Lifecycle Analysis of Recycled Asphalt Pavements: Case Study Scenario Analyses of an Urban Highway Section
Abstract
:1. Introduction
2. Methodology
2.1. Goal and Scope
2.1.1. System Boundary
- Baseline (B): Virgin asphalt pavement section
- Alternative 1 (A1): 10% RAP in HMA wearing course
- Alternative 2 (A2): 10% RAP in HMA base and binder courses
- Alternative 3 (A3): 10% RAP in HMA base, binder and wearing courses
- Alternative 4 (A4): 15% RAP in HMA wearing course
- Alternative 5 (A5): 15% RAP in HMA base and binder courses
- Alternative 6 (A6): 15% RAP in HMA base, binder and wearing courses
- Alternative 7 (A7): 25% RAP in HMA base, and 15% RAP in HMA binder and wearing courses
- Alternative 8 (A8): Virgin WMA in asphalt base, binder and wearing courses
2.1.2. Lifecycle Inventory and Impact Assessment across All LCA Stages
3. Results and Discussion
3.1. Distribution of Baseline Environmental Impacts across Pavement Cross-Section and Road Components
3.2. Pavement Alternative Material Options with 10% RAP Content
3.3. Pavement Alternative Material Options with 15% RAP Content
3.4. 15% and 25% RAP Content Pavement Alternative Material Case and Virgin WMA Case
4. Discussion on Critical Impacts
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasan, U.; Whyte, A.; Al Jassmi, H. Critical review and methodological issues in integrated life-cycle analysis on road networks. J. Clean. Prod. 2019, 206, 541–558. [Google Scholar] [CrossRef]
- Xu, X.; Luo, Y.; Sreeram, A.; Wu, Q.; Chen, G.; Cheng, S.; Chen, Z.; Chen, X. Potential use of recycled concrete aggregate (RCA) for sustainable asphalt pavements of the future: A state-of-the-art review. J. Clean. Prod. 2022, 344, 130893. [Google Scholar] [CrossRef]
- Han, C.; Ma, T.; Xu, G.; Chen, S. A multi-factor analysis approach for recycled asphalt mixture stockpile center location. Transp. Res. Part D Transp. Environ. 2020, 86, 102463. [Google Scholar] [CrossRef]
- Biswas, W.K. Carbon footprint and embodied energy assessment of a civil works program in a residential estate of Western Australia. Int. J. Life Cycle Assess. 2014, 19, 732–744. [Google Scholar] [CrossRef]
- Yin, L.; Wan, M. Carbon Footprint Research of Landscaping Works Based On Life Cycle Analysis. In Proceedings of the 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), Lushan, China, 22–24 April 2011; pp. 1092–1095. [Google Scholar]
- Turk, J.; Mauko Pranjić, A.; Mladenovič, A.; Cotič, Z.; Jurjavčič, P. Environmental comparison of two alternative road pavement rehabilitation techniques: Cold-in-place-recycling versus traditional reconstruction. J. Clean. Prod. 2016, 121, 45–55. [Google Scholar] [CrossRef]
- Bloom, E.; Canton, A.; Ahlman, A.P.; Edil, T. Life Cycle Assessment of Highway Reconstruction: A Case Study. In Proceedings of the Transportation Research Board 96th Annual Meeting, Washington, DC, USA, 1 December 2017; p. 19. [Google Scholar]
- Batouli, M.; Bienvenu, M.; Mostafavi, A. Putting sustainability theory into roadway design practice: Implementation of LCA and LCCA analysis for pavement type selection in real world decision making. Transp. Res. Part D Transp. Environ. 2017, 52, 289–302. [Google Scholar] [CrossRef]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef]
- Reap, J.; Roman, F.; Duncan, S.; Bras, B. A survey of unresolved problems in life cycle assessment. Int. J. Life Cycle Assess. 2008, 13, 374–388. [Google Scholar] [CrossRef]
- Hasan, U. Development of a Multi-Criteria Decision-Making Framework for Sustainable Road Transport Systems: Integrating Stakeholder-Cost-Environment-Energy Lifecycle Impacts. Ph.D. Thesis, Curtin University, Perth, WA, Australia, 2019. [Google Scholar]
