Ex Situ LIBS Analysis of WEST Divertor Wall Tiles after C3 Campaign
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. GDOES Depth Profiles
3.2. LIBS Spectra
3.3. LIBS Depth Profiles
3.4. Detection of Trace Elements
3.5. LIBS Plasma Plume Parameters
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Girard, J.P.; Garin, P.; Taylor, N.; Uzan-Elbez, J.; Rodríguez-Rodrigo, L.; Gulden, W. ITER, safety and licensing. Fusion Eng. Des. 2007, 82, 506–510. [Google Scholar] [CrossRef]
- Lukacs, M.; Williams, L.G. Nuclear safety issues for fusion power plants. Fusion Eng. Des. 2020, 150, 111377. [Google Scholar] [CrossRef]
- Malaquias, A.; Philipps, V.; Huber, A.; Hakola, A.; Likonen, J.; Kolehmainen, J.; Tervakangas, S.; Aints, M.; Paris, P.; Laan, M.; et al. Development of ITER relevant laser techniques for deposited layer characterisation and tritium inventory. J. Nucl. Mater. 2013, 438, S936–S939. [Google Scholar] [CrossRef]
- Van Der Meiden, H.J.; Almaviva, S.; Butikova, J.; Dwivedi, V.; Gasior, P.; Gromelski, W.; Hakola, A.; Jiang, X.; Jõgi, I.; Karhunen, J.; et al. Monitoring of tritium and impurities in the first wall of fusion devices using a LIBS based diagnostic. Nucl. Fusion 2021, 61, 125001. [Google Scholar] [CrossRef]
- Semerok, A.; Grisolia, C. LIBS for tokamak plasma facing components characterisation: Perspectives on in situ tritium cartography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 720, 31–35. [Google Scholar] [CrossRef]
- Semerok, A.; L’Hermite, D.; Weulersse, J.-M.; Lacour, J.-L.; Cheymol, G.; Kempenaars, M.; Bekris, N.; Grisolia, C. Laser induced breakdown spectroscopy application in joint European torus. Spectrochim. Acta Part B 2016, 123, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Zhao, D.Y.; Sun, L.Y.; Fu, C.L.; Liu, J.M.; Li, C.; Hai, R.; Sang, C.F.; Hu, Z.H.; Sun, Z.; et al. In situ diagnosis of Li-wall conditioning and H/D co-deposition on the first wall of EAST using laser-induced breakdown spectroscopy. Plasma Phys. Control. Fusion 2018, 60, 085019. [Google Scholar] [CrossRef]
- Imran, M.; Hai, R.; Sun, L.Y.; Sattar, H.; He, Z.L.; Wu, D.; Li, C.; Wang, W.J.; Hu, Z.H.; Luo, G.N.; et al. Characterization of multi-element impurity deposited on EAST divertor tile using laser-induced breakdown spectroscopy. J. Nucl. Mater. 2019, 526, 151775. [Google Scholar] [CrossRef]
- Oelmann, J.; Hu, Z.; Li, C.; Sun, L.; Liu, J.; Ding, F.; Wang, L.; Brezinsek, S.; Ding, R.; Ding, H.; et al. Analyses of deuterium retention in tungsten and graphite first wall materials by laser-induced ablation spectroscopy on EAST. Fusion Eng. Des. 2021, 162, 112108. [Google Scholar] [CrossRef]
- Li, C.; Zhao, D.; Hu, Z.; Wu, X.; Luo, G.N.; Hu, J.; Ding, H. Characterization of deuterium retention and co-deposition of fuel with lithium on the divertor tile of EAST using laser induced breakdown spectroscopy. J. Nucl. Mater. 2015, 463, 915–918. [Google Scholar] [CrossRef]
- Li, C.; Sun, L.; Hu, Z.; Zhao, D.; Liu, J.; Gierse, N.; Nicolai, D.; Wu, D.; Hai, R.; Ding, F.; et al. An in situ diagnostic method for monitoring of fuel retention on the first wall under long-pulse operation of experimental advanced superconducting tokamak. Phys. Scr. 2020, 2020, 014069. [Google Scholar] [CrossRef]
