Analytical Chemistry: Tasks, Resolutions and Future Standpoints of the Quantitative Analyses of Environmental Complex Sample Matrices
Abstract
:1. Introduction
2. Pre-Treatment Procedures
3. Instrumental Configurations and New Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Badea, S.L.; Geana, E.I.; Niculescu, V.C.; Ionete, R.E. Recent progresses in analytical GC and LC mass spectrometric based-methods for the detection of emerging chlorinated and brominated contaminants and their transformation products in aquatic environment. Sci. Total Environ. 2020, 722, 137914. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Bouwman, H.; Uren, R.C.; van der Lingen, C.D.; Vetter, W. Halogenated natural products and anthropogenic persistent organic pollutants in chokka squid (Loligo reynaudii) from three sites along the South Atlantic and Indian Ocean coasts of South Africa. Environ. Pollut. 2019, 255, 113282. [Google Scholar] [CrossRef] [PubMed]
- Cariou, R.; Omer, E.; Leon, A.; Dervilly-Pinel, G.; Le Bizec, B. Screening halogenated environmental contaminants in biota based on isotopic pattern and mass defect provided by high resolution mass spectrometry profiling. Anal. Chim. Acta 2016, 936, 130–138. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpaa, M. Atmospheric microplastics: A review on current status and perspectives. Earth Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Waller, C.L.; Griffiths, H.J.; Waluda, C.M.; Thorpe, S.E.; Loaiza, I.; Moreno, B.; Pacherres, C.O.; Hughes, K.A. Microplastics in the Antarctic marine system: An emerging area of research. Sci. Total Environ. 2017, 598, 220–227. [Google Scholar] [CrossRef]
- Gonzalez-Pleiter, M.; Velazquez, D.; Edo, C.; Carretero, O.; Gago, J.; Baron-Sola, A.; Hernandez, L.E.; Yousef, I.; Quesada, A.; Leganes, F.; et al. Fibers spreading worldwide: Microplastics and other anthropogenic litter in an Arctic freshwater lake. Sci. Total Environ. 2020, 722, 137904. [Google Scholar] [CrossRef]
- Courtene-Jones, W.; Quinn, B.; Gary, S.F.; Mogg, A.O.M.; Narayanaswamy, B.E. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean. Environ. Pollut. 2017, 231, 271–280. [Google Scholar] [CrossRef]
- Huang, Y.; Qing, X.; Wang, W.; Han, G.; Wang, J. Mini-review on current studies of airborne microplastics: Analytical methods, occurrence, sources, fate and potential risk to human beings. TrAC 2020, 125, 115821. [Google Scholar] [CrossRef]
- Tourinho, P.S.; Kocí, V.; Loureiro, S.; van Gestel, C.A.M. Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation. Environ. Pollut. 2019, 252, 1246–1256. [Google Scholar] [CrossRef]
- Rodrigues, J.P.; Duarte, A.C.; Santos-Echeandía, J.; Rocha-Santos, T. Significance of interactions between microplastics and POPs in the marine environment: A critical overview. TrAC 2019, 111, 252–260. [Google Scholar] [CrossRef]
- Hüffer, T.; Wagner, S.; Reemtsma, T.; Hofmann, T. Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplastic. TrAC 2019, 113, 392–401. [Google Scholar] [CrossRef]
- Bhagat, J.; Nishimura, N.; Shimada, Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: Current knowledge and future perspectives. J. Hazard Mater. 2020, 405, 123913. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Skrzypek, G.; Hernandez-Sanchez, C.; Ortega-Zamora, C.; Gonzalez-Salamo, J.; Gonzalez-Curbelo, M.A.; Hernandez-Borges, J. Microplastic-adsorbed organic contaminants: Analytical methods and occurrence. TrAC 2021, 136, 116186. [Google Scholar] [CrossRef]