- Hasan, U.; Whyte, A.; Al Jassmi, H. Framework for delivering an AV-Based Mass Mobility Solution: Integrating Government-Consumer Actors And Life-Cycle Analysis Of Transportation Systems. In Proceedings of the 46th European Transport Conference, Dublin, Ireland, 10—12 October 2018; p. 18. [Google Scholar]
- Park, K.; Hwang, Y.; Seo, S.; Seo, H. Quantitative assessment of environmental impacts on life cycle of highways. J. Constr. Eng. Manag. 2003, 129, 25–31. [Google Scholar] [CrossRef]
- Birgisdottir, H.; Bhander, G.; Hauschild, M.Z.; Christensen, T.H. Life cycle assessment of disposal of residues from municipal solid waste incineration: Recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. Waste Manag. 2007, 27, S75–S84. [Google Scholar] [CrossRef]
- Oliver-Solà, J.; Josa, A.; Rieradevall, J.; Gabarrell, X. Environmental optimization of concrete sidewalks in urban areas. Int. J. Life Cycle Assess. 2009, 14, 302–312. [Google Scholar] [CrossRef]
- Huang, Y.; Bird, R.; Heidrich, O. Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. J. Clean. Prod. 2009, 17, 283–296. [Google Scholar] [CrossRef]
- Lee, J.; Edil, T.; Tinjum, J.; Benson, C. Quantitative assessment of environmental and economic benefits of recycled materials in highway construction. Transp. Res. Rec. J. Transp. Res. Board 2010, 2158, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Cass, D.; Mukherjee, A. Calculation of greenhouse gas emissions for highway construction operations by using a hybrid life-cycle assessment approach: Case study for pavement operations. J. Constr. Eng. Manag. 2011, 137, 1015–1025. [Google Scholar] [CrossRef]
- Mendoza, F.J.-M.; Oliver-Solà, J.; Gabarrell, X.; Josa, A.; Rieradevall, J. Life cycle assessment of granite application in sidewalks. Int. J. Life Cycle Assess. 2012, 17, 580–592. [Google Scholar] [CrossRef]
- Wang, T.; Lee, I.-S.; Kendall, A.; Harvey, J.; Lee, E.-B.; Kim, C. Life cycle energy consumption and GHG emission from pavement rehabilitation with different rolling resistance. J. Clean. Prod. 2012, 33, 86–96. [Google Scholar] [CrossRef]
- Yu, B.; Lu, Q. Estimation of albedo effect in pavement life cycle assessment. J. Clean. Prod. 2014, 64, 306–309. [Google Scholar] [CrossRef]
- Choi, K.; Lee, H.W.; Mao, Z.; Lavy, S.; Ryoo, B.Y. Environmental, Economic, and Social Implications of Highway Concrete Rehabilitation Alternatives. J. Constr. Eng. Manag. 2015, 142, 04015079. [Google Scholar] [CrossRef] [Green Version]
- Almeida-Costa, A.; Benta, A. Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt. J. Clean. Prod. 2016, 112, 2308–2317. [Google Scholar] [CrossRef]
- Santos, J.; Flintsch, G.; Ferreira, A. Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability. Resour. Conserv. Recycl. 2017, 116, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.; Bressi, S.; Cerezo, V.; Presti, D.L.; Dauvergne, M. Life cycle assessment of low temperature asphalt mixtures for road pavement surfaces: A comparative analysis. Resour. Conserv. Recycl. 2018, 138, 283–297. [Google Scholar] [CrossRef] [Green Version]
- Hasan, U.; Whyte, A.; Al Jassmi, H. Life cycle assessment of roadworks in United Arab Emirates: Recycled construction waste, reclaimed asphalt pavement, warm-mix asphalt and blast furnace slag use against traditional approach. J. Clean. Prod. 2020, 257, 120531. [Google Scholar] [CrossRef]
- Vandewalle, D.; Antunes, V.; Neves, J.; Freire, A.C. Assessment of eco-friendly pavement construction and maintenance using multi-recycled rap mixtures. Recycling 2020, 5, 17. [Google Scholar] [CrossRef]
- Bressi, S.; Santos, J.; Orešković, M.; Losa, M. A comparative environmental impact analysis of asphalt mixtures containing crumb rubber and reclaimed asphalt pavement using life cycle assessment. Int. J. Pavement Eng. 2021, 22, 524–538. [Google Scholar] [CrossRef]