- Zhao, D.; Li, C.; Hu, Z.; Feng, C.; Xiao, Q.; Hai, R.; Liu, P.; Sun, L.; Wu, D.; Fu, C.; et al. Remote in situ laser-induced breakdown spectroscopic approach for diagnostics of the plasma facing components on experimental advanced superconducting tokamak. Rev. Sci. Instrum. 2018, 89, 073501. [Google Scholar] [CrossRef] [PubMed]
- Karhunen, J.; Hakola, A.; Likonen, J.; Lissovski, A.; Laan, M.; Paris, P. Applicability of LIBS for in situ monitoring of deposition and retention on the ITER-like wall of JET—Comparison to SIMS. J. Nucl. Mater. 2015, 463, 931–935. [Google Scholar] [CrossRef]
- Paris, P.; Piip, K.; Hakola, A.; Laan, M.; Aints, M.; Koivuranta, S.; Likonen, J.; Lissovski, A.; Mayer, M.; Neu, R.; et al. Development of laser induced breakdown spectroscopy for studying erosion, deposition, and fuel retention in ASDEX Upgrade. Fusion Eng. Des. 2015, 98–99, 1349–1352. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Hai, R.; Ding, H.; Huber, A.; Philipps, V.; Gierse, N.; Sergienko, G. In-situ analysis of the first wall by laser-induced breakdown spectroscopy in the TEXTOR tokamak: Dependence on the magnetic field strength. J. Nucl. Mater. 2015, 463, 911–914. [Google Scholar] [CrossRef]
- Sun, L.; Wu, D.; Li, C.; Zhao, D.; Wu, J.; Hong, S.H.; Bang, E.; Hu, Z.; Ding, H. Ex-situ diagnosis of deuterium retention and carbon deposition on shaped tungsten castellated blocks exposed in KSTAR by laser-induced breakdown spectroscopy. Fusion Eng. Des. 2021, 173, 112811. [Google Scholar] [CrossRef]
- Veis, P.; Atikkuke, S.; Marin Roldan, A.; Dwivedi, V.; Veis, M.; Barton, P.; Jerab, M.; Dejarnac, R. LIBS analysis of samples from the COMPASS vacuum chamber after liquid metal experiments—Li campaign. Nucl. Mater. Energy 2020, 25, 100809. [Google Scholar] [CrossRef]
- Maurya, G.S.; Kumar, R.; Kumar, A.; Rai, A.K. Analysis of impurities on contaminated surface of the tokamak limiter using laser induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2016, 126, 17–22. [Google Scholar] [CrossRef]
- Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Lazic, V.; Laguardia, L.; Gasior, P.; Kubkowska, M. Detection by LIBS of the deuterium retained in the FTU toroidal limiter. Nucl. Mater. Energy 2019, 18, 208–211. [Google Scholar] [CrossRef]
- Almaviva, S.; Caneve, L.; Colao, F.; Lazic, V.; Maddaluno, G.; Mosetti, P.; Palucci, A.; Reale, A.; Gasior, P.; Gromelski, W.; et al. LIBS measurements inside the FTU vacuum vessel by using a robotic arm. Fusion Eng. Des. 2021, 169, 112638. [Google Scholar] [CrossRef]
- Paris, P.; Jõgi, I.; Piip, K.; Passoni, M.; Dellasega, D.; Grigore, E.; Arnoldbik, W.M.; van der Meiden, H. In-situ LIBS and NRA deuterium retention study in porous W-O and compact W coatings loaded by Magnum-PSI. Fusion Eng. Des. 2021, 168, 23–27. [Google Scholar] [CrossRef]
- Bucalossi, J.; Missirlian, M.; Moreau, P.; Samaille, F.; Tsitrone, E.; Van Houtte, D.; Batal, T.; Bourdelle, C.; Chantant, M.; Corre, Y.; et al. The WEST project: Testing ITER divertor high heat flux component technology in a steady state tokamak environment. Fusion Eng. Des. 2014, 89, 907–912. [Google Scholar] [CrossRef]
