Previous Issue
Volume 5, June
 
 

CivilEng, Volume 5, Issue 3 (September 2024) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
27 pages, 20408 KiB  
Article
Experimental and FE Investigations of Backfill Cover on Large-Diameter GRP Pipes
by AbdulMuttalib I. Said, Yahya Jabbar Hussien, Mohammed Hazim Mohammed, Abbas A. Allawi, Teghreed H. Ibrahim, Ayman El-Zohairy and Ahmed M. Abdelbaset
CivilEng 2024, 5(3), 646-672; https://doi.org/10.3390/civileng5030035 - 7 Aug 2024
Viewed by 380
Abstract
This paper presents experimental investigations on buried Glass Reinforced Plastic (GRP) pipes with a diameter of 1400 mm. The tested pipes were buried in dense, gravelly sand and subjected to traffic loads to study the effects of backfill cover on pipe deflection. The [...] Read more.
This paper presents experimental investigations on buried Glass Reinforced Plastic (GRP) pipes with a diameter of 1400 mm. The tested pipes were buried in dense, gravelly sand and subjected to traffic loads to study the effects of backfill cover on pipe deflection. The experimental program included tests on three GRP pipes with backfill covers of 100 cm, 75 cm, and 50 cm. The maximum traffic loads applied to the pipe–soil system corresponded to Iraqi Truck Type 3 (AASHTO H type). Vertical deflections of the pipes were monitored during the application of these loads. The experimental results showed that, as the backfill cover increased, the maximum vertical deflection of the pipe decreased. Deflection reductions were 38.0% and 33.3% when the backfill increased from 50 cm to 100 cm and from 50 cm to 75 cm, respectively. A 500 mm compacted backfill cover was found to be sufficient to resist traffic loads, with the vertical deflection percentage remaining below the allowable limit. Additionally, the behavior of the GRP pipes under different traffic load configurations was analyzed using finite element (FE) analysis with Plaxis 3D. The model was validated using field data. The study investigated numerous variables impacting the behavior of embedded pipes, including pipe material, pipe thickness, backfill properties, backfill depth, and the properties of the soil beneath the GRP pipe. The deflections of the steel pipe were lower than those of the GRP pipe when using different thicknesses. Full article
(This article belongs to the Collection Recent Advances and Development in Civil Engineering)
Show Figures

Figure 1

17 pages, 2189 KiB  
Article
Promoting the Application of Big Data in Construction through Stakeholder Collaboration Based on a Two-Mode Network
by Yali Wang, Youxi Zhang, Hao Wang, Qinglin Meng, Yuwei Zhai and Na Dong
CivilEng 2024, 5(3), 629-645; https://doi.org/10.3390/civileng5030034 - 6 Aug 2024
Viewed by 301
Abstract
Presently, the application of big data in the construction industry encounters numerous obstacles and involves diverse stakeholders, with the intricate network of relationships between these factors and stakeholders remaining unclear. Investigating stakeholders’ management priorities and collaborative patterns can facilitate the development of BDAC. [...] Read more.
Presently, the application of big data in the construction industry encounters numerous obstacles and involves diverse stakeholders, with the intricate network of relationships between these factors and stakeholders remaining unclear. Investigating stakeholders’ management priorities and collaborative patterns can facilitate the development of BDAC. Therefore, this study employs a two-mode social network analysis to explore stakeholders’ power and attitudes toward the factors of BDAC. Firstly, the initial list of stakeholders and factors is identified based on the literature and expert interviews, followed by a questionnaire to establish stakeholder–factor relationships and construct the network. Subsequently, the adjacency matrix, centrality, core–periphery structure, and hierarchical cluster are adopted to analyze the network. The results found that (1) technical factors need to be addressed by all stakeholders due to complexity; (2) due to the low resource similarity of factors and low power similarity of stakeholders, all stakeholders should be involved in the collaboration; and (3) government, developers, and consultants, as core stakeholders, exhibit a proactive inclination towards collaborative efforts in addressing central factors, and can coordinate with peripheral stakeholders. Consequently, this study establishes a stakeholder collaboration model centered on the government–developer–consultant trio, which provides clear responsibility allocation and strategic guidance for fostering long-term, effective collaboration in BDAC. Full article
Show Figures