- Lu, T.Y.; Nguyen, N.L. Warm Mix Asphalt with Reclaimed Asphalt Pavement—A Solution for Sustainable Infrastructure Development. In CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure; Springer: Berlin/Heidelberg, Germany, 2022; pp. 975–984. [Google Scholar]
- Hafez, M.; Ksaibati, K.; Atadero, R. Best practices to support and improve pavement management systems for low-volume paved roads. Int. J. Pavement Eng. 2017, 20, 592–599. [Google Scholar] [CrossRef]
- Hasan, U.; Whyte, A.; Al Jassmi, H. Life-cycle asset management in residential developments building on transport system critical attributes via a data-mining algorithm. Buildings 2018, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Butt, A.A.; Birgisson, B. Assessment of the attributes based life cycle assessment framework for road projects. Struct. Infrastruct. Eng. 2016, 12, 1177–1184. [Google Scholar] [CrossRef]
- Celauro, C.; Corriere, F.; Guerrieri, M.; Lo Casto, B.; Rizzo, A. Environmental analysis of different construction techniques and maintenance activities for a typical local road. J. Clean. Prod. 2017, 142, 3482–3489. [Google Scholar] [CrossRef]
- Whyte, A.; Laing, R. Deconstruction and reuse of building material, with specific reference to historic structures. In Proceedings of the 1st Australasia and South East Asia Conference in Structural Engineering and Construction (ASEA-SEC-1), Perth, WA, Australia, 28 November–2 December 2012; pp. 171–176. [Google Scholar]
- Prakash, G.; Suman, S.K. An intensive overview of warm mix asphalt (WMA) technologies towards sustainable pavement construction. Innov. Infrastruct. Solut. 2022, 7, 110. [Google Scholar] [CrossRef]
- Hasan, U. Experimental Study on Bentonite Stabilisation Using Construction Waste and Slag. MPhil. Thesis, Curtin University, Perth, WA, Australia, 2015. [Google Scholar]
- Maraqa, M.A.; Albuquerque, F.D.; Alzard, M.H.; Chowdhury, R.; Kamareddine, L.A.; El Zarif, J. GHG Emission Reduction Opportunities for Road Projects in the Emirate of Abu Dhabi: A Scenario Approach. Sustainability 2021, 13, 7367. [Google Scholar] [CrossRef]
- Maraqa, M.; Chowdhury, R.; Mauga, T.; Albuquerque, D.; Alzard, M.; Khan, Q.; Kamareddine, L.; Sherif, M. Assessing the Carbon Footprint of Road Projects and Related Sustainability Initiatives in Abu Dhabi; Abu Dhabi City Municipality, Department of Municipal Affairs: Abu Dhabi, United Arab Emirates, 2018; p. 146. [Google Scholar]
- Environment Agency—Abu Dhabi. Greenhouse Gas Inventory for Abu Dhabi Emirate—Inventory Results Executive Summary. 2012, 25. Available online: https://www.ead.gov.ae/-/media/Project/EAD/EAD/Documents/Resources/EAD-GHG-Executive-Summary-Report-EN-final.pdf (accessed on 21 March 2022).
- European Commission Joint Research Centre. International Reference Life Cycle Data System (ILCD) Handbook—General Guide For Life Cycle Assessment—Detailed Guidance; Springer: Berlin/Heidelberg, Germany, 2010; p. 394. [Google Scholar]
- Whyte, A. Integrated Design and Cost Management for Civil Engineers; CRC Press: New York, NY, USA, 2015; p. 447. [Google Scholar]
- Bryce, J.; Brodie, S.; Parry, T.; Lo Presti, D. A systematic assessment of road pavement sustainability through a review of rating tools. Resour. Conserv. Recycl. 2017, 120, 108–118. [Google Scholar] [CrossRef]
- Hasan, U.; Whyte, A.; Al Jassmi, H. Assessing lifecycle environmental footprint of autonomous mass-mobility for urban highways by microsimulation-modelling. SSRN Electron. J. 2021, 41. [Google Scholar] [CrossRef]
- Vidal, R.; Moliner, E.; Martínez, G.; Rubio, M.C. Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resour. Conserv. Recycl. 2013, 74, 101–114. [Google Scholar] [CrossRef]
- PRé Consultants. SimaPro 8.5.2© Manual. 2016, 80. Available online: https://support.simapro.com/articles/Manual/ (accessed on 21 March 2022).
