Robotics in Urology: No More Shadows?
Abstract
:1. Introduction
2. Robotic-Assisted Radical Prostatectomy (RARP): Towards a New Standard?
3. Robotics-Assisted Partial Nephrectomy (RAPN)
4. Robotics-Assisted Radical Nephrectomy (RARN)
5. Robotic-Assisted Pyeloplasty (RAP)
6. Robotic-Assisted Radical Cystectomy (RARC)
7. Robotic Retroperitoneal Lymph Node Dissection (Robotic RPLND)
8. Robotic-Assisted Inguinal Lymphadenectomy (RAIL)
9. Robotics-Assisted Laparoscopic Augmentation Ileocystoplasty and Mitrofanoff Appendicovesicostomy (RALIMA)
10. Non-Medical Factors
11. The “Impalpable” Factors
- (1)
- Robotic surgery implies a much shorter learning curve compared to both open and laparoscopic surgery. In Yaxley’s randomized study comparing RARP and RRP, the robotic surgeon with 200 previous robotic procedures achieved the same outcomes as the open surgeon with previous 1500 open procedures.
- (2)
- The EndoWrist articulation provides surgeons with improved ergonomics. A study comparing the musculoskeletal ergonomic parameters of open, laparoscopic and robotic prostatectomy showed that neck and/or back pain was reported by 50% and 56% of surgeons after open and laparoscopic approaches, respectively, but by only 23% of surgeons operating robotically [98]. Similarly, it has been shown that compared to its open and laparoscopic counterparts, robotic pyeloplasty improved surgeons’ quality of life and fatigue scores. Notably, an overall high risk of musculoskeletal disorders was observed among surgeons performing vesicoscopic ureteric reimplantation. However, the associated risk was significantly lower with the robotic (medium risk) versus laparoscopic approach (very high risk) [99]. In turn, this reduced human “consumption” might be useful in order to complete some important short- and long-term tasks: a greater number of procedures can be scheduled in the same session and, further surgeon longevity can be better preserved over time.
- (3)
- The optics of robotic platforms, particularly the newest da Vinci systems, provide a visual environment that differs from laparoscopic magnified 3D systems [100]. The robotic surgeon does not observe the anatomy on a screen as in 3D laparoscopy; rather, he interacts with the anatomy based on the immersive three-dimensional vision enveloping the surgeon himself inside the operative field. With or without distraction (i.e., deviation from standardized operative routine), this immersive aspect of 3D may improve performance in the operating room, offering surgeons greater levels of focus and greater acuity.
- (4)
- Robotics research is more recent than laparoscopic and above all open research. The history of radical prostatectomy is paradigmatic. First described as an open procedure by Walsh in 1982, the first series of laparoscopic prostatectomy was then presented by Schuessler 10 years later, and in 2000, the first RARP was described [101,102]. Many other surgical procedures followed a similar trend. Although some series in pioneering centers report more long-term follow-up data, the experience and the oncologic outcomes in the robotic series are inevitably more limited than with the other approaches.
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fantus, R.J.; Cohen, A.; Riedinger, C.B.; Kuchta, K.; Wang, C.H.; Yao, K.; Park, S. Facility-level analysis of robot utilization across disciplines in the National Cancer Database. J. Robot. Surg. 2019, 13, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Oberlin, D.T.; Flum, A.S.; Lai, J.D.; Meeks, J.J. The effect of minimally invasive prostatectomy on practice patterns of American urologists. Urol. Oncol. 2016, 34, 255.e1. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.A.; Bandari, J.; Pelzman, D.; Davies, B.J.; Jacobs, B.L. Diffusion and adoption of the surgical robot in urology. Transl. Androl. Urol. 2021, 10, 2151–2157. [Google Scholar] [CrossRef] [PubMed]
- Anceschi, U.; Tuderti, G.; Lugnani, F.; Biava, P.M.; Malossini, G.; Luciani, L.; Cai, T.; Marsiliani, D.; Filianoti, D.; Mattevi, D.; et al. Novel Diagnostic Biomarkers of Prostate Cancer: An Update. Curr. Med. Chem. 2019, 26, 1445–1458. [Google Scholar] [CrossRef]
- Gray, W.K.; Day, J.; Briggs, T.W.; Harrison, S. An observational study of volume–outcome effects for robot-assisted radical prostatectomy in England. BJU Int. 2021. [Google Scholar] [CrossRef] [PubMed]
- van den Bergh, R.; Gandaglia, G.; Tilki, D.; Borgmann, H.; Ost, P.; Surcel, C.; Valerio, M.; Sooriakumaran, P.; Salomon, L.; Briganti, A.; et al. Trends in radical prostatectomy risk group distribution in a European multicenter analysis of 28 572 patients: Towards tailored treatment. Eur. Urol. Focus 2019, 5, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Novara, G.; Ficarra, V.; Mocellin, S.; Ahlering, T.E.; Carroll, P.R.; Graefen, M.; Guazzoni, G.; Menon, M.; Patel, V.R.; Shariat, S.F.; et al. Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy. Eur. Urol. 2012, 62, 382–404. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.K.; Sammon, J.; Bhandari, A.; Dabaja, A.; Diaz, M.; Dusik-Fenton, S.; Satyanarayana, R.; Simone, A.; Trinh, Q.D.; Baize, B.; et al. Safety profile of robot-assisted radical prostatectomy: A standardized report of complications in 3317 patients. J. Endourol. 2014, 28, 1418–1423. [Google Scholar]
- Luciani, L.G.; Mattevi, D.; Puglisi, M.; Processali, T.; Anceschi, U.; Lauro, E.; Malossini, G. Robotic-assisted radical prostatectomy following colo-rectal surgery: A user’s guide. J. Robot. Surg. 2021, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Korets, R.; Weinberg, A.C.; Alberts, B.D.; Woldu, S.L.; Mann, M.J.; Badani, K.K. Utilization and timing of blood transfusions following open and robot-assisted radical prostatectomy. J. Endourol. 2014, 28, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Luciani, L.G.; Mattevi, D.; Mantovani, W.; Cai, T.; Chiodini, S.; Vattovani, V.; Puglisi, M.; Tiscione, D.; Anceschi, U.; Malossini, G. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: A comparative analysis of the surgical outcomes in a single regional center. Curr. Urol. 2017, 11, 36–41. [Google Scholar] [CrossRef]
- Yaxley, J.W.; Coughlin, G.D.; Chambers, S.K.; Occhipinti, S.; Samaratunga, H.; Zajdlewicz, L.; Dunglison, N.; Carter, R.; Williams, S.; Payton, D.J.; et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: Early outcomes from a randomised controlled phase 3 study. Lancet 2016, 388, 1057–1066. [Google Scholar] [CrossRef]
- Hu, J.C.; Gandaglia, G.; Karakiewicz, P.I.; Nguyen, P.L.; Trinh, Q.-D.; Shih, Y.-C.T.; Abdollah, F.; Chamie, K.; Wright, J.L.; Ganz, P.A.; et al. Comparative effectiveness of robot-assisted versus open radical prostatectomy cancer control. Eur. Urol. 2014, 66, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Sooriakumaran, P.; Srivastava, A.; Shariat, S.F.; Stricker, P.; Ahlering, T.; Eden, C.G.; Wiklund, P.N.; Sanchez-Salas, R.; Mottrie, A.; Lee, D.; et al. A multinational, multi-institutional study comparing positive surgical margin rates among 22393 open, laparoscopic, and robot-assisted radical prostatectomy patients. Eur. Urol. 2013, 66, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Winfield, H.N.; Donovan, J.F.; Godet, A.S.; Clayman, R.V. Laparoscopic partial nephrectomy: Initial case report for benign disease. J. Endourol. 1993, 7, 521–526. [Google Scholar] [CrossRef]
- MacLennan, S.; Imamura, M.; Lapitan, M.C.; Omar, M.I.; Lam, T.B.; Hilvano-Cabungcal, A.M.; Royle, P.; Stewart, F.; MacLennan, G.; MacLennan, S.; et al. Systematic review of oncological outcomes following surgical management of localised renal cancer. Eur. Urol. 2012, 61, 972–993. [Google Scholar] [CrossRef] [Green Version]
- Ljungberg, B.; Cowan, N.C.; Hanbury, D.C.; Hora, M.; Kuczyk, M.A.; Merseburger, A.S.; Patard, J.-J.; Mulders, P.F.; Sinescu, I.C. EAU guidelines on renal cell carcinoma: The 2010 update. Eur. Urol. 2010, 58, 398–406. [Google Scholar] [CrossRef]
