Radiolysis of Sub- and Supercritical Water Induced by 10B(n,α)7Li Recoil Nuclei at 300–500 °C and 25 MPa
Abstract
:1. Introduction
2. Monte Carlo Track Chemistry Simulations
3. Results and Discussion
3.1. Radiolysis of Sub- and Supercritical Water by 10B(n,α)7Li Fission Nuclei
3.2. Comparison of the Yields of Each Species Across Different Temperatures
3.2.1. The Hydroxyl Radical (•OH)
3.2.2. Molecular Hydrogen (H2)
3.2.3. The Hydrogen Atom (H•)
3.2.4. The Hydrated Electron (e−aq)
3.2.5. Hydrogen Peroxide (H2O2)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- A Technology Roadmap for Generation IV Nuclear Energy Systems; Report GIF-002-00; U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum: Washington, DC, USA, 2002; Available online: www.gen-4.org/gif/jcms/c_9260/public (accessed on 23 March 2025).
- Pioro, I.L. (Ed.) Handbook of Generation IV Nuclear Reactors, 2nd ed.; Woodhead Publishing (Elsevier): Cambridge, MA, USA, 2023. [Google Scholar]
- Guzonas, D.; Novotny, R.; Penttilä, S.; Toivonen, A.; Zheng, W. Materials and Water Chemistry for Supercritical Water-Cooled Reactors; Woodhead Publishing (Elsevier): Duxford, UK, 2018. [Google Scholar]
- Levelt Sengers, J.M.H.; Straub, J.; Watanabe, K.; Hill, P.G. Assessment of critical parameter values of H2O and D2O. J. Phys. Chem. Ref. Data 1985, 14, 193–207. [Google Scholar] [CrossRef]
- Oka, Y.; Koshizuka, S. Conceptual design study of advanced power reactor. Prog. Nucl. Energy 1998, 32, 163–177. [Google Scholar] [CrossRef]
- Schulenberg, T.; Leung, L.K.H.; Brady, D.; Oka, Y.; Yamada, K.; Bae, Y.; Willermoz, G. Supercritical water-cooled reactor (SCWR) development through GIF collaboration. In Proceedings of the International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21st Century, Vienna, Austria, 27–30 October 2009; IAEA Publication IAEA-CN-164-5S06. International Atomic Energy Agency: Vienna, Austria, 2009. [Google Scholar]
- Duffey, R. The development and future of the supercritical water reactor. CNL Nucl. Rev. 2016, 5, 181–188. [Google Scholar] [CrossRef]
- Duffey, R.; Leung, L.K.H.; Martin, D.; Sur, B.; Yetisir, M. A supercritical water-cooled small modular reactor. In Proceedings of the ASME 2011 Small Modular Reactors Symposium, Washington, DC, USA, 28–30 September 2011; Paper No. SMR2011-6548. pp. 243–250. [Google Scholar] [CrossRef]
- Advances in Small Modular Reactor Technology Developments; International Atomic Energy Agency (IAEA), Nuclear Power Technology Development Section, Division of Nuclear Power, Department of Nuclear Energy: Vienna, Austria, 2020; Available online: https://aris.iaea.org/Publications/SMR_Book_2020.pdf (accessed on 23 March 2025).
- A Transcontinental Project to Bring the Potential of Supercritical Water SMRs a Step Closer to Reality; Joint European Canadian Chinese Development of Small Modular Reactor Technology (ECC SMART): 2020. Available online: https://cordis.europa.eu/project/id/945234/results (accessed on 31 May 2025).
- Murakami, T.; Anbumozhi, V. (Eds.) Small Modular Reactor (SMR) Deployment: Advantages and Opportunities for ASEAN; Research Project Report FY2022 No. 10; Economic Research Institute for ASEAN and East Asia: Jakarta, Indonesia, 2022; Available online: https://www.eria.org/research/small-modular-reactor-smr-deployment-advantages-and-opportunities-for-asean/ (accessed on 23 March 2025).