- Keith, L.H. The source of U.S. EPA’s sixteen PAH priority pollutants. Polycycl. Aromat. Comp. 2015, 35, 147–160. [Google Scholar] [CrossRef]
- Andersson, J.T.; Achten, C. Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycycl. Aromat. Comp. 2015, 35, 330–354. [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Meusel, H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment e a review. Sci. Total Environ. 2017, 581–582, 237–257. [Google Scholar] [CrossRef]
- Lammel, G. Polycyclic aromatic compounds in the atmosphere e a review identifying research needs. Polycycl. Aromat. Comp. 2015, 35, 316–329. [Google Scholar] [CrossRef]
- Walgraeve, C.; Demeestere, K.; Dewulf, J.; Zimmermann, R.; Van Langenhove, H. Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: Molecular characterization and occurrence. Atmos. Environ. 2010, 44, 1831–1846. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Preston, M.R. Azaarenes in the aerosol of an urban atmosphere. Environ. Sci. Technol. 1998, 32, 577–583. [Google Scholar] [CrossRef]
- Collins, J.F.; Brown, J.P.; Alexeeff, G.V.; Salmon, A.G. Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul. Toxicol. Pharmacol. 1998, 28, 45–54. [Google Scholar] [CrossRef]
- Delhomme, O.; Millet, M. Azaarenes in atmospheric particulate matter samples of three different urban sites in east of France. Atmos. Environ. 2012, 47, 541–545. [Google Scholar] [CrossRef]
- Lee, M.L.; Novotny, M.; Bartle, K.D. Gas chromatography/mass spectrometric and nuclear magnetic resonance determination of polynuclear aromatic hydrocarbons in airborne particulates. Anal. Chem. 1976, 48, 1566–1572. [Google Scholar] [CrossRef]
- Mossner, S.G.; Wise, S.A. Determination of polycyclic aromatic sulfur heterocycles in fossil fuel-related samples. Anal. Chem. 1999, 71, 58–69. [Google Scholar] [CrossRef] [PubMed]
- IARC, Bitumens and Bitumen Emissions, and Some N- and S-Heterocyclic Polycyclic Aromatic Hydrocarbons. International Agency for Research on Cancer, Lyon, 2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK294234/ (accessed on 22 August 2022).
- Galmiche, M.; Delhomme, O.; François, Y.-N.; Millet, M. Environmental analysis of polar and non-polar Polycyclic Aromatic Compounds in airborne particulate matter, settled dust and soot: Part II: Instrumental analysis and occurrence. TrAC 2021, 134, 116146. [Google Scholar] [CrossRef]
- Melucci, D.; Locatelli, M.; Casolari, S.; Locatelli, C. New polluting metals. Quantification in herbal medicines by voltammetric and spectroscopic analytical methods. J. Pharm. Biomed. Anal. 2022, 211, 114599. [Google Scholar] [CrossRef] [PubMed]
- Melucci, D.; Casolari, S.; Locatelli, M.; Locatelli, C. Thallium: A polluting metal of new generation. Its voltammetric determination in herbal medicines in the presence of metal interferences. Analytica 2021, 2, 76–83. [Google Scholar] [CrossRef]
- McGregor, R.; Zhao, Y. The in situ treatment of TCE and PFAS in groundwater within a silty sand aquifer. Remediation 2021, 31, 7–17. [Google Scholar] [CrossRef]
- Shimadzu, Application Note No. C225. Available online: https://www.shimadzu.it/sites/shimadzu.seg/files/SEG-images/industries/food/PFAS/AppNote_PFAS_LCMS_8060_C225.pdf (accessed on 23 August 2022).
- Winchell, L.J.; Wells, M.J.M.; Ross, J.J.; Fonoll, X.; Norton, J.W., Jr.; Kuplicki, S.; Khan, M.; Bell, K.Y. Analyzes of per- and polyfluoroalkyl substances (PFAS) through the urban water cycle: Toward achieving an integrated analytical workflow across aqueous, solid, and gaseous matrices in water and wastewater treatment. Sci. Total Environ. 2021, 774, 145257. [Google Scholar] [CrossRef]
- Alygizakis, N.; Markou, A.N.; Rousis, N.I.; Galani, A.; Avgeris, M.; Adamopoulos, P.G.; Scorilas, A.; Lianidou, E.S.; Paraskevis, D.; Tsiodras, S.; et al. Analytical methodologies for the detection of SARS-CoV-2 in wastewater: Protocols and future perspectives. TrAC 2021, 134, 116125. [Google Scholar] [CrossRef]
- Gul, I.; Le, W.; Jie, Z.; Ruiqin, F.; Bilal, M.; Tang, L. Recent advances on engineered enzyme-conjugated biosensing modalities and devices for halogenated compounds. TrAC 2021, 134, 116145. [Google Scholar] [CrossRef]
- Merone, G.M.; Tartaglia, A.; Locatelli, M.; D’Ovidio, C.; Rosato, E.; de Grazia, U.; Santavenere, F.; Rossi, S.; Savini, F. Analytical Chemistry in the 21st Century: Challenges, Solutions, and Future Perspectives of Complex Matrices Quantitative Analyses in Biological/Clinical Field. Analytica 2020, 1, 44–59. [Google Scholar] [CrossRef]
- Kabir, A.; Locatelli, M.; Ulusoy, H.I. Recent Trends in Microextraction Techniques Employed in Analytical and Bioanalytical Sample Preparation. Separations 2017, 4, 36. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Mohebbi, A.; Pazhohan, A.; Nemati, M.; Mogaddam, M.R.A. Air-assisted liquid-liquid microextraction; principles and applications with analytical instruments. TrAC 2020, 122, 115734. [Google Scholar] [CrossRef]
- Fiorentini, E.F.; Escudero, L.B.; Wuilloud, R.G. Magnetic ionic liquid-based dispersive liquid-liquid microextraction technique for preconcentration and ultra-trace determination of Cd in honey. Anal. Bioanal. Chem. 2018, 410, 4715–4723. [Google Scholar] [CrossRef] [PubMed]
- Makos, P.; Słupek, E.; Gebicki, J. Hydrophobic deep eutectic solvents in microextraction techniques—A review. Microchem. J. 2020, 152, 104384. [Google Scholar] [CrossRef]
- Martinis, E.M.; Grijalba, A.C.; Perez, M.B.; Llaver, M.; Wuilloud, R.G. Synergistic analytical preconcentration with ionic liquid enanomaterial hybrids. TrAC 2017, 97, 333–344. [Google Scholar] [CrossRef]
- Sotolongo, A.C.; Messina, M.M.; Ibanez, F.J.; Wuilloud, R.G. Hybrid ionic liquid- 3D graphene-Ni foam for on-line preconcentration and separation of Hg species in water with atomic fluorescence spectrometry detection. Talanta 2020, 210, 120614. [Google Scholar] [CrossRef]
- Oviedo, M.N.; Fiorentini, E.F.; Llaver, M.; Wuilloud, R.G. Alternative solvent systems for extraction and preconcentration of trace elements. TrAC 2021, 137, 116227. [Google Scholar] [CrossRef]
- Su, D.; Li, H.; Yan, X.; Lin, Y.; Lu, G. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC 2021, 134, 116126. [Google Scholar] [CrossRef]
- Belka, M.; Ulenberg, S.; Baczek, T. Fused deposition modeling enables the lowcost fabrication of porous, customized-shape sorbents for small-molecule extraction. Anal. Chem. 2017, 89, 4373–4376. [Google Scholar] [CrossRef]
- Su, C.K.; Chen, W.C. 3D-printed, TiO2 NP-incorporated mini column coupled with ICP-MS for speciation of inorganic arsenic and selenium in high-salt content samples. Mikrochim. Acta 2018, 185, 268. [Google Scholar] [CrossRef] [PubMed]
- Calderilla, C.; Maya, F.; Cerda, V.; Leal, L.O. Direct photoimmobilization of extraction disks on “green state” 3D printed devices. Talanta 2019, 202, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Calderilla, C.; Maya, F.; Cerda, V.; Leal, L.O. 3D printed device including diskbased solid-phase extraction for the automated speciation of iron using the multisyringe flow injection analysis technique. Talanta 2017, 175, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Cacho, J.I.; Campillo, N.; Vinas, P.; Hernández-Córdoba, M. In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry for the determination of organophosphorus pesticides. J. Chromatogr. A 2018, 1559, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Nowak, I.; Rykowska, I.; Ziemblińska-Bernart, J. Orthogonal array design optimisation of an in situ ionic liquid dispersive liquid–liquid microextraction for the detection of phenol and endocrine-disrupting phenols in aqueous samples. J. Iran. Chem. Soc. 2020, 17, 825–838. [Google Scholar] [CrossRef]
- Hui, Y.; Xiong, C.; Bian, C.; Gui, S.; Tong, J.; Li, Y.; Gao, C.; Huang, Y.; Tang, W.C.; Xia, S. Temperature-controlled ionic liquid dispersive liquid–liquid microextraction combined with fluorescence detection of ultra-trace Hg2+ in water. Anal. Methods 2019, 11, 2669–2676. [Google Scholar] [CrossRef]
- Sarıkaya, M.; Ulusoy, H.I.; Morgul, U.; Ulusoy, S.; Tartaglia, A.; Yılmaz, E.; Soylak, M.; Locatelli, M.; Kabir, A. Sensitive determination of Fluoxetine and Citalopram antidepressants in urine and wastewater samples by liquid chromatography coupled with photodiode array detector. J. Chromatogr. A 2021, 1648, 462215. [Google Scholar] [CrossRef]
- Ulusoy, H.I.; Koseoglu, K.; Kabir, A.; Ulusoy, S.; Locatelli, M. Fabric phase sorptive extraction followed by HPLC-PDA detection for the monitoring of Pirimicarb and Fenitrothion pesticide residues. Microchim. Acta 2020, 187, 337. [Google Scholar] [CrossRef]
- Canlı, A.G.; Sürücü, B.; Ulusoy, H.I.; Yılmaz, E.; Kabir, A.; Locatelli, M. Analytical Methodology for Trace Determination of Propoxur and Fenitrothion Pesticide Residues by Decanoic Acid Modified Magnetic Nanoparticles. Molecules 2019, 24, 4621. [Google Scholar] [CrossRef]
- ALOthman, Z.A.; Badjah, A.Y.; Locatelli, M.; Ali, I. Multi-walled carbon nanotubes solid phase extraction and capillary electrophoresis methods for the analysis of 4-cyano- and 3-nitro-phenols in water. Molecules 2020, 25, 3893. [Google Scholar] [CrossRef]
- Orazbayeva, D.; Koziel, J.A.; Trujillo-Rodríguez, M.J.; Anderson, J.L.; Kenessov, B. Polymeric ionic liquid sorbent coatings in headspace solid-phase microextraction: A green sample preparation technique for the determination of pesticides in soil. Microchem. J. 2020, 157, 104996. [Google Scholar] [CrossRef]
- Kabir, A.; Mesa, R.; Jurmain, J.; Furton, K.G. Fabric Phase Sorptive Extraction Explained. Separations 2017, 4, 21. [Google Scholar] [CrossRef]
- Zilfidou, E.; Kabir, A.; Furton, K.G.; Samanidou, V. Fabric Phase Sorptive Extraction: Current State of the Art and Future Perspectives. Separations 2018, 53, 40. [Google Scholar] [CrossRef]
- Zhou, J.; Chizhik, A.I.; Chu, S.; Jin, D. Single-particle spectroscopy for functional nanomaterials. Nature 2020, 579, 41–50. [Google Scholar] [CrossRef]
- Aragay, G.; Pino, F.; Merkoci, A. Nanomaterials for sensing and destroying pesticides. Chem. Rev. 2012, 112, 5317–5338. [Google Scholar] [CrossRef]