- Pavan, N.; Derweesh, I.H.; Mir, C.M.; Novara, G.; Hampton, L.J.; Ferro, M.; Perdonà, S.; Parekh, D.J.; Porpiglia, F.; Autorino, R. Outcomes of laparoscopic and robotic partial nephrectomy for large (>4 cm) kidney tumors: Systematic review and meta-analysis. Ann. Surg. Oncol. 2017, 24, 2420–2428. [Google Scholar] [CrossRef]
- Buffi, N.M.; Saita, A.; Lughezzani, G.; Porter, J.; Dell’Oglio, P.; Amparore, D.; Fiori, C.; Denaeyer, G.; Porpiglia, F.; Mottrie, A. Robot-assisted Partial Nephrectomy for Complex (PADUA Score ≥10) tumors: Techniques and results from a multicenter experience at four high-volume centers. Eur. Urol. 2019, 77, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, W.W.; Gorin, M.A.; Pierorazio, P.M.; Allaf, M.E. Frontiers in robot-assisted retroperitoneal oncological surgery. Nat. Rev. Urol. 2017, 14, 731–741. [Google Scholar] [CrossRef]
- Richstone, L.; Montag, S.; Ost, M.; Reggio, E.; Permpongkosol, S.; Kavoussi, L.R. Laparoscopic partial nephrectomy for hilar tumors: Evaluation of short-term oncologic outcome. Urology 2008, 71, 36–40. [Google Scholar] [CrossRef]
- Shikanov, S.; Lifshitz, D.A.; Deklaj, T.; Katz, M.H.; Shalhav, A.L. Laparoscopic partial nephrectomy for technically challenging tumours. BJU Int. 2010, 106, 91–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, L.; Liu, K.; Shen, D.; Li, H.Z.; Gao, Y.; Huang, Q.; Fan, Y.; Ai, Q.; Xie, Y.; Yao, Y.; et al. Comparison of robot-assisted and laparoscopic partial nephrectomy for completely endophytic renal tumors: A high-volume center experience. J. Endourol. 2020, 34, 581–587. [Google Scholar] [CrossRef]
- Baccala, A.; Lee, U.; Hegarty, N.; Desai, M.; Kaouk, J.; Gill, I. Laparoscopic partial nephrectomy for tumour in the presence of nephrolithiasis or pelvi-ureteric junction obstruction. BJU Int. 2009, 103, 660–662. [Google Scholar] [CrossRef]
- Giberti, C.; Gallo, F.; Schenone, M.; Cortese, P. Simultaneous bilateral robotic partial nephrectomy: Case report and critical evaluation of the technique. World J. Clin. Cases 2014, 2, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Silvia, P.; Jean, D.L.R.; Brian, E.; Franco, G.; Cristian, F.; Ella, K.; Lorenzo, L.; Roberto, M.; Francesco, P.; Marco, R.; et al. Bilateral endoscopic surgery for renal stones: A systematic review of the literature. Minerva Urol. Nefrol. Ital. J. Urol. Nephrol. 2017, 69, 432–445. [Google Scholar] [CrossRef]
- Froghi, S.; Ahmed, K.; Khan, M.S.; Dasgupta, P.; Challacombe, B. Evaluation of robotic and laparoscopic partial nephrectomy for small renal tumours (T1a). BJU Int. 2013, 112, E322–E333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboumarzouk, O.M.; Stein, R.J.; Eyraud, R.; Haber, G.P.; Chlosta, P.L.; Somani, B.K.; Kaouk, J.H. Robotic versus laparoscopic partial nephrectomy: A systematic review and meta-analysis. Eur Urol. 2012, 62, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Luciani, L.G.; Chiodini, S.; Mattevi, D.; Cai, T.; Puglisi, M.; Mantovani, W.; Malossini, G. Robotic-assisted partial nephrectomy provides better operative outcomes as compared to the laparoscopic and open approaches: Results from a prospective cohort study. J. Robot. Surg. 2016, 11, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.E.; You, J.H.; Kim, D.K.; Rha, K.H.; Lee, S.H. Comparison of perioperative outcomes between robotic and laparoscopic partial nephrectomy: A systematic review and meta-analysis. Eur. Urol. 2015, 67, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Thiel, D.D.; Winfield, H.N. Robotics in urology: Past, present, and future. J. Endourol. 2008, 22, 825–830. [Google Scholar] [CrossRef]
- Gill, I.S.; Eisenberg, M.S.; Aron, M.; Berger, A.; Ukimura, O.; Patil, M.B. Vito, Campese, Duraiyah Thangathurai, Mihir M Desai “Zero ischemia” partial nephrectomy: Novel laparoscopic and robotic technique. Eur. Urol. 2011, 59, 128–134. [Google Scholar] [CrossRef]