- Spinks, J.W.T.; Woods, R.J. An Introduction to Radiation Chemistry, 3rd ed.; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Hickel, B.; Baldacchino, G. Radiolyse de l’eau. In Actions Biologique et Chimique des Rayonnements Ionisants: Une Introduction; Tilquin, B., Ed.; Éditions Nauwelaerts: Paris, France; pp. 39–53. 2002. (in French) [Google Scholar]
- Buxton, G.V. High temperature water radiolysis. In Radiation Chemistry: Present Status and Future Trends; Jonah, C.D., Rao, B.S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 145–162. [Google Scholar]
- Elliot, A.J.; Bartels, D.M. The Reaction Set, Rate Constants and g-Values for the Simulation of the Radiolysis of Light Water over the Range 20 to 350 °C Based on Information Available in 2008; Report No. 153-127160-450-001; Atomic Energy of Canada Limited: Mississauga, ON, Canada, 2009. [Google Scholar]
- Bielski, B.H.J.; Cabelli, D.E.; Arudi, R.L.; Ross, A.B. Reactivity of HO2/O2− radicals in aqueous solution. J. Phys. Chem. Ref. Data 1985, 14, 1041–1100. [Google Scholar] [CrossRef]
- Liu, G.; Landry, C.; Ghandi, K. Prediction of rate constants of important reactions in water radiation chemistry in sub- and supercritical water—Non-equilibrium reactions. Can. J. Chem. 2018, 96, 267–279. [Google Scholar] [CrossRef]
- Takagi, J.; Mincher, B.J.; Yamaguchi, M.; Katsumura, Y. Radiation chemistry in nuclear engineering. In Charged Particle and Photon Interactions with Matter: Recent Advances, Applications, and Interfaces; Hatano, Y., Katsumura, Y., Mozumder, A., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2011; pp. 959–1023. [Google Scholar]
- Macdonald, D.D.; Engelhardt, G.R.; Petrov, A. A critical review of radiolysis issues in water-cooled fission and fusion reactors: Part I, Assessment of radiolysis models. Corros. Mater. Degrad. 2022, 3, 470–535. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Engelhardt, G.R. A critical review of radiolysis issues in water-cooled fission and fusion reactors: Part II, Prediction of corrosion damage in operating reactors. Corros. Mater. Degrad. 2022, 3, 694–758. [Google Scholar] [CrossRef]
- Lin, M.; Katsumura, Y. Radiation chemistry of high temperature and supercritical water and alcohols. In Charged Particle and Photon Interactions with Matter: Recent Advances, Applications, and Interfaces; Hatano, Y., Katsumura, Y., Mozumder, A., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2011; pp. 401–424. [Google Scholar]
- Liu, G.; Du, T.; Toth, L.; Beninger, J.; Ghandi, K. Prediction of rate constants of important reactions in water radiation chemistry in sub- and supercritical water: Equilibrium reactions. CNL Nucl. Rev. 2016, 5, 345–361. [Google Scholar] [CrossRef]
- Sultana, A.; Meesungnoen, J.; Jay-Gerin, J.-P. Yields of primary species in the low-linear energy transfer radiolysis of water in the temperature range of 25–700 °C. Phys. Chem. Chem. Phys. 2020, 22, 7430–7439. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.H.; Meesungnoen, J.; Sultana, A.; Jay-Gerin, J.-P. Fast-neutron radiolysis of sub- and supercritical water at 300–600 °C and 25 MPa: A Monte Carlo track chemistry simulation study. Appl. Sci. 2024, 14, 7024. [Google Scholar] [CrossRef]
- Barth, R.F.; Soloway, A.H.; Fairchild, R.G. Boron neutron capture therapy of cancer. Cancer Res. 1990, 50, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Sauerwein, W.A.G.; Wittig, A.; Moss, R.; Nakagawa, Y. (Eds.) Neutron Capture Therapy. Principles and Applications; Springer: Berlin, Germany, 2012. [Google Scholar]
- Cohen, P. Water Coolant Technology of Power Reactors; American Nuclear Society: La Grange Park, IL, USA, 1980. [Google Scholar]
- Pastina, B.; Isabey, J.; Hickel, B. The influence of water chemistry on the radiolysis of the primary coolant water in pressurized water reactors. J. Nucl. Mater. 1999, 264, 309–318. [Google Scholar] [CrossRef]