Figure 1

20 pages, 4078 KiB  
Article
The Second Variation of the Potential Energy and the Theory of Elastic Stability
by Mario Como
CivilEng 2024, 5(3), 609-628; https://doi.org/10.3390/civileng5030033 - 31 Jul 2024
Viewed by 253
Abstract
We remember and comment on the research scenario of the theory of elastic stability that accompanied all the course of studies, carried out with enthusiasm and passion, of Prof. Marcello Pignataro, who we still miss and to whom our affectionate memory goes. Marcello [...] Read more.
We remember and comment on the research scenario of the theory of elastic stability that accompanied all the course of studies, carried out with enthusiasm and passion, of Prof. Marcello Pignataro, who we still miss and to whom our affectionate memory goes. Marcello was in continuous contact with Professor Koiter in Delft, to study, with a new approach, the many and still open problems of the nonlinear theory of elastic stability. In those times, the entire approach used in the study of the equilibrium stability of elastic structures was in question and its basis seemed to need to be reformulated. The central theme was the definition of the stability criterion of the second variation of the potential energy and how it being definite positive could effectively imply stability. Full article
(This article belongs to the Special Issue "Stability of Structures", in Memory of Prof. Marcello Pignataro)
Show Figures

Figure 1

18 pages, 3930 KiB  
Review
The Mechanical Behavior of High-Strength Concrete-Filled Steel Tubes: A Review
by Clemente Pinto and João Fonseca
CivilEng 2024, 5(3), 591-608; https://doi.org/10.3390/civileng5030032 - 31 Jul 2024
Viewed by 251
Abstract
This review explores the mechanical behavior of high-strength concrete-filled steel tubes (CFSTs), focusing on their structural integrity and failure mechanisms. This study highlights the crucial role of the steel tube in providing passive confinement, which limits crack progression and enhances the ductility of [...] Read more.
This review explores the mechanical behavior of high-strength concrete-filled steel tubes (CFSTs), focusing on their structural integrity and failure mechanisms. This study highlights the crucial role of the steel tube in providing passive confinement, which limits crack progression and enhances the ductility of the concrete. The concept of concrete as a structural system composed of micro- and mini-pillars, derived from rock mechanics, can be a useful approach to understanding CFST behavior. The review identifies that the strength index (SI) can, in some cases, decrease with an increase in the confinement factor (ξ), particularly in high-strength and ultrahigh-strength concrete (HSC and UHSC), which seems to be different to the common understanding of confinement. The experimental results show that different crack patterns and concrete compositions significantly impact the CFST performance. For example, silica fume in concrete mixtures can reduce the strength enhancement despite increasing the unconfined compressive strength. This work advocates for a mechanistic approach to better comprehend the interaction between concrete and steel tubes, emphasizing the need for optimized concrete mixtures and improved mechanical interaction. Future research should focus on the potential of HSC and UHSC in CFST, addressing factors such as crack progression, confinement effects, and concrete–steel interaction. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

15 pages, 3939 KiB  
Article
Blast Wave Simulator for Laminated Glass Panels Experimental Evaluation
by Mahmoud T. Nawar, Ayman El-Zohairy, Alaa El-Sisi, Hani Salim and Abdelhakim A. Aldoshan
CivilEng 2024, 5(3), 576-590; https://doi.org/10.3390/civileng5030031 - 15 Jul 2024
Viewed by 496
Abstract
The study of blast loads on structures is important due to the potential of significant consequences in various scenarios. From terrorist attacks to industrial accidents, comprehending how structures respond to blast waves is critical for ensuring public safety and designing resilient structures. Studying [...] Read more.
The study of blast loads on structures is important due to the potential of significant consequences in various scenarios. From terrorist attacks to industrial accidents, comprehending how structures respond to blast waves is critical for ensuring public safety and designing resilient structures. Studying these effects typically involves two main methods: free-field tests with live explosives and shock tube tests. Although shock tube testing offers certain advantages, both approaches are costly and demand significant space. This research aims to develop a cost-effective and straightforward technique for generating stress waves that closely replicate the progressive and spatial characteristics of free-field or shock tube blast waves. This method was designed to evaluate the dynamic response of laminated glass panels. The stress wave was generated by impacting a piston on the fluid inside a tube, which was connected to a fluid chamber. This setup produced impulsive loads that were distributed across a laminated glass test panel. Moreover, it was used to simulate the shock near filed explosions for a certain part of a structure. High-speed cameras were utilized to analyze the initial velocity of flying glass fragments. The apparatus successfully produced various blast waves and impulsive profiles for different drop weight heights. The initial velocities of randomly selected flying shards ranged from 3 m/s to 4 m/s. Full article
(This article belongs to the Collection Recent Advances and Development in Civil Engineering)
Show Figures

Figure 1

17 pages, 3530 KiB  
Review
Application of Long-Period Fiber Grating Sensors in Structural Health Monitoring: A Review
by Ying Zhuo, Pengfei Ma, Pu Jiao and Xinzhe Yuan
CivilEng 2024, 5(3), 559-575; https://doi.org/10.3390/civileng5030030 - 13 Jul 2024
Viewed by 614
Abstract
Structural health monitoring (SHM) is crucial for preventing and detecting corrosion, leaks, and other risks in reinforced concrete (RC) structures, ensuring environmental safety and structural integrity. Optical fiber sensors (OFS), particularly long-period fiber gratings (LPFG), have emerged as a promising method for SHM. [...] Read more.
Structural health monitoring (SHM) is crucial for preventing and detecting corrosion, leaks, and other risks in reinforced concrete (RC) structures, ensuring environmental safety and structural integrity. Optical fiber sensors (OFS), particularly long-period fiber gratings (LPFG), have emerged as a promising method for SHM. Various LPFG sensors have been widely used in SHM due to their high sensitivity, durability, immunity to electromagnetic interference (EMI) and compact size. This review explores recent advancements in LPFG sensors and offers insights into their potential applications in SHM. Full article
(This article belongs to the Collection Recent Advances and Development in Civil Engineering)
Show Figures

Figure 1

10 pages, 13305 KiB  
Review
Sustainable and Innovative Self-Healing Concrete Technologies to Mitigate Environmental Impacts in Construction
by Vinayak Kaushal and Elayna Saeed
CivilEng 2024, 5(3), 549-558; https://doi.org/10.3390/civileng5030029 - 28 Jun 2024
Viewed by 744
Abstract
The production of concrete and the manufacturing process of cement result in a significant carbon footprint, contributing to a large portion of global emissions in structures such as buildings, bridges, roads, and tunnels. Although concrete is an ideal building material that is durable [...] Read more.
The production of concrete and the manufacturing process of cement result in a significant carbon footprint, contributing to a large portion of global emissions in structures such as buildings, bridges, roads, and tunnels. Although concrete is an ideal building material that is durable and long-lasting, it can be susceptible to micro-cracks. These micro-cracks in concrete can allow water and chlorine ions to penetrate the structure, leading to the degradation of the concrete and corrosion of the reinforcement, posing an unacceptable level of structural risk. Self-healing concrete is not a new material in the construction industry but can be characterized by the capability of concrete to repair its cracks autogenously or autonomously. Recent advancements in concrete research and technology have given us a better understanding of concrete’s healing properties. Self-healing concrete combines durability with sustainability while offsetting the high carbon output of concrete manufacturing and production and associated life-cycle costs. Technologies such as microbially induced calcite (calcium carbonate) precipitation, shape-memory polymers, encapsulation methods, hydration, and swelling agents can potentially reduce carbon emissions while enhancing resilience and longevity. This paper examines these technologies and their applications in the construction industry by comprehensively reviewing the literature and available case studies. This study concluded that there are promising advancements and innovations in concrete, particularly when improving upon its autogenous healing properties. The recommendations for future research include exploring more ways to bring the concrete industry and cement manufacturing toward net-zero carbon emissions. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop