Neutron/Gamma Radial Shielding Design of Main Vessel in a Small Modular Molten Salt Reactor
Abstract
:1. Introduction
2. Model and Methods
2.1. Model
2.2. Calculation Methods
3. Results
3.1. The Influence of Barrel Materials on Flux Distribution
3.2. The Influence of Reflector Thickness on Flux Distribution
3.3. The Influence of Boron Concentration and Distribution on Shielding Effect
3.4. DPA and He Production Rates in Scheme D/E
3.4.1. DPA in the Barrel and Vessel
3.4.2. Helium Production in Barrel and Vessel
3.4.3. DPA in Graphite
3.5. Analysis of Fuel Utilization under Different Shielding Schemes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Serp, J.; Allibert, M.; Beneš, O.; Delpech, S.; Feynberg, O.; Ghetta, V.; Heuer, D.; Holcomb, D.; Ignatiev, V.; Kloosterman, J.L.; et al. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Prog. Nucl. Energy 2014, 77, 308–319. [Google Scholar] [CrossRef]
- Bettis, E.S.; Robertson Roy, C. The Design Performance Features of a Single-Fluid Molten-Salt Breeder Reactor. Nucl. Technol. 1970, 8, 190–207. [Google Scholar] [CrossRef]
- Kang, X.; Zhu, G.; Yan, R.; Liu, Y.; Zou, Y.; Dai, Y.; Cai, X. Evaluation of 99Mo production in a small modular thorium based molten salt reactor. Prog. Nucl. Energy 2020, 124, 103337. [Google Scholar] [CrossRef]
- Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Brovchenko, M.; Ghetta, V.; Rubiolo, P. Towards the thorium fuel cycle with molten salt fast reactors. Ann. Nucl. Energy 2014, 64, 421–429. [Google Scholar] [CrossRef]
- Ignatiev, V.; Feynberg, O.; Gnidoi, I.; Merzlyakov, A.; Surenkov, A.; Uglov, V.; Zagnitko, A.; Subbotin, V.; Sannikov, I.; Toropov, A.; et al. Molten salt actinide recycler and transforming system without and with Th–U support: Fuel cycle flexibility and key material properties. Ann. Nucl. Energy 2014, 64, 408–420. [Google Scholar] [CrossRef]
- Carelli, M.; Ingersoll, D.T. Handbook of Small Modular Nuclear Reactors, 1st ed; Woodhead Publishing: Sawston, UK, 2014. [Google Scholar]
- IAEA. Advances in Small Modular Reactor Technology Developments; IAEA Advanced Reactors Information System (ARIS): Vienna, Austria, 2018; pp. 197–200. [Google Scholar]
- Devanney, J. ThorCon the Molten Salt Reactor Executive Summary; Martingale Inc.: Tavernier, FL, USA, 2015. [Google Scholar]
- Wang, Y.; Guo, W.; Zhu, G.F.; Dai, Y.; Zhong, Y.; Zou, Y.; Chen, J.G.; Cai, X.Z. A new structure design to extend graphite assembly lifespan in small modular molten salt reactors. Int. J. Energy Res. 2021, 45, 12247–12257. [Google Scholar] [CrossRef]
- Zhu, G.; Guo, W.; Kang, X.; Zou, C.; Zou, Y.; Yan, R.; Dai, Y. Neutronic effect of graphite dimensional change in a small modular molten salt reactor. Int. J. Energy Res. 2021, 45, 11976–11991. [Google Scholar] [CrossRef]
- Gao, J.; Huang, H.; Liu, J.; Liu, R.; Lei, Q.; Li, Y. Synergistic effects on microstructural evolution and hardening of the Hastelloy N alloy under subsequent He and Xe ion irradiation. J. Appl. Phys. 2018, 123, 205901. [Google Scholar] [CrossRef]
- Ma, B.M. Nuclear Reactor Materials and Applications. 1983. Available online: https://www.osti.gov/biblio/5580850 (accessed on 15 March 2021).
- Rockwell, T., III. Reactor Shielding Design Manual; United States Atomic Energy Commision: Washington, DC, USA, 1956. [Google Scholar]
- Yamaji, A.; Sako, K. Shielding Design to Obtain Compact Marine Reactor. J. Nucl. Sci. Technol. 1994, 31, 510–520. [Google Scholar] [CrossRef]
- Giménez, M.A.N.; Lopasso, E.M. Tungsten Carbide compact primary shielding for Small Medium Reactor. Ann. Nucl. Energy 2018, 116, 210–223. [Google Scholar] [CrossRef]
- Ueta, S.; Sakaba, N.; Sawa, K. Shielding technology for upper structure of HTTR. Ann. Nucl. Energy 2016, 94, 72–79. [Google Scholar] [CrossRef]
- Merk, B.; Konheiser, J. Neutron shielding studies on an advanced molten salt fast reactor design. Ann. Nucl. Energy 2014, 64, 441–448. [Google Scholar] [CrossRef]
- Zhu, G.; Zou, Y.; Yan, R.; Guo, W.; Kang, X.; Xu, T.; Yang, P.; Zhou, B. Volume Change Analysis of Primary Loop in a Small Modular Thorium-Based Molten Salt Reactor. In Proceedings of the International Conference on Nuclear Engineering, Shenzhen, China, 8–12 August 2022; Volume 86380, p. V004T04A004. [Google Scholar]
- Briesmeister, J.F. MCNP—A General Monte Carlo N-Particle Transport Code, Version 4 A; Los Alamos National Laboratory: New Mexico, LA, USA, 1993. [Google Scholar]
- Zhu, G.; Yan, R.; Dai, M.; Yu, S.; Kang, X.; Yu, X.; Cai, X.; Liu, G.; Zou, Y. Monte Carlo burnup code development based on multi-group cross section method. Prog. Nucl. Energy 2019, 110, 24–29. [Google Scholar] [CrossRef]
- Zhu, G.; Zou, Y.; Yan, R.; Tan, M.; Zou, C.; Kang, X.; Chen, J.; Guo, W.; Dai, Y. Low enriched uranium and thorium fuel utilization under once-through and offline reprocessing scenarios in small modular molten salt reactor. Int. J. Energy Res. 2019, 43, 5775–5787. [Google Scholar] [CrossRef]
- Changqing, Y.; Guifeng, Z.; Xia, S.; Yang, Z.; Xiaohan, Y. Study on the sustainability of thorium uranium fuel in Molten Salt Reactor under on-line plutonium loading model. Nucl. Tech. 2020, 43, 51–58. [Google Scholar]
- Iwamoto, Y.; Ogawa, T. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for recoil cross section spectra under neutron irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 396, 26–33. [Google Scholar] [CrossRef]
- Hashem, J.; Schneider, E.; Pryor, M.; Landsberger, S. Theoretical neutron damage calculations in industrial robotic manipulators used for non-destructive imaging applications. Prog. Nucl. Energy 2017, 94, 71–79. [Google Scholar] [CrossRef]
- Read, E.A.; de Oliveira, C.R.E. A functional method for estimating DPA tallies in Monte Carlo calculations of light water reactors. In Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Rio de Janeiro, Brazil, 8–12 May 2011. [Google Scholar]
- Harada, M.; Watanabe, N.; Konno, C.; Meigo, S.; Ikeda, Y.; Niita, K. DPA calculation for Japanese spallation neutron source. J. Nucl. Mater. 2005, 343, 197–204. [Google Scholar] [CrossRef]
- Norgett, M.J.; Robinson, M.T.; Torrens, I.M. A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 1975, 33, 50–54. [Google Scholar] [CrossRef]
- Konobeyev, A.Y.; Fischer, U.; Korovin, Y.A.; Simakov, S.P. Evaluation of effective threshold displacement energies and other data required for the calculation of advanced atomic displacement cross-sections. Nucl. Energy Technol. 2017, 3, 169–175. [Google Scholar] [CrossRef]