- Benzigar, M.R.; Talapaneni, S.N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 2680–2721. [Google Scholar] [CrossRef]
- Clancy, A.J.; Bayazit, M.K.; Hodge, S.A.; Skipper, N.T.; Howard, C.A.; Shaffer, M.S.P. Charged carbon nanomaterials: Redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 2018, 118, 7363–7408. [Google Scholar] [CrossRef]
- Semeniuk, M.; Yi, Z.; Poursorkhabi, V.; Tjong, J.; Jaffer, S.; Lu, Z.H.; Sain, M. Future perspectives and review on organic carbon dots in electronic applications. ACS Nano 2019, 13, 6224–6255. [Google Scholar] [CrossRef]
- Wu, X.; Song, Y.; Yan, X.; Zhu, C.; Ma, Y.; Du, D.; Lin, Y. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens. Bioelectron. 2017, 94, 292–297. [Google Scholar] [CrossRef]
- Li, H.; Sun, C.; Vijayaraghavan, R.; Zhou, F.; Zhang, X.; MacFarlane, D.R. Long lifetime photoluminescence in N, S co-doped carbon quantum dots from an ionic liquid and their applications in ultrasensitive detection of pesticides. Carbon 2016, 104, 33–39. [Google Scholar] [CrossRef]
- Huang, S.; Yao, J.; Chu, X.; Liu, Y.; Xiao, Q.; Zhang, Y. One-step facile synthesis of nitrogen-doped carbon dots: A ratiometric fluorescent probe for evaluation of acetylcholinesterase activity and detection of organophosphorus pesticides in tap water and food. J. Agric. Food Chem. 2019, 67, 11244–11255. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Chen, L. Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin. Biosens. Bioelectron. 2015, 64, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Zhou, T.; Wang, Y.; Gong, L.; Liu, J. Transformation from gold nanoclusters to plasmonic nanoparticles: A general strategy towards selective detection of organophosphorothioate pesticides. Biosens. Bioelectron. 2018, 99, 274–280. [Google Scholar] [CrossRef]
- Zhao, S.N.; Wang, G.; Poelman, D.; Voort, P.V. Luminescent lanthanide MOFs: A unique platform for chemical sensing. Materials 2018, 11, 572. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Li, N.; Wang, D.; Fan, M.; Zhang, S.; Gong, Z. Environmental pollution analysis based on the luminescent metal organic frameworks: A review. TrAC 2021, 134, 116131. [Google Scholar] [CrossRef]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162. [Google Scholar] [CrossRef]
- Allendorf, M.D.; Bauer, C.A.; Bhakta, R.K.; Houk, R.J.T. Luminescent metaleorganic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352. [Google Scholar] [CrossRef]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metaleorganic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Yang, J.; Liu, F.; Dai, F.; Wang, R.; Sun, D. Lanthanide metaleorganic frameworks containing a novel flexible ligand for luminescence sensing of small organic molecules and selective adsorption. J. Mater. Chem. 2015, 3, 12777–12785. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, L.; Jiang, F.; Wu, M.; Pang, J.; Wan, X.; Hong, M. A water-stable 3D Eu-MOF based on a metallacyclodimeric secondary building unit for sensitive fluorescent detection of acetone molecules. CrystEngComm 2019, 21, 321–328. [Google Scholar] [CrossRef]
- Huelsmann, R.D.; Martendal, E. A simple and effective liquid-liquid-liquid microextraction method with ultraviolet spectrophotometric detection for the determination of bisphenol A in aqueous matrices and plastic leachates. J. Braz. Chem. Soc. 2020, 31, 1575–1584. [Google Scholar] [CrossRef]