- Mattevi, D.; Luciani, L.G.; Mantovani, W.; Cai, T.; Chiodini, S.; Vattovani, V.; Puglisi, M.; Malossini, G. Fluorescence-guided selective arterial clamping during RAPN provides better early functional outcomes based on renal scan compared to standard clamping. J. Robot. Surg. 2018, 13, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Hyams, E.S.; Kanofsky, J.A.; Stifelman, M.D. Laparoscopic Doppler technology: Applications in laparoscopic pyeloplasty and radical and partial nephrectomy. Urology 2008, 71, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Hyams, E.S.; Perlmutter, M.; Stifelman, M.D. A prospective evaluation of the utility of laparoscopic doppler technology during minimally invasive partial nephrectomy. Urology 2011, 77, 617–620. [Google Scholar] [CrossRef]
- Hekman, M.C.; Rijpkema, M.; Langenhuijsen, J.F.; Boerman, O.; Oosterwijk, E.; Mulders, P.F. Intraoperative imaging techniques to support complete tumor resection in partial nephrectomy. Eur. Urol. Focus 2017, 4, 960–968. [Google Scholar] [CrossRef]
- Klingler, D.W.; Hemstreet, G.P.; Balaji, K. Feasibility of robotic radical nephrectomy—Initial results of single-institution pilot study. Urology 2005, 65, 1086–1089. [Google Scholar] [CrossRef]
- Hemal, A.K.; Kumar, A. A prospective comparison of laparoscopic and robotic radical nephrectomy for T1-2N0M0 renal cell carcinoma. World J. Urol. 2008, 27, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Helmers, M.R.; Ball, M.W.; A Gorin, M.; Pierorazio, P.M.; E Allaf, M. Robotic versus laparoscopic radical nephrectomy: Comparative analysis and cost considerations. Can. J. Urol. 2016, 23, 8435–8440. [Google Scholar]
- Nazemi, T.; Galich, A.; Sterrett, S.; Klingler, D.; Smith, L.; Balaji, K. Radical nephrectomy performed by open, laparoscopy with or without hand-assistance or robotic methods by the same surgeon produces comparable perioperative results. Int. Braz. J. Urol. 2006, 32, 15–22. [Google Scholar] [CrossRef]
- Jeong, I.G.; Khandwala, Y.S.; Kim, J.H.; Han, D.H.; Li, S.; Wang, Y.; Chang, S.L.; Chung, B.I. Association of robotic-assisted vs. laparoscopic radical nephrectomy with perioperative outcomes and health care costs, 2003 to 2015. JAMA 2017, 318, 1561–1568. [Google Scholar] [CrossRef]
- Cacciamani, G.E.; Desai, M.M.; Gill, I.S. A Larger Prospective Study is Needed When Judging Robotic Radical Nephrectomy. Eur. Urol. 2018, 74, 123–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cheng, N.; Cacciamani, G.; Oh, P.; Lin-Brande, M.; Remulla, D.; Gill, I.S.; Hung, A.J. Objective Assessment of Robotic Surgical Technical Skill: A Systematic Review. J. Urol. 2018, 201, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Kethman, W.C.; Harris, A.H.S.; Hawn, M.T.; Wall, J. Trends and surgical outcomes of laparoscopic versus open pyloromyotomy. Surg. Endosc. 2018, 32, 3380–3385. [Google Scholar] [CrossRef]
- Mattioli, G.; Pio, L.; Disma, N.M.; Torre, M.; Sacco, O.; Pistorio, A.; Zanaboni, C.; Montobbio, G.; Barra, F.; Ramenghi, L.A. Congenital lung malformations: Shifting from open to thoracoscopic surgery. Pediatr. Neonatol. 2016, 57, 463–466. [Google Scholar] [CrossRef] [Green Version]
- Irtan, S.; Brisse, H.J.; Minard-Colin, V.; Schleiermacher, G.; Louise, G.R.; Le Cossec, C.; Elie, C.; Canale, S.; Michon, J.; Valteau-Couanet, C.; et al. Image-defined risk factor assessment of neurogenic tumors after neoadjuvant chemotherapy is useful for predicting intra-operative risk factors and the completeness of resection. Pediatr. Blood Cancer 2015, 62, 1543–1549. [Google Scholar] [CrossRef]
- Fuchs, J. The role of minimally invasive surgery in pediatric solid tumors. Pediatr. Surg. Int. 2015, 31, 213–228. [Google Scholar] [CrossRef]
- Fuchs, J.; Schafbuch, L.; Ebinger, M.; Schäfer, J.F.; Seitz, G.; Warmann, S.W. Minimally invasive surgery for pediatric tumors—Current state of the art. Front. Pediatr. 2014, 2, 48. [Google Scholar] [CrossRef] [Green Version]
