.; Hansen, S.T., Jr.; Sangeorzan, B. Deformity and degeneration in the hindfoot and midfoot joints of the adult acquired flatfoot. Foot Ankle Int. 2003, 24, 530–534. [Google Scholar] [CrossRef]
- Deland, J.T.; de Asla, R.J.; Sung, I.H.; Ernberg, L.A.; Potter, H.G. Posterior tibial tendon insufficiency: Which ligaments are involved? Foot Ankle Int. 2005, 26, 427–435. [Google Scholar] [CrossRef]
- Kogler, G.F.; Veer, F.B.; Solomonidis, S.E.; Paul, J.P. The influence of medial and lateral placement of orthotic wedges on loading of the plantar aponeurosis. J. Bone Jt. Surg. Am. 1999, 81, 1403–1413. [Google Scholar] [CrossRef]
- Colò, G.; Leigheb, M.; Surace, M.F.; Fusini, F. The efficacy of shoes modification and orthotics in Hallux valgus deformity: A comprehensive review of literature. Musculoskelet. Surg. 2024, 108, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Colò, G.; Fusini, F.; Melato, M.; De Tullio, V.; Logrieco, G.; Leigheb, M.; Surace, M.F. The effectiveness of shoe modifications and foot orthoses in conservative treatment of lesser toe deformities: A review of literature. Musculoskelet. Surg. 2024, 1–8. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Z.; Ren, Z.; Ma, T.; Jia, Z.; Fang, S.; Jin, H. Comparative Study of the Effects of Customized 3D printed insole and Prefabricated Insole on Plantar Pressure and Comfort in Patients with Symptomatic Flatfoot. Med. Sci. Monit. 2019, 25, 3510–3519. [Google Scholar] [CrossRef] [PubMed]
- Aminian, G.; Safaeepour, Z.; Farhoodi, M.; Pezeshk, A.F.; Saeedi, H.; Majddoleslam, B. The effect of prefabricated and proprioceptive foot orthoses on plantar pressure distribution in patients with flexible flatfoot during walking. Prosthet. Orthot. Int. 2013, 37, 227–232. [Google Scholar] [CrossRef]
- Miller, C.D.; Laskowski, E.R.; Suman, V.J. Effect of corrective rearfoot orthotic devices on ground reaction forces during ambulation. Mayo Clin. Proc. 1996, 71, 757–762. [Google Scholar] [CrossRef]
- Molina-García, C.; Banwell, G.; Rodríguez-Blanque, R.; Sánchez-García, J.C.; Reinoso-Cobo, A.; Cortés-Martín, J.; Ramos-Petersen, L. Efficacy of Plantar Orthoses in Paediatric Flexible Flatfoot: A Five-Year Systematic Review. Children 2023, 10, 371. [Google Scholar] [CrossRef]
- Alvarez, R.G.; Marini, A.; Schmitt, C.; Saltzman, C.L. Stage I and II posterior tibial tendon dysfunction treated by a structured nonoperative management protocol: An orthosis and exercise program. Foot Ankle Int. 2006, 27, 2–8. [Google Scholar] [CrossRef]
- Cikajlo, I.; Osrečki, K.; Burger, H. The effects of different types of ankle-foot orthoses on postural responses in individuals with walking impairments. Int. J. Rehabil. Res. 2016, 39, 313–319. [Google Scholar] [CrossRef]
- Lin, J.L.; Balbas, J.; Richardson, E.G. Results of nonsurgical treatment of stage II posterior tibial tendon dysfunction: A 7- to 10-year follow-up. Foot Ankle Int. 2008, 29, 781–786. [Google Scholar] [CrossRef]
- Fusini, F.; Girardo, M.; Aprato, A.; Massè, A.; Lorenzi, A.; Messina, D.; Colò, G. Percutaneous Cement Discoplasty in Degenerative Spinal Disease: Systematic Review of Indications, Clinical Outcomes, and Complications. World Neurosurg. 2022, 168, 219–226. [Google Scholar] [CrossRef]
- Fusini, F.; Massè, A.; Risitano, S.; Ferrera, A.; Enrietti, E.; Zoccola, K.; Bianco, G.; Zanchini, F.; Colò, G. Should we operate on all patients with COVID-19 and proximal femoral fractures? An analysis of thirty, sixty, and ninety day mortality rates based on patients’ clinical presentation and comorbidity: A multicentric study in Northern Italy. Int. Orthop. 2021, 45, 2499–2505. [Google Scholar] [CrossRef] [PubMed]
- Ratti, C.; Murena, L.; Surace, M.F.; Rolla, P.R. Clinical and ultrasound results after arthroscopic repair of the rotator cuff. Chir. Organi Mov. 2005, 90, 95–104, (In English, Italian). [Google Scholar] [PubMed]
- Guindani, N.; Eberhardt, O.; Wirth, T.; Surace, M.F.; Fernandez, F.F. Surgical dislocation for pediatric and adolescent hip deformity: Clinical and radiographical results at 3 years follow-up. Arch. Orthop. Trauma Surg. 2017, 137, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Surace, M.F.; Monestier, L.; D’Angelo, F.; Bertagnon, A. Factors Predisposing to Dislocation After Primary Total Hip Arthroplasty: A Multivariate Analysis of Risk Factors at 7 to 10 Years Follow-up. Surg. Technol. Int. 2016, 30, 274–278. [Google Scholar]
- Colò, G.; Massarini, M.; Cavagnaro, L.; Felli, L.; Ferracini, R. Exercise therapy indications in metastatic bone patients. Minerva Ortop. E Traumatol. 2020, 71, 8–22. [Google Scholar] [CrossRef]