- Missirlian, M.; Bucalossi, J.; Corre, Y.; Ferlay, F.; Firdaouss, M.; Garin, P.; Grosman, A.; Guilhem, D.; Gunn, J.; Languille, P.; et al. The WEST project: Current status of the ITER-like tungsten divertor. Fusion Eng. Des. 2014, 89, 1048–1053. [Google Scholar] [CrossRef]
- Bucalossi, J.; Achard, J.; Agullo, O.; Alarcon, T.; Allegretti, L.; Ancher, H.; Antar, G.; Antusch, S.; Anzallo, V.; Arnas, C.; et al. Operating a full tungsten actively cooled tokamak: Overview of WEST first phase of operation. Nucl. Fusion 2022, 62, 042007. [Google Scholar] [CrossRef]
- Balden, M.; Mayer, M.; Bliewert, B.; Bernard, E.; Diez, M.; Firdaouss, M.; Missirlian, M.; Pégourié, B.; Richou, M.; Roche, H.; et al. Erosion and redeposition patterns on entire erosion marker tiles after exposure in the first operation phase of WEST. Phys. Scr. 2021, 96, 124020. [Google Scholar] [CrossRef]
- Martin, C.; Diez, M.; Campos, A.; Cabié, M.; Giacometti, G.; Balden, M.; Gallo, A.; Pegourié, B.; Bernard, E.; Tsitrone, E. First post-mortem analysis of deposits collected on ITER-like components in WEST after the C3 and C4 campaigns. Phys. Scr. 2021, 96, 124035. [Google Scholar] [CrossRef]
- Gaspar, J.; Corre, Y.; Rigollet, F.; Aumeunier, M.H.; Bernard, E.; Brezinsek, S.; Courtois, X.; Dejarnac, R.; Diez, M.; Dubus, L.; et al. Overview of the emissivity measurements performed in WEST: In situ and post-mortem observations. Nucl. Fusion 2022, 62, 096023. [Google Scholar] [CrossRef]
- Grigore, E.; Ruset, C.; Firdaouss, M.; Petersson, P.; Bogdanovic Radovic, I.; Siketic, Z. Helium depth profile measurements within tungsten coatings by using Glow Discharge Optical Emission Spectrometry (GDOES). Surf. Coat. Technol. 2019, 376, 21–24. [Google Scholar] [CrossRef]
- Grigore, E.; Gherendi, M.; Baiasu, F.; Firdaouss, M.; Hernandez, C.; Weckmann, A.; Petersson, P.; Hakola, A. The influence of N on the D retention within W coatings for fusion applications. Fusion Eng. Des. 2019, 146, 1959–1962. [Google Scholar] [CrossRef]
- Marín Roldán, A.; Pisarčík, M.; Veis, M.; Držík, M.; Veis, P. Calibration-free analysis of a tungsten-based target for diagnostics of relevant fusion materials comparing picosecond and nanosecond LIBS. Spectrochim. Acta Part B At. Spectrosc. 2021, 177, 106055. [Google Scholar] [CrossRef]
- Jõgi, I.; Ristkok, J.; Raud, J.; Butikova, J.; Mizohata, K.; Paris, P. Laser induced breakdown spectroscopy for hydrogen detection in molybdenum at atmospheric pressure mixtures of argon and nitrogen. Fusion Eng. Des. 2022, 179, 113131. [Google Scholar] [CrossRef]
- Shaw, G.; Bannister, M.; Biewer, T.M.; Martin, M.Z.; Meyer, F.; Wirth, B.D. The detection of He in tungsten following ion implantation by laser-induced breakdown spectroscopy. Appl. Surf. Sci. 2018, 427, 695–703. [Google Scholar] [CrossRef]
- Paris, P.; Aints, M.; Hakola, A.; Kiisk, M.; Kolehmainen, J.; Laan, M.; Likonen, J.; Ruset, C.; Sugiyama, K.; Tervakangas, S. Determination of elemental depth profiles by multi-spot averaging technique of LIBS spectra. Fusion Eng. Des. 2011, 86, 1125–1128. [Google Scholar] [CrossRef]
- Tognoni, E.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Mueller, M.; Panne, U.; Gornushkin, I. A numerical study of expected accuracy and precision in Calibration-Free Laser-Induced Breakdown Spectroscopy in the assumption of ideal analytical plasma. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 1287–1302. [Google Scholar] [CrossRef]