- Fascetti-Leon, F.; Scotton, G.; Pio, L.; Beltrà, R.; Caione, P.; Esposito, C.; Mattioli, G.; Saxena, A.K.; Sarnacki, S.; Gamba, P. Minimally invasive resection of adrenal masses in infants and children: Results of a European multi-center survey. Surg. Endosc. 2017, 31, 4505–4512. [Google Scholar] [CrossRef]
- Irtan, S.; Brisse, H.J.; Minard-Colin, V.; Schleiermacher, G.; Canale, S.; Sarnacki, S. Minimally invasive surgery of neuroblastic tumors in children: Indications depend on anatomical location and image-defined risk factors. Pediatr. Blood Cancer 2014, 62, 257–261. [Google Scholar] [CrossRef]
- LeClair, M.-D.; De Lagausie, P.; Becmeur, F.; Varlet, F.; Thomas, C.; Valla, J.-S.; Petit, T.; Philippe-Chomette, P.; Mure, P.-Y.; Sarnacki, S.; et al. Laparoscopic resection of abdominal neuroblastoma. Ann. Surg. Oncol. 2007, 15, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Duarte, R.J.; Dénes, F.T.; Cristofani, L.M.; Giron, A.M.; Filho, V.O.; Arap, S. Laparoscopic nephrectomy forWilms tumor after chemotherapy: Initial experience. J. Urol. 2004, 172, 1438–1440. [Google Scholar] [CrossRef]
- Barber, T.; Wickiser, J.; Wilcox, D.; Baker, L. Prechemotherapy laparoscopic nephrectomy for Wilms’ tumor. J. Pediatr. Urol. 2009, 5, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Cost, N.G.; Geller, J.I.; DeFoor, W.R., Jr.; Wagner, L.M.; Noh, P.H. A roboticassisted laparoscopic approach for pediatric renal cell carcinoma allows for both nephron-sparing surgery and extended lymph node dissection. J. Pediatr. Surg. 2012, 47, 1946–1950. [Google Scholar] [CrossRef]
- Cost, N.G.; Liss, Z.J.; Bean, C.M.; Geller, J.I.; Minevich, E.A.; Noh, P.H. Prechemotherapy robotic-assisted laparoscopic radical nephrectomy for an adolescent with Wilms tumor. J. Pediatr. Hematol. Oncol. 2015, 37, e125–e127. [Google Scholar] [CrossRef]
- Masieri, L.; Sforza, S.; Grosso, A.; Valastro, F.; Tellini, R.; Cini, C.; Landi, L.; Taverna, M.; Elia, A.; Mantovani, A.; et al. Robot-assisted laparoscopic pyeloplasty in children: A systematic review. Minerva Urol. Nefrol. 2020, 72, 673–690. [Google Scholar] [CrossRef]
- Braga, L.H.P.; Pace, K.; DeMaria, K.; Armando, J.L. Systematic review and meta-analysis of robotic-assisted versus conventional laparoscopic pyeloplasty for patients with ureteropelvic junction obstruction: Effect on operative time, length of hospital stay, postoperative complications, and success rate. Eur. Urol. 2009, 56, 848–858. [Google Scholar] [CrossRef]
- Taktak, S.; Llewellyn, O.; Aboelsoud, M.; Hajibandeh, S.; Hajibandeh, S. Robot-assisted laparoscopic pyeloplasty versus laparoscopic pyeloplasty for pelvi-ureteric junction obstruction in the paediatric population: A systematic review and meta-analysis. Ther. Adv. Urol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Rasool, S.; Singh, M.; Jain, S.; Chaddha, S.; Tyagi, V.; Pahwa, M.; Pandey, H. Comparison of open, laparoscopic and robot-assisted pyeloplasty for pelviureteric junction obstruction in adult patients. J. Robot. Surg. 2019, 14, 325–329. [Google Scholar] [CrossRef] [PubMed]
- van Hemelrijck, M.; Thorstenson, A.; Smith, P.; Jan, A.; Olof, A. Risk of in-hospital complications after radical cystectomy for urinary bladder carcinoma: Population-based follow-up study of 7608 patients. BJU Int. 2013, 112, 1113–1120. [Google Scholar] [CrossRef]
- Shabsigh, A.; Korets, R.; Vora, K.C.; Brooks, C.M.; Cronin, A.M.; Savage, C.; Raj, G.; Bochner, B.; Dalbagni, G.; Herr, H.W.; et al. Defining early morbidity of radical cystectomy for patients with bladder cancer using a standardized reporting methodology. Eur. Urol. 2009, 55, 164–176. [Google Scholar] [CrossRef]
- Tan, W.S.; Lamb, B.; Tan, M.-Y.; Ahmad, I.; Sridhar, A.; Nathan, S.; Hines, J.; Shaw, G.; Briggs, T.P.; Kelly, J.D. In-depth critical analysis of complications following robot-assisted radical cystectomy with intracorporeal urinary diversion. Eur. Urol. Focus 2017, 3, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Witjes, J.A.; Lebret, T.; Compérat, E.M.; Cowan, N.C.; De Santis, M.; Bruins, H.M.; Hernández, V.; Espinos, E.L.; Dunn, J.; Rouanne, M.; et al. Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur. Urol. 2016, 71, 462–475. [Google Scholar] [CrossRef]
- Leow, J.J.; Reese, S.W.; Jiang, W.; Lipsitz, S.R.; Bellmunt, J.; Trinh, Q.-D.; Chung, B.I.; Kibel, A.S.; Chang, S.L. Propensity-matched comparison of morbidity and costs of open and robot-assisted radical cystectomies: A contemporary population-based analysis in the United States. Eur. Urol. 2014, 66, 569–576. [Google Scholar] [CrossRef]
- Parsons, J.K.; Palazzi, K.; Chang, D.; Stroup, S.P. Patient safety and the diffusion of surgical innovations: A national analysis of laparoscopic partial nephrectomy. Surg. Endosc. 2012, 27, 1674–1680. [Google Scholar] [CrossRef]
- Wilson, T.G.; Guru, K.; Rosen, R.C.; Wiklund, P.; Annerstedt, M.; Bochner, B.; Chan, K.G.; Montorsi, F.; Mottrie, A.; Murphy, D.; et al. Best practices in robot-assisted radical cystectomy and urinary reconstruction: Recommendations of the Pasadena Consensus Panel. Eur. Urol. 2015, 67, 363–375. [Google Scholar] [CrossRef]
- Tan, W.S.; Sridhar, A.; Ellis, G.; Lamb, B.; Goldstraw, M.; Nathan, S.; Hines, J.; Cathcart, P.; Briggs, T.; Kelly, J. Analysis of open and intracorporeal robotic assisted radical cystectomy shows no significant difference in recurrence patterns and oncological outcomes. Urol. Oncol. Semin. Orig. Investig. 2016, 34, 257.e1–257.e9. [Google Scholar] [CrossRef]
- Bochner, B.H.; Dalbagni, G.; Sjoberg, D.D.; Silberstein, J.; Paz, G.E.K.; Donat, S.; Coleman, J.; Mathew, S.; Vickers, A.; Schnorr, G.C.; et al. Comparing open radical cystectomy and robot-assisted laparoscopic radical cystectomy: A randomized clinical trial. Eur. Urol. 2014, 67, 1042–1050. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Gan, C.; Ahmed, K.; Ismail, A.F.; Watkins, J.; Summers, J.A.; Peacock, J.L.; Rimington, P.; Dasgupta, P. A single-centre early phase randomised controlled three-arm trial of open, robotic, and laparoscopic radical cystectomy (CORAL). Eur. Urol. 2016, 69, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Nix, J.; Smith, A.; Kurpad, R.; Nielsen, M.E.; Wallen, E.M.; Pruthi, R.S. Prospective randomized controlled trial of robotic versus open radical cystectomy for bladder cancer: Perioperative and pathologic results. Eur. Urol. 2010, 57, 196–201. [Google Scholar] [CrossRef]
- Parekh, D.J.; Reis, I.M.; Castle, E.P.; Gonzalgo, M.L.; E Woods, M.; Svatek, R.S.; Weizer, A.Z.; Konety, B.R.; Tollefson, M.; Krupski, T.L.; et al. Robot-assisted radical cystectomy versus open radical cystectomy in patients with bladder cancer (RAZOR): An open-label, randomised, phase 3, non-inferiority trial. Lancet 2018, 391, 2525–2536. [Google Scholar] [CrossRef]
- Guru, K.; Seixas-Mikelus, S.A.; Hussain, A.; Blumenfeld, A.J.; Nyquist, J.; Chandrasekhar, R.; Wilding, G.E. Robot-assisted intracorporeal ileal conduit: Marionette technique and initial experience at roswell park cancer institute. Urology 2010, 76, 866–871. [Google Scholar] [CrossRef]
- Hayn, M.H.; Hussain, A.; Mansour, A.M.; Andrews, P.E.; Carpentier, P.; Castle, E.; Dasgupta, P.; Rimington, P.; Thomas, R.; Khan, S.; et al. The learning curve of robot-assisted radical cystectomy: Results from the international robotic cystectomy consortium. Eur. Urol. 2010, 58, 197–202. [Google Scholar] [CrossRef]
- Ahmed, K.; Khan, S.A.; Hayn, M.H.; Agarwal, P.; Badani, K.K.; Balbay, M.D.; Castle, E.P.; Dasgupta, P.; Ghavamian, R.; Guru, K.A.; et al. Analysis of intracorporeal compared with extracorporeal urinary diversion after robot-assisted radical cystectomy: Results from the International Robotic Cystectomy Consortium. Eur. Urol. 2013, 65, 340–347. [Google Scholar] [CrossRef]