- Kulig, K.; Reischl, S.F.; Pomrantz, A.B.; Burnfield, J.M.; Mais-Requejo, S.; Thordarson, D.B.; Smith, R.W. Nonsurgical management of posterior tibial tendon dysfunction with orthoses and resistive exercise: A randomized controlled trial. Phys. Ther. 2009, 89, 26–37. [Google Scholar] [CrossRef]
- Brijwasi, T.; Borkar, P. A comprehensive exercise program improves foot alignment in people with flexible flat foot: A randomised trial. J. Physiother. 2023, 69, 42–46. [Google Scholar] [CrossRef]
- Galán-Olleros, M.; Del Baño Barragán, L.; Figueroa, M.J.; Prato de Lima, C.H.; Fraga-Collarte, M.; Torres-Izquierdo, B.; Hosseinzadeh, P.; Martínez-Caballero, I. Outcomes of the “Calcaneo-stop” procedure for treating symptomatic flexible flatfoot in children: A systematic review and meta-analysis of 2394 feet. Foot Ankle Surg. 2024, 30, 535–545. [Google Scholar] [CrossRef]
- De Pellegrin, M.; Moharamzadeh, D. Subtalar Arthroereisis for Surgical Treatment of Flexible Flatfoot. Foot Ankle Clin. 2021, 26, 765–805. [Google Scholar] [CrossRef]
- Cates, N.K.; Mayer, A.; Tenley, J.; Wynes, J.; Tefera, E.; Steinberg, J.S.; Kim, P.J.; Weinraub, G.M. Double Versus Triple Arthrodesis Fusion Rates: A Systematic Review. J. Foot Ankle Surg. 2022, 61, 907–913. [Google Scholar] [CrossRef]
- Osman, A.E.; El-Gafary, K.A.; Khalifa, A.A.; El-Adly, W.; Fadle, A.A.; Abubeih, H. Medial displacement calcaneal osteotomy versus lateral column lengthening to treat stage II tibialis posterior tendon dysfunction, a prospective randomized controlled study. Foot 2021, 47, 101798. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.P.; Ma, X.; Garfinkel, J.; Roberts, M.; Drakos, M.; Deland, J.; Ellis, S. Subtalar Fusion for Correction of Forefoot Abduction in Stage II Adult-Acquired Flatfoot Deformity. Foot Ankle Spec. 2022, 15, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Myerson, M.S. Adult acquired flatfoot deformity: Treatment of dysfunction of the posterior tibial tendon. Instr. Course Lect. 1997, 46, 393–405. [Google Scholar] [PubMed]
- Heyes, G.; Molloy, A. Treatment of Stage 4 Flatfoot. Foot Ankle Clin. 2020, 25, 269–280. [Google Scholar] [CrossRef]
- Coetzee, J.C.; Wickum, D. The Lapidus procedure: A prospective cohort outcome study. Foot Ankle Int. 2004, 25, 526–531. [Google Scholar] [CrossRef]
- Dujela, M.D.; Langan, T.; Cottom, J.M.; DeCarbo, W.T.; McAlister, J.E.; Hyer, C.F. Lapidus Arthrodesis. Clin. Podiatr. Med. Surg. 2022, 39, 187–206. [Google Scholar] [CrossRef]
- Johnson, J.E.; Sangeorzan, B.J.; de Cesar Netto, C.; Deland, J.T.; Ellis, S.J.; Hintermann, B.; Schon, L.C.; Thordarson, D.B.; Myerson, M.S. Consensus on Indications for Medial Cuneiform Opening Wedge (Cotton) Osteotomy in the Treatment of Progressive Collapsing Foot Deformity. Foot Ankle Int. 2020, 41, 1289–1291. [Google Scholar] [CrossRef]
- Busch, A.; Wegner, A.; Haversath, M.; Brandenburger, D.; Jäger, M.; Beck, S. First ray alignment in Lapidus arthrodesis-Effect on plantar pressure distribution and the occurrence of metatarsalgia. Foot 2020, 45, 101686. [Google Scholar] [CrossRef]
- Boffeli, T.J.; Schnell, K.R. Cotton Osteotomy in Flatfoot Reconstruction: A Review of Consecutive Cases. J. Foot Ankle Surg. 2017, 56, 990–995. [Google Scholar] [CrossRef]
- Hintermann, B.; Valderrabano, V.; Kundert, H.P. Anteriore Kalkaneus-verlängerungsosteotomie und mediale Weichteilrekonstruktion zur Behandlung der schweren Tibialis posterior-Sehnendysfunktion. Technik und präliminäre Resultate [Lateral column lengthening by calcaneal osteotomy combined with soft tissue reconstruction for treatment of severe posterior tibial tendon dysfunction. Methods and preliminary results]. Orthopade 1999, 28, 760–769. (In German) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colò, G.; Fusini, F.; Marcolli, D.; Leigheb, M.; Surace, M.F. Hindfoot Valgus and First Ray Insufficiency: Is There Correlation? Surgeries 2025, 6, 26. https://doi.org/10.3390/surgeries6020026
Colò G, Fusini F, Marcolli D, Leigheb M, Surace MF. Hindfoot Valgus and First Ray Insufficiency: Is There Correlation? Surgeries. 2025; 6(2):26. https://doi.org/10.3390/surgeries6020026
Chicago/Turabian StyleColò, Gabriele, Federico Fusini, Daniele Marcolli, Massimiliano Leigheb, and Michele Francesco Surace. 2025. "Hindfoot Valgus and First Ray Insufficiency: Is There Correlation?" Surgeries 6, no. 2: 26. https://doi.org/10.3390/surgeries6020026
APA StyleColò, G., Fusini, F., Marcolli, D., Leigheb, M., & Surace, M. F. (2025). Hindfoot Valgus and First Ray Insufficiency: Is There Correlation? Surgeries, 6(2), 26. https://doi.org/10.3390/surgeries6020026