- Lee, K.J.; Dabrowski, K. High-performance liquid chromatographic determination of gossypol and gossypolone enantiomers in fish tissues using simultaneous electrochemical and ultraviolet detectors. J. Chromatogr. B 2002, 779, 313–319. [Google Scholar] [CrossRef]
- Mirghani, M.E.S.; Man, Y.B.C. A new method for determining gossypol in cottonseed oil by FTIR spectroscopy. J. Am. Oil Chem. Soc. 2003, 80, 625–628. [Google Scholar] [CrossRef]
- Martinez, Y.M.; Munoz-Ortuno, M.; Herraez-Hernandez, R.; Campins-Falco, P. Rapid analysis of effluents generated by the dairy industry for fat determination by preconcentration in nylon membranes and attenuated total reflectance infrared spectroscopy measurement. Talanta 2014, 119, 11–16. [Google Scholar] [CrossRef]
- Emamian, S.; Eshkeiti, A.; Narakathu, B.B.; Avuthu, S.G.R.; Atashbar, M.Z. Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2,4-dinitrotoluene (DNT) vapor. Sens. Actuators B Chem. 2015, 217, 129–135. [Google Scholar] [CrossRef]
- Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840. [Google Scholar] [CrossRef]
- Zhang, C.; Bills, B.J.; Manicke, N.E. Rapid prototyping using 3D printing in bioanalytical research. Bioanalysis 2017, 9, 329–331. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, S.; Yu, J. Chemical and biochemical analysis on lab-on-a-chip devices fabricated using three-dimensional printing. TrAC 2016, 85, 166–180. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef]
- Wang, L.; Pumera, M. Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices. TrAC 2021, 135, 116151. [Google Scholar] [CrossRef]
- Li, F.; Macdonald, N.P.; Guijt, R.M.; Breadmore, M.C. Using printing orientation for tuning fluidic behavior in microfluidic chips made by fused deposition modeling 3D printing. Anal. Chem. 2017, 89, 12805–12811. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Smejkal, P.; Macdonald, N.P.; Guijt, R.M.; Breadmore, M.C. One-step fabrication of a microfluidic device with an integrated membrane and embedded reagents by multimaterial 3D printing. Anal. Chem. 2017, 89, 4701–4707. [Google Scholar] [CrossRef] [PubMed]
- Mattio, E.; Robert-Peillard, F.; Branger, C.; Puzio, K.; Margaillan, A.; Brach-Papa, C.; Knoery, J.; Boudenne, J.L.; Coulomb, B. 3D-printed flow system for determination of lead in natural waters. Talanta 2017, 168, 298–302. [Google Scholar] [CrossRef]
- Cocovi-Solberg, D.J.; Rosende, M.; Michalec, M.; Miro, M. 3D Printing: The second dawn of lab-on-valve fluidic platforms for automatic (bio)chemical assays. Anal. Chem. 2019, 91, 1140–1149. [Google Scholar] [CrossRef]
- Fornells, E.; Murray, E.; Waheed, S.; Morrin, A.; Diamond, D.; Paull, B.; Breadmore, M. Integrated 3D printed heaters for microfluidic applications: Ammonium analysis within environmental water. Anal. Chim. Acta 2020, 1098, 94–101. [Google Scholar] [CrossRef]
- ALOthman, Z.A.; Alsheetan, K.M.; AL-Anazy, M.M.; Locatelli, M.; Ali, I. Metformin residue analysis in water by MWCNTs-based solid-phase micromembrane tip extraction and capillary electrophoresis methods. Int. J. Environ. Sci. Technol. 2021, 18, 3419–3426. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef]
- Leeuw, T.; Boss, E.S.; Wright, D.L. In situ Measurements of Phytoplankton Fluorescence Using Low Cost Electronics. Sensors 2013, 13, 7872. [Google Scholar] [CrossRef] [Green Version]