- PRé Consultants. SimaPro Database Manual—Methods Library. 2018, 69. Available online: https://support.simapro.com/articles/Manual/ (accessed on 21 March 2022).
- Valle, O.; Qiao, Y.; Dave, E.; Mo, W. Life cycle assessment of pavements under a changing climate. In Pavement Life-Cycle Assessment; CRC Press: Boca Raton, FL, USA, 2017; pp. 251–260. [Google Scholar]
- Watson, R.; Abbassi, B.; Abu-Hamatteh, Z.S. Life cycle analysis of concrete and asphalt used in road pavements. Environ. Eng. Res. 2020, 25, 52–61. [Google Scholar]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; Schryver, A.; Struijs, J.; Zelm, R. ReCiPe 2008, PRé Consultants. Univ. Leiden Radboud Univ. RIVM Nijmegen. Den HaagNeth. VROM (Dutch Minist. Hous. Spat. Plan.Environ.) 2009, 1, 1–126. [Google Scholar]
- Huang, Y.; Spray, A.; Parry, T. Sensitivity analysis of methodological choices in road pavement LCA. Int. J. Life Cycle Assess. 2013, 18, 93–101. [Google Scholar] [CrossRef]
- Giani, M.I.; Dotelli, G.; Brandini, N.; Zampori, L. Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling. Resour. Conserv. Recycl. 2015, 104, 224–238. [Google Scholar] [CrossRef]
- ADM. Standard Specifications for Road and Bridge Construction. 1997, 652. Available online: https://jawdah.qcc.abudhabi.ae/en/Registration/QCCServices/Services/STD/ISGL/ISGL-LIST/TR-542-1.pdf (accessed on 21 March 2022).
- Giustozzi, F.; Toraldo, E.; Crispino, M. Recycled airport pavements for achieving environmental sustainability: An Italian case study. Resour. Conserv. Recycl. 2012, 68, 67–75. [Google Scholar] [CrossRef]
- Chen, T.; Ma, T.; Huang, X.; Ma, S.; Tang, F.; Wu, S. Microstructure of synthetic composite interfaces and verification of mixing order in cold-recycled asphalt emulsion mixture. J. Clean. Prod. 2020, 263, 121467. [Google Scholar] [CrossRef]
- Harvey, J.; Meijer, J.; Ozer, H.; Al-Qadi, I.L.; Saboori, A.; Kendall, A. Pavement Life Cycle Assessment Framework; United States Federal Highway Administration: Urbana, IL, USA, 2016; p. 244. [Google Scholar]
- Jacobs, M.; van den Beemten, C.; Sluer, B.W. Successful Dutch experiences with low energy asphalt concrete. In Proceedings of the 11th International Conference on Asphalt Pavements, Nagoya, Aichi, Japan, 1–6 August 2010; pp. 1459–1568. [Google Scholar]
- Zhao, S.; Huang, B.; Shu, X.; Woods, M. Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement. Constr. Build. Mater. 2013, 44, 92–100. [Google Scholar] [CrossRef]
- Dinis-Almeida, M.; Castro-Gomes, J.; Sangiorgi, C.; Zoorob, S.E.; Afonso, M.L. Performance of Warm Mix Recycled Asphalt containing up to 100% RAP. Constr. Build. Mater. 2016, 112, 1–6. [Google Scholar] [CrossRef]
- Praticò, F.G.; Vaiana, R.; Iuele, T. Permeable Wearing Courses from Recycling Reclaimed Asphalt Pavement for Low-Volume Roads. Transp. Res. Rec. J. Transp. Res. Board 2015, 2474, 65–72. [Google Scholar] [CrossRef]
- Hasan, U.; Chegenizadeh, A.; Budihardjo, M.A.; Nikraz, H. Experimental evaluation of construction waste and ground granulated blast furnace slag as alternative soil stabilisers. Geotech. Geol. Eng. 2016, 34, 1707–1722. [Google Scholar] [CrossRef]
- Bizarro, D.E.; Steinmann, Z.; Nieuwenhuijse, I.; Keijzer, E.; Hauck, M. Potential Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations: LCA Methodology, Best Available Technology, and Near-Future Reduction Potential. Sustainability 2021, 13, 1382. [Google Scholar] [CrossRef]
- Hasan, U.; Chegenizadeh, A.; Budihardjo, M.; Nikraz, H. A review of the stabilisation techniques on expansive soils. Aust. J. Basic Appl. Sci. 2015, 9, 541–548. [Google Scholar]
- Ding, X.; Chen, L.; Ma, T.; Ma, H.; Gu, L.; Chen, T.; Ma, Y. Laboratory investigation of the recycled asphalt concrete with stable crumb rubber asphalt binder. Constr. Build. Mater. 2019, 203, 552–557. [Google Scholar] [CrossRef]
- MOCCAE. United Arab Emirates State of Green Economy Report. 2016, 175. Available online: https://www.un-page.org/files/public/uae_state_of_green_economy_report_2017_0.pdf (accessed on 21 March 2022).
Researchers | Lifecycle Stages Addressed 2 | Research Outcome | Limitations |
---|---|---|---|
Park et al. [13] |
|
|
|
Birgisdottir et al. [14] |
|
|
|
Oliver-Solà et al. [15] |
|
|
|
Huang et al. [16] |
|
|
|
Lee et al. [17] |
|
|
|
Cass and Mukherjee [18] |
|
|
|
F. Mendoza et al. [19] |
|
|
|
Wang et al. [20] |
|
|
|
Yu and Lu [21] |
|
|
|
Biswas [4] |
|
|
|
Choi et al. [22] |
|
|
|
Almeida-Costa and Benta [23] |
|
|
|
Santos et al. [24] |
|
|
|
Santos et al. [25] |
|
|
|
Hasan et al. [26] |
|
|
|
Vandewalle et al. [27] |
|
|
|
Bressi et al. [28] |
|
|
|
Lu and Nguyen [29] |
|
|
|
Water | Sand | Local Silica Sand | Geotextile Fabric (Polypropylene) | 20 MPa Concrete | Gravel | Clinker | Gypsum | Limestone | |
---|---|---|---|---|---|---|---|---|---|
Earthworks backfill | 454.6 × 103 L | 19.8 × 103 m3 | 13.10 × 103 m3 | 93,650 m2 | 650 m3 | 9100 m3 | - | - | - |
Concrete works (unit: tonnes) | 22.03 × 103 L | 2090.330 | - | - | - | 2280.153 | 416.053 | 21.897 | 23.050 |
Pavement courses varied between alternatives (material unit: tonnes) | Crushed gravel | Sand | Virgin bitumen | Hydrated lime | RAP | ||||
Baseline (virgin HMA) Warm-mix asphalt case | Granular sub-base course | 448 | - | - | - | - | |||
Unbound-base course | 12,600 | - | - | - | - | ||||
4% bitumen asphalt-base course | 6177 | 2901 | 384.3 | 144.1 | - | ||||
4% bitumen asphalt binder course | 5719 | 2686 | 355.8 | 133.4 | - | ||||
4.5% bitumen asphalt wearing course | 9242 | 4353 | 650.9 | 216.9 | - | ||||
10% RAP wearing course | 4.5% bitumen asphalt wearing course | 8331 | 3920 | 585.8 | 183.7 | 1446 | |||
10% RAP asphalt base, 10% RAP binder course | 4% bitumen asphalt-base course | 5563 | 2613 | 345.9 | 122.9 | 960.7 | |||
4% bitumen asphalt binder course | 5149 | 2419 | 321.2 | 113.8 | 889.5 | ||||
10% RAP asphalt base, binder and wearing | 4% bitumen asphalt-base course | 5563 | 2613 | 345.9 | 122.9 | 960.7 | |||
4% bitumen asphalt binder course | 5149 | 2419 | 321.2 | 113.8 | 889.5 | ||||
4.5% bitumen asphalt wearing course | 8331 | 3920 | 585.8 | 183.7 | 1446 | ||||
15% RAP wearing course | 4.5% bitumen asphalt wearing course | 7868 | 3703 | 552.5 | 173.6 | 2170 | |||
15% RAP asphalt base, 15% RAP binder course | 4% bitumen asphalt-base course | 5255 | 2469 | 326.6 | 116.3 | 1441 | |||
4% bitumen asphalt binder course | 4865 | 2286 | 302.4 | 107.6 | 1334 | ||||
15% RAP asphalt base, binder and wearing | 4% bitumen asphalt-base course | 5255 | 2469 | 326.6 | 116.3 | 1441 | |||
4% bitumen asphalt binder course | 4865 | 2286 | 302.4 | 107.6 | 1334 | ||||
4.5% bitumen asphalt wearing course | 7868 | 3703 | 552.5 | 173.6 | 2170 | ||||