- Collins, J.W.; Tyritzis, S.; Nyberg, T.; Schumacher, M.C.; Laurin, O.; Adding, C.; Jonsson, M.; Khazaeli, D.; Steineck, G.; Wiklund, P.; et al. Robot-assisted radical cystectomy (RARC) with intracorporeal neobladder—What is the effect of the learning curve on outcomes? BJU Int. 2013, 113, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Lenfant, L.; Verhoest, G.; Campi, R.; Parra, J.; Graffeille, V.; Masson-Lecomte, A.; Vordos, D.; De La Taille, A.; Roumiguie, M.; LeSourd, M.; et al. Perioperative outcomes and complications of intracorporeal vs extracorporeal urinary diversion after robot-assisted radical cystectomy for bladder cancer: A real-life, multi-institutional french study. World J. Urol. 2018, 36, 1711–1718. [Google Scholar] [CrossRef]
- Azzouni, F.S.; Din, R.; Rehman, S.; Khan, A.; Shi, Y.; Stegemann, A.; Sharif, M.; Wilding, G.E.; Guru, K.A. The first 100 consecutive, robot-assisted, intracorporeal ileal conduits: Evolution of technique and 90-day outcomes. Eur. Urol. 2013, 63, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.G.; Ko, Y.H.; Jang, H.A.; Kim, J.; Kim, S.H.; Cheon, J.H.; Kang, S.H. Initial experience of robot-assisted radical cystectomy with total intracorporeal urinary diversion: Comparison with extracorporeal method. J. Laparoendosc. Adv. Surg. Tech. 2012, 22, 456–462. [Google Scholar] [CrossRef]
- Pruthi, R.S.; Nix, J.; McRackan, D.; Hickerson, A.; Nielsen, M.E.; Raynor, M.; Wallen, E.M. Robotic-assisted laparoscopic intracorporeal urinary diversion. Eur. Urol. 2010, 57, 1013–1021. [Google Scholar] [CrossRef]
- Goh, A.C.; Gill, I.S.; Lee, D.J.; de Castro Abreu, A.L.; Fairey, A.S.; Leslie, S.; Berger, A.K.; Daneshmand, S.; Sotelo, R.; Gill, K.S.; et al. Robotic intracorporeal orthotopic ileal neobladder: Replicating open surgical principles. Eur. Urol. 2012, 62, 891–901. [Google Scholar] [CrossRef]
- Novara, G.; Catto, J.; Wilson, T.; Annerstedt, M.; Chan, K.; Murphy, D.G.; Motttrie, A.; Peabody, J.O.; Skinner, E.C.; Wiklund, P.N.; et al. Systematic review and cumulative analysis of perioperative outcomes and complications after robot-assisted radical cystectomy. Eur. Urol. 2015, 67, 376–401. [Google Scholar] [CrossRef]
- Tan, T.W.; Nair, R.; Saad, S.; Thurairaja, R.; Khan, M.S. Safe transition from extracorporeal to intracorporeal urinary diversion following robot-assisted cystectomy: A recipe for reducing operative time, blood loss and complication rates. World J. Urol. 2018, 37, 367–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canda, A.E.; Atmaca, A.F.; Altinova, S.; Akbulut, Z.; Balbay, M.D. Robot-assisted nerve-sparing radical cystectomy with bilateral extended pelvic lymph node dissection (PLND) and intracorporeal urinary diversion for bladder cancer: Initial experience in 27 cases. BJU Int. 2011, 110, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Rocco, B.; Luciani, L.G.; Collins, J.; Sanchez-Salas, R.; Adding, C.; Mattevi, D.; Hosseini, A.; Wiklund, P. Posterior reconstruction during robotic-assisted radical cystectomy with intracorporeal orthotopic ileal neobladder: Description and outcomes of a simple step. J. Robot. Surg. 2020, 15, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.A.; May, P.R.; Jing, Z.; Ahmed, Y.E.; Wijburg, C.J.; Canda, A.E.; Dasgupta, P.; Khan, M.S.; Menon, M.; Peabody, J.O.; et al. Outcomes of intracorporeal urinary diversion after robot-assisted radical cystectomy: Results from the international robotic cystectomy consortium. J. Urol. 2017, 199, 1302–1311. [Google Scholar] [CrossRef]
- Parekh, D.J.; Messer, J.; Fitzgerald, J.; Ercole, B.; Svatek, R. Perioperative outcomes and oncologic efficacy from a pilot prospective randomized clinical trial of open versus robotic assisted radical cystectomy. J. Urol. 2013, 189, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Sathianathen, N.J.; Kalapara, A.; Frydenberg, M.; Lawrentschuk, N.; Weight, C.; Parekh, D.; Konety, B.R. Robotic assisted radical cystectomy vs open radical cystectomy: Systematic review and meta-analysis. J. Urol. 2018, 201, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.-Q.; Zhao, Z.; Liang, Y.; Liao, G. Robotic-assisted versus open radical cystectomy in bladder cancer: A meta-analysis of four randomized controlled trails. Int. J. Med. Robot. Comput. Assist. Surg. 2017, 14, e1867. [Google Scholar] [CrossRef]
- Ray, S.; Phillip, M.; Pierorazio, P.M.; Allaf, M.E. Primary and post-chemotherapy robotic retroperitoneal lymph node dissection for testicular cancer: A review. Transl. Androl. Urol. 2020, 9, 949–958. [Google Scholar] [CrossRef]
- Cary, C.; Masterson, T.A.; Bihrle, R.; Foster, R.S. Contemporary trends in postchemotherapy retroperitoneal lymph node dissection: Additional procedures and perioperative complications. Urol. Oncol. Semin. Orig. Investig. 2015, 33, 389.e15–389.e21. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.J.; Betoni Guglielmetti, G.; Orvieto, M.; Seetharam Bhat, K.R.; Patel, V.R.; Coelho, R.F. Robot-assisted endoscopic inguinal lymphadenectomy: A review of current outcomes. As. J. Urol. 2021, 8, 20–26. [Google Scholar] [CrossRef]
- Peters, C.A. Laparoscopy in pediatric urology. Curr. Opin. Urol. 2004, 14, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Passerotti, C.C.; Penna, F.J.; Retik, A.B.; Peters, C.A. Robotic assisted laparoscopic mitrofanoff appendicovesicostomy: Preliminary experience in a pediatric population. J. Urol. 2009, 182, 1528–1534. [Google Scholar] [CrossRef]
- Gundeti, M.S.; Eng, M.K.; Reynolds, W.S.; Zagaja, G.P. Pediatric robotic-assisted laparoscopic augmentation ileocystoplasty and Mitrofanoff appendicovesicostomy: Complete intracorporeal–Initial case report. Urology 2008, 72, 1144–1147. [Google Scholar] [CrossRef]
- Wille, M.A.; Zagaja, G.P.; Shalhav, A.L.; Gundeti, M.S. Continence outcomes in patients undergoing robotic assisted laparoscopic Mitrofanoff appendicovesicostomy. J. Urol. 2011, 185, 1438–1443. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Pariser, J.J.; Anderson, B.B.; Pearce, S.M.; Gundeti, M.S. The robotic appendicovesicostomy and bladder augmentation: The next frontier in robotics, are we there? Urol. Clin. N. Am. 2015, 42, 121–130. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Bagrodia, A.; Raman, J.D. Ergonomics considerations of radical prostatectomy: Physician perspective of open, laparoscopic, and robot-assisted techniques. J. Endourol. 2009, 23, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Sandlas, G.; Pednekar, A.; Jadhav, B.; Terdal, M. A comparative study of the ergonomic risk to the surgeon during vesicoscopic and robotic cross-trigonal ureteric reimplantation. J. Laparoendosc. Adv. Surg. Tech. A 2021. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; May, A.; Ryan, H.; Mohsin, A.; Tsuda, S. Distraction and proficiency in laparoscopy: 2D versus robotic console 3D immersion. Randomizewd controlled trial. Surg. Endosc. 2017, 31, 4625–4630. [Google Scholar] [CrossRef] [PubMed]
- Walsh PC, Donker PJ: Impotence following radical prostatectomy: Insight into etiology and prevention. J. Urol. 1982, 128, 492–497. [CrossRef]
- Binder, J.; Kramer, W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int. 2001, 87, 408–410. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luciani, L.G.; Mattevi, D.; Cai, T.; Malossini, G. Robotics in Urology: No More Shadows? Uro 2021, 1, 254-265. https://doi.org/10.3390/uro1040028
Luciani LG, Mattevi D, Cai T, Malossini G. Robotics in Urology: No More Shadows? Uro. 2021; 1(4):254-265. https://doi.org/10.3390/uro1040028
Chicago/Turabian StyleLuciani, Lorenzo Giuseppe, Daniele Mattevi, Tommaso Cai, and Gianni Malossini. 2021. "Robotics in Urology: No More Shadows?" Uro 1, no. 4: 254-265. https://doi.org/10.3390/uro1040028
APA StyleLuciani, L. G., Mattevi, D., Cai, T., & Malossini, G. (2021). Robotics in Urology: No More Shadows? Uro, 1(4), 254-265. https://doi.org/10.3390/uro1040028