- Saeed, A.A.; Singh, B.; Nooredeen Abbas, M.; Dempsey, E. Evaluation of bismuth modified carbon thread electrode for simultaneous and highly sensitive Cd (II) and Pb (II) determination. Electroanalysis 2016, 28, 2205–2213. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Y.; Li, D.; Dong, L.; Li, B.; Liu, B.; Ma, H.; Li, F.; Yin, X.; Chen, X. A simple, low-cost and efficient β-CD/MWCNTs/CP-based electrochemical sensor for the Rapid and sensitive detection of methyl parathion. Int. J. Electrochem. Sci. 2019, 14, 9785–9795. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, W.; Wang, Y.; Ma, Y.; Sun, J.; Li, T.; Wang, J.; Yue, X.; Ouyang, S.; Ji, Y. High-performance electrochemical nitrite sensing enabled using commercial carbon fiber cloth. Inorg. Chem. Front. 2019, 6, 1501–1506. [Google Scholar] [CrossRef]
- Torrinha, A.; Morais, S. Electrochemical (bio)sensors based on carbon cloth and carbon paper: An overview. TrAC 2021, 142, 116324. [Google Scholar] [CrossRef]
- Sohrabi, H.; Hemmati, A.; Reza Majidi, M.; Eyvazi, S.; Jahanban-Esfahlan, A.; Baradaran, B.; Adlpour-Azar, R.; Mokhtarzadeh, A.; de la Guardia, M. Recent advances on portable sensing and biosensing assays applied for detection of main chemical and biological pollutant agents in water samples: A critical review. TrAC 2021, 143, 116344. [Google Scholar] [CrossRef]
- Vashist, S.K.; Luppa, P.B.; Yeo, L.Y.; Ozcan, A.; Luong, J.H. Emerging Technologies for Next-Generation Point-of-Care Testing. Trends Biotechnol. 2015, 33, 692–705. [Google Scholar] [CrossRef]
- Coskun, A.F.; Wong, J.; Khodadadi, D.; Nagi, R.; Tey, A.; Ozcan, A. A personalized food allergen testing platform on a cellphone. Lab Chip 2013, 13, 636–640. [Google Scholar] [CrossRef]
- Preechaburana, P.; Suska, A.; Filippini, D. Biosensing with cell phones. Trends Biotechnol. 2014, 32, 351–355. [Google Scholar] [CrossRef]
- Gopinath, S.C.; Tang, T.-H.; Chen, Y.; Citartan, M.; Lakshmipriya, T. Bacterial detection: From microscope to smartphone. Biosens. Bioelectron. 2014, 60, 332–342. [Google Scholar] [CrossRef]
- Erickson, D.; O’Dell, D.; Jiang, L.; Oncescu, V.; Gumus, A.; Lee, S.; Mancuso, M.; Mehta, S. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab Chip 2014, 14, 3159–3164. [Google Scholar] [CrossRef] [Green Version]
- Vashist, S.K.; van Oordt, T.; Schneider, E.M.; Zengerle, R.; von Stetten, F.; Luong, J.H. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens. Bioelectron. 2015, 67, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Jiang, J.; Chen, J.; Zhang, Q.; Lu, Y.; Yao, Y.; Li, S.; Liu, G.L.; Liu, Q. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection. Biosens. Bioelectron. 2015, 70, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.-C.; Peng, J.; Mauk, M.G.; Awasthi, S.; Song, J.; Friedman, H.; Bau, H.H.; Liu, C. Smart Cup: A Minimally-Instrumented, Smartphone-Based Point-of-Care Molecular Diagnostic Device. Sens. Actuators B Chem. 2016, 229, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Matrix | Analyte/S | Material | Phase System/Fields/Technique | Sensitivity (in Terms of LOD) | Ref. |
---|---|---|---|---|---|
Environmental | Pollutants | Engineered enzyme-conjugated materials | Dehalogenating enzymes | Lower than 2 ppt | [32] |
Water | Metals | ILs | DLLME | 10–4.0 × 10−4 ppb | [40] |
Water | Metals | Surfactants | CPE | 0.5–1.1 × 10−3 ppb | |
Water | Metals | DESs | DLLME/LLME | 2.