25% RAP asphalt base, 15% RAP binder and wearing | 4% bitumen asphalt-base course | 4640 | 2181 | 288.2 | 101.8 | 2402 | |||
4% bitumen asphalt binder course | 4865 | 2286 | 302.4 | 107.6 | 1334 | ||||
4.5% bitumen asphalt wearing course | 7868 | 3703 | 552.5 | 173.6 | 2170 |
Impact Category | Unit | Pavement Cross-Sections | Road Concrete Works |
---|---|---|---|
Global warming | kg CO2 eq | 4,228,255.96 (82%) | 916,878.77 (18%) |
Ozone depletion | kg CFC11 eq | 2.25 (93%) | 0.18 (7%) |
Ionizing radiation | kBq Co-60 eq | 166,016.81 (88%) | 23,714.65 (12%) |
O3, Human health | kg NOx eq | 16,996.54 (86%) | 2764.63 (14%) |
Particulate matter formation | kg PM2.5 eq | 8106.45 (91%) | 825.90 (9%) |
O3, Terrestrial ecosystems | kg NOx eq | 17,537.81 (86%) | 2798.68 (14%) |
Terrestrial acidification | kg SO2 eq | 21,081.85 (91%) | 2018.20 (9%) |
Freshwater eutrophication | kg P eq | 2444.88 (95%) | 118.55 (5%) |
Marine eutrophication | kg N eq | 147.97 (88%) | 20.55 (12%) |
Terrestrial ecotoxicity | kg 1,4-DCB | 49,446,163.7 (97%) | 1,595,755.89 (3%) |
Freshwater ecotoxicity | kg 1,4-DCB | 403,686.81 (98%) | 8842.74 (2%) |
Marine ecotoxicity | kg 1,4-DCB | 583,652.69 (98%) | 12,841.3981 (2%) |
Carcinogenic toxicity | kg 1,4-DCB | 328,978.064 (95%) | 17,490.87 (5%) |
Non-carcinogenic toxicity | kg 1,4-DCB | 14,000,051.7 (98%) | 277,206.83 (2%) |
Land use | m2a crop eq | 169,722.38 (91%) | 17,721.06 (9%) |
Mineral resource scarcity | kg Cu eq | 47,753.86 (92%) | 4362.81 (8%) |
Fossil resource scarcity | kg oil eq | 2,481,504.95 (94%) | 152,165.38 (6%) |
Water consumption | m3 | 173,428.03 (92%) | 14,168.98 (8%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, A.; Hasan, U.; Whyte, A.; Al Jassmi, H. Lifecycle Analysis of Recycled Asphalt Pavements: Case Study Scenario Analyses of an Urban Highway Section. CivilEng 2022, 3, 242-262. https://doi.org/10.3390/civileng3020015
Hasan A, Hasan U, Whyte A, Al Jassmi H. Lifecycle Analysis of Recycled Asphalt Pavements: Case Study Scenario Analyses of an Urban Highway Section. CivilEng. 2022; 3(2):242-262. https://doi.org/10.3390/civileng3020015
Chicago/Turabian StyleHasan, Aisha, Umair Hasan, Andrew Whyte, and Hamad Al Jassmi. 2022. "Lifecycle Analysis of Recycled Asphalt Pavements: Case Study Scenario Analyses of an Urban Highway Section" CivilEng 3, no. 2: 242-262. https://doi.org/10.3390/civileng3020015
APA StyleHasan, A., Hasan, U., Whyte, A., & Al Jassmi, H. (2022). Lifecycle Analysis of Recycled Asphalt Pavements: Case Study Scenario Analyses of an Urban Highway Section. CivilEng, 3(2), 242-262. https://doi.org/10.3390/civileng3020015