- Islam, M.M.; Lertnaisat, P.; Meesungnoen, J.; Sanguanmith, S.; Jay-Gerin, J.-P.; Katsumura, Y.; Mukai, S.; Umehara, R.; Shimizu, Y.; Suzuki, M. Monte Carlo track chemistry simulations of the radiolysis of water induced by the recoil ions of the 10B(n,α)7Li nuclear reaction. 1. Calculation of the yields of primary species up to 350 °C. RSC Adv. 2017, 7, 10782–10790. [Google Scholar] [CrossRef]
- Zakaria, A.M.; Lertnaisat, P.; Islam, M.M.; Meesungnoen, J.; Katsumura, Y.; Jay-Gerin, J.-P. Yield of the Fricke dosimeter irradiated with the recoil α and Li ions of the 10B(n,α)7Li nuclear reaction: Effects of multiple ionization and temperature. Can. J. Chem. 2021, 99, 425–435. [Google Scholar] [CrossRef]
- Watt, D.E. Quantities for Dosimetry of Ionizing Radiations in Liquid Water; Taylor and Francis: London, UK, 1996. [Google Scholar]
- Lemmon, E.W.; Huber, M.L.; McLinden, M.O. NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP; NIST Standard Reference Database 23, Version 9.0; National Institute of Standards and Technology: Boulder, CO, USA, 2010. [Google Scholar]
- Sunaryo, G.R.; Katsumura, Y.; Ishigure, K. Radiolysis of water at elevated temperatures–III. Simulation of radiolytic products at 25 and 250 °C under the irradiation with γ-rays and fast neutrons. Radiat. Phys. Chem. 1995, 45, 703–714. [Google Scholar] [CrossRef]
- Swiatla-Wojcik, D.; Buxton, G.V. On the possible role of the reaction H• + H2O → H2 + •OH in the radiolysis of water at high temperatures. Radiat. Phys. Chem. 2005, 74, 210–219. [Google Scholar] [CrossRef]
- Alcorn, C.D.; Brodovitch, J.-C.; Percival, P.W.; Smith, M.; Ghandi, K. Kinetics of the reaction between H• and superheated water probed with muonium. Chem. Phys. 2014, 435, 29–39. [Google Scholar] [CrossRef]
- Muroya, Y.; Yamashita, S.; Lertnaisat, P.; Sanguanmith, S.; Meesungnoen, J.; Jay-Gerin, J.-P.; Katsumura, Y. Rate constant for the H• + H2O → •OH + H2 reaction at elevated temperatures measured by pulse radiolysis. Phys. Chem. Chem. Phys. 2017, 19, 30834–30841. [Google Scholar] [CrossRef]
- Butarbutar, S.L.; Sanguanmith, S.; Meesungnoen, J.; Sunaryo, G.R.; Jay-Gerin, J.-P. Calculation of the yields for the primary species formed from the radiolysis of liquid water by fast neutrons at temperatures between 25–350 °C. Radiat. Res. 2014, 181, 659–665. [Google Scholar] [CrossRef]
- Patwary, M.M.; Sanguanmith, S.; Meesungnoen, J.; Jay-Gerin, J.-P. Formation of local, transient “acid spikes” in the fast neutron radiolysis of supercritical water at 400 °C: A potential source of corrosion in supercritical water-cooled reactors? J. Nucl. Eng. Radiat. Sci. 2020, 6, 031101. [Google Scholar] [CrossRef]
- Cobut, V.; Frongillo, Y.; Patau, J.P.; Goulet, T.; Fraser, M.-J.; Jay-Gerin, J.-P. Monte Carlo simulation of fast electron and proton tracks in liquid water—I. Physical and physicochemical aspects. Radiat. Phys. Chem. 1998, 51, 229–243. [Google Scholar] [CrossRef]
- Frongillo, Y.; Goulet, T.; Fraser, M.-J.; Cobut, V.; Patau, J.P.; Jay-Gerin, J.-P. Monte Carlo simulation of fast electron and proton tracks in liquid water—II. Nonhomogeneous chemistry. Radiat. Phys. Chem. 1998, 51, 245–254. [Google Scholar] [CrossRef]
- Pimblott, S.M.; Pilling, M.J.; Green, N.J.B. Stochastic models of spur kinetics in water. Radiat. Phys. Chem. 1991, 37, 377–388. [Google Scholar] [CrossRef]
- Pimblott, S.M.; Green, N.J.B. Recent advances in the kinetics of radiolytic processes. In Research in Chemical Kinetics; Compton, R.G., Hancock, G., Eds.; Elsevier: Amsterdam, The Netherlands, 1995; Volume 3, pp. 117–174. [Google Scholar] [CrossRef]
- Tachiya, M. Theory of diffusion-controlled reactions: Formulation of the bulk reaction rate in terms of the pair probability. Radiat. Phys. Chem. 1983, 21, 167–175. [Google Scholar] [CrossRef]
- Meesungnoen, J.; Jay-Gerin, J.-P. Radiation chemistry of liquid water with heavy ions: Monte Carlo simulation studies. In Charged Particle and Photon Interactions with Matter: Recent Advances, Applications, and Interfaces; Hatano, Y., Katsumura, Y., Mozumder, A., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2011; pp. 355–400. [Google Scholar]
- Tippayamontri, T.; Sunuchakan, S.; Meesungnoen, J.; Sunaryo, G.R.; Jay-Gerin, J.-P. Fast neutron radiolysis of the ferrous sulfate (Fricke) dosimeter: Monte Carlo simulations. In Recent Research Developments in Physical Chemistry; Pandalai, S.G., Ed.; Transworld Research Network: Trivandrum, Kerala, India, 2009; Volume 10, pp. 143–211. [Google Scholar]
- Lamb, W.J.; Hoffman, G.A.; Jonas, J. Self-diffusion in compressed supercritical water. J. Chem. Phys. 1981, 74, 6875–6880. [Google Scholar] [CrossRef]
- Yoshida, K.; Wakai, C.; Matubayasi, N.; Nakahara, M. A new high-temperature multinuclear-magnetic-resonance probe and the self-diffusion of light and heavy water in sub- and supercritical conditions. J. Chem. Phys. 2005, 123, 164506. [Google Scholar] [CrossRef]
- Bandura, A.V.; Lvov, S.N. The ionization constant of water over wide ranges of temperature and density. J. Phys. Chem. Ref. Data 2006, 35, 15–30. [Google Scholar] [CrossRef]
- Ndongo Assomo, J.G.G.; Ebrahimi, S.; Jay-Gerin, J.-P.; Soldera, A. Supercritical water: A simulation study to unravel the heterogeneity of its molecular structures. Molecules 2024, 29, 2947. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, J.F.; Bierdack, J.P.; Ziegler, M.D. SRIM-The Stopping and Range of Ions in Matter; SRIM Co.: Chester, MD, USA, 2015. [Google Scholar]
- Meesungnoen, J.; Jay-Gerin, J.-P.; Filali-Mouhim, A.; Mankhetkorn, S. Low-energy electron penetration range in liquid water. Radiat. Res. 2002, 158, 657–660. [Google Scholar] [CrossRef]
- Christensen, H. Fundamental Aspects of Water Coolant Radiolysis; SKI Report 2006:16; Swedish Nuclear Power Inspectorate (SKI): Nyköping, Sweden, 2006. [Google Scholar]
- Swiatla-Wojcik, D.; Buxton, G.V. Modelling of linear energy transfer effects on track core processes in the radiolysis of water up to 300 °C. J. Chem. Soc. Faraday Trans. 1998, 94, 2135–2141. [Google Scholar] [CrossRef]
- Elliot, A.J.; Chenier, M.P.; Ouellette, D.C.; Koslowsky, V.T. Temperature dependence of g values for aqueous solutions irradiated with 23 MeV 2H+ and 157 MeV 7Li3+ ion beams. J. Phys. Chem. 1996, 100, 9014–9020. [Google Scholar] [CrossRef]
- Katsumura, Y.; Sunaryo, G.; Hiroishi, D.; Ishigure, K. Fast neutron radiolysis of water at elevated temperatures relevant to water chemistry. Prog. Nucl. Energy 1998, 32, 113–121. [Google Scholar] [CrossRef]
- LaVerne, J.A. Track effects of heavy ions in liquid water. Radiat. Res. 2000, 153, 487–496. [Google Scholar] [CrossRef]
- Takiguchi, H.; Ullberg, M.; Uchida, S. Optimization of dissolved hydrogen concentration for control of primary coolant radiolysis in pressurized water reactors. J. Nucl. Sci. Technol. 2004, 41, 601–609. [Google Scholar] [CrossRef]
- Bartels, D.M.; Henshaw, J.; Sims, H.E. Modeling the critical hydrogen concentration in the AECL test reactor. Radiat. Phys. Chem. 2013, 82, 16–24. [Google Scholar] [CrossRef]
- Kanjana, K.; Haygarth, K.S.; Wu, W.; Bartels, D.M. Laboratory studies in search of the critical hydrogen concentration. Radiat. Phys. Chem. 2013, 82, 25–34. [Google Scholar] [CrossRef]
- Cook, W.G.; Lister, D.H. Chemistry in CANDU process systems. In The Essential CANDU, A Textbook on the CANDU Nuclear Power Plant Technology; Garland, W.J., Ed.; University Network of Excellence in Nuclear Engineering (UNENE): Hamilton, ON, Canada, 2014; Volume 2, Chapter 15; 48p, Available online: https://www.unene.ca/education/candu-textbook (accessed on 23 March 2025).
- Wang, M.-Y.; Yeh, T.-K.; Liu, H.-M.; Lee, M. Predicted water chemistry in the primary coolant circuit of a supercritical water reactor. Nucl. Sci. Eng. 2013, 174, 179–187. [Google Scholar] [CrossRef]
- Elliot, A.J.; Stuart, C.R. Coolant Radiolysis Studies in the High Temperature, Fuelled U-2 Loop in the NRU Reactor; Report No. 153-127160-440-003; Atomic Energy of Canada Limited: Mississauga, ON, Canada, 2008. [Google Scholar]
- Sultana, A.; Meesungnoen, J.; Jay-Gerin, J.-P. Effect of very high dose rates on the radiolysis of supercritical water at 400 °C and 25 MPa. Can. J. Chem. 2023, 101, 284–296. [Google Scholar] [CrossRef]
- Meesungnoen, J.; Jay-Gerin, J.-P. Radiolysis of supercritical water at 400 °C: Density dependence of the rate constant for the reaction of hydronium ions with hydrated electrons. Phys. Chem. Chem. Phys. 2019, 21, 9141–9144. [Google Scholar] [CrossRef]
- Franck, J.; Rabinowitsch, E. Some remarks about free radicals and the photochemistry of solutions. Trans. Faraday Soc. 1934, 30, 120–130. [Google Scholar] [CrossRef]
- Elliot, A.J. Rate Constants and G-Values for the Simulation of the Radiolysis of Light Water over the Range 0–300 °C; Report AECL No. 11073; Atomic Energy of Canada Limited: Chalk River, ON, Canada, 1994. [Google Scholar]
- Swiatla-Wojcik, D.; Buxton, G.V. Modeling of radiation spur processes in water at temperatures up to 300 °C. J. Phys. Chem. 1995, 99, 11464–11471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhuiyan, M.S.H.; Meesungnoen, J.; Jay-Gerin, J.-P. Radiolysis of Sub- and Supercritical Water Induced by 10B(n,α)7Li Recoil Nuclei at 300–500 °C and 25 MPa. J. Nucl. Eng. 2025, 6, 17. https://doi.org/10.3390/jne6020017
Bhuiyan MSH, Meesungnoen J, Jay-Gerin J-P. Radiolysis of Sub- and Supercritical Water Induced by 10B(n,α)7Li Recoil Nuclei at 300–500 °C and 25 MPa. Journal of Nuclear Engineering. 2025; 6(2):17. https://doi.org/10.3390/jne6020017
Chicago/Turabian StyleBhuiyan, Md Shakhawat Hossen, Jintana Meesungnoen, and Jean-Paul Jay-Gerin. 2025. "Radiolysis of Sub- and Supercritical Water Induced by 10B(n,α)7Li Recoil Nuclei at 300–500 °C and 25 MPa" Journal of Nuclear Engineering 6, no. 2: 17. https://doi.org/10.3390/jne6020017
APA StyleBhuiyan, M. S. H., Meesungnoen, J., & Jay-Gerin, J.-P. (2025). Radiolysis of Sub- and Supercritical Water Induced by 10B(n,α)7Li Recoil Nuclei at 300–500 °C and 25 MPa. Journal of Nuclear Engineering, 6(2), 17. https://doi.org/10.3390/jne6020017