- Aragón, C.; Aguilera, J.A. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 893–916. [Google Scholar] [CrossRef]
- Cristoforetti, G.; De Giacomo, A.; Dell’Aglio, M.; Legnaioli, S.; Tognoni, E.; Palleschi, V.; Omenetto, N. Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 86–95. [Google Scholar] [CrossRef]
- Paris, P.; Butikova, J.; Laan, M.; Aints, M.; Hakola, A.; Piip, K.; Tufail, I.; Veis, P. Detection of deuterium retention by LIBS at different background pressures. Phys. Scr. 2017, T170, 014003. [Google Scholar] [CrossRef]
- Li, C.; Feng, C.L.; Oderji, H.Y.; Luo, G.N.; Ding, H. Bin Review of LIBS application in nuclear fusion technology. Front. Phys. 2016, 11, 114214. [Google Scholar] [CrossRef]
Line | Ei, eV | Ej, eV | giAij·107, s−1 |
---|---|---|---|
W I 354.52 nm | 3.49 | 0 | 0.96 |
W I 370.81 nm | 3.71 | 0.37 | 2.0 |
W I 373.04 nm | 5.78 | 2.46 | 10.4 |
W I 376.01 nm | 3.71 | 0.41 | 1.4 |
W I 378.08 nm | 3.64 | 0.37 | 2.1 |
W I 381.75 nm | 3.61 | 0.37 | 2.2 |
W I 386.80 nm | 3.57 | 0.37 | 4.1 |
W I 388.14 nm | 3.79 | 0.60 | 2.5 |
W I 410.27 nm | 3.79 | 0.77 | 3.4 |
W I 426.94 nm | 3.27 | 0.37 | 1.5 |
W I 430.21 nm | 3.25 | 0.37 | 2.5 |
W I 468.06 nm | 3.25 | 0.60 | 0.98 |
W I 484.38 nm | 2.97 | 0.41 | 0.95 |
W I 488.68 nm | 3.31 | 0.77 | 0.89 |
W I 500.62 nm | 3.25 | 0.77 | 0.84 |
W I 501.53 nm | 3.07 | 0.60 | 0.49 |
W I 505.32 nm | 2.66 | 0.21 | 0.57 |
W I 522.47 nm | 2.97 | 0.60 | 0.60 |
W I 551.47 nm | 2.66 | 0.41 | 0.22 |
WII 316.00 nm | 5.76 | 1.84 | 6.38 |
WII 337.61 nm | 5.55 | 1.88 | 6.03 |
WII 340.19 nm | 5.5 | 1.86 | 4.22 |
WII 346.35 nm | 5.24 | 1.67 | 2.37 |
WII 361.38 nm | 5.24 | 1.81 | 4.60 |
WII 364.14 nm | 4.48 | 1.08 | 1.98 |
WII 373.62 nm | 5.55 | 2.23 | 3.42 |
WII 385.15 nm | 4.85 | 1.63 | 1.22 |
WII 434.81 nm | 4.48 | 1.63 | 1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jõgi, I.; Paris, P.; Bernard, E.; Diez, M.; Tsitrone, E.; Hakola, A.; Likonen, J.; Vuoriheimo, T.; Grigore, E.; the WEST Team; et al. Ex Situ LIBS Analysis of WEST Divertor Wall Tiles after C3 Campaign. J. Nucl. Eng. 2023, 4, 96-110. https://doi.org/10.3390/jne4010007
Jõgi I, Paris P, Bernard E, Diez M, Tsitrone E, Hakola A, Likonen J, Vuoriheimo T, Grigore E, the WEST Team, et al. Ex Situ LIBS Analysis of WEST Divertor Wall Tiles after C3 Campaign. Journal of Nuclear Engineering. 2023; 4(1):96-110. https://doi.org/10.3390/jne4010007
Chicago/Turabian StyleJõgi, Indrek, Peeter Paris, Elodie Bernard, Mathilde Diez, Emmanuelle Tsitrone, Antti Hakola, Jari Likonen, Tomi Vuoriheimo, Eduard Grigore, the WEST Team, and et al. 2023. "Ex Situ LIBS Analysis of WEST Divertor Wall Tiles after C3 Campaign" Journal of Nuclear Engineering 4, no. 1: 96-110. https://doi.org/10.3390/jne4010007
APA StyleJõgi, I., Paris, P., Bernard, E., Diez, M., Tsitrone, E., Hakola, A., Likonen, J., Vuoriheimo, T., Grigore, E., the WEST Team, & EUROfusion WP PFC/PWIE Contributors. (2023). Ex Situ LIBS Analysis of WEST Divertor Wall Tiles after C3 Campaign. Journal of Nuclear Engineering, 4(1), 96-110. https://doi.org/10.3390/jne4010007