- Mikeska, K.R.; Bennison, S.J.; Grise, S.L. Corrosion of ceramics in aqueous hydrofluoric acid. J. Am. Ceram. Soc. 2000, 83, 1160–1164. [Google Scholar] [CrossRef]
- Rowcliffe, A.F.; Mansur, L.K.; Hoelzer, D.T.; Nanstad, R.K. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors. J. Nucl. Mater. 2009, 3921, 341–352. [Google Scholar] [CrossRef]
- Ishiyama, S.; Burchell, T.D.; Strizak, J.P.; Eto, M. The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite. J. Nucl. Mater. 1996, 230, 1–7. [Google Scholar] [CrossRef]
- Sariyer, D.; Küçer, R.; Küçer, N. Neutron shielding properties of concretes containing boron carbide and ferro–boron. Procedia-Soc. Behav. Sci. 2015, 195, 1752–1756. [Google Scholar] [CrossRef] [Green Version]
- Douthitt, C.B. Boron in graphite: Content, speciation, and significance. Chem. Geol. 1985, 53, 129–133. [Google Scholar] [CrossRef]
- Krsjak, V.; Degmova, J.; Sojak, S.; Slugen, V. Effects of displacement damage and helium production rates on the nucleation and growth of helium bubbles–Positron annihilation spectroscopy aspects. J. Nucl. Mater. 2018, 499, 38–46. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Reactor thermal power | 150 MWt |
Fuel salt | LiF-BeF2-ThF4-UF4 |
U-235 enrichment | 19.75% |
Core height of the active zone | 370 cm |
Active zone radius | 120–160 cm |
Thickness of radial reflector | 50–10 cm |
Thickness of reactor barrel | 1 cm |
Thickness of downcomer | 4 cm |
Thickness of vessel | 3 cm |
Outer radius of the stack container | 178 cm |
Scheme Mark | Reflector | Barrel |
---|---|---|
Scheme A: G (thickness)-no barrel | Graphite (G) Thickness change from 10–50 cm | Without barrel (no barrel) |
Scheme B: G (thickness)-B | Graphite (G) Thickness change from 10–50 cm | B4C (the boron is natural) (B) |
Scheme C: G (thickness)-H | Graphite (G) Thickness change from 10–50 cm | Hastelloy (H) |
Scheme D: BG (concentration, thickness)-H | Graphite+ borated graphite (BG) Total thickness: 35 cm Thickness of borated graphite:5–35 cm (10B concentration: 3–30 wt%) | Hastelloy (H) |
Scheme E: G (35 cm)-BH (concentration) | Graphite (G) Thickness: 35 cm | Borated Hastelloy (BH) 10B concentration: 3–30 wt% |
Material | Atomic Displacement Energy in NJOY Td (eV) |
---|---|
C | 31 |
Fe | 40 |
Ni | 39 |
Mo | 65 |
Cr | 40 |
W | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Zhu, G.; Zou, Y.; Yan, R.; Liu, Y.; Kang, X.; Dai, Y. Neutron/Gamma Radial Shielding Design of Main Vessel in a Small Modular Molten Salt Reactor. J. Nucl. Eng. 2023, 4, 213-227. https://doi.org/10.3390/jne4010017
Yu H, Zhu G, Zou Y, Yan R, Liu Y, Kang X, Dai Y. Neutron/Gamma Radial Shielding Design of Main Vessel in a Small Modular Molten Salt Reactor. Journal of Nuclear Engineering. 2023; 4(1):213-227. https://doi.org/10.3390/jne4010017
Chicago/Turabian StyleYu, Haiyan, Guifeng Zhu, Yang Zou, Rui Yan, Yafen Liu, Xuzhong Kang, and Ye Dai. 2023. "Neutron/Gamma Radial Shielding Design of Main Vessel in a Small Modular Molten Salt Reactor" Journal of Nuclear Engineering 4, no. 1: 213-227. https://doi.org/10.3390/jne4010017
APA StyleYu, H., Zhu, G., Zou, Y., Yan, R., Liu, Y., Kang, X., & Dai, Y. (2023). Neutron/Gamma Radial Shielding Design of Main Vessel in a Small Modular Molten Salt Reactor. Journal of Nuclear Engineering, 4(1), 213-227. https://doi.org/10.3390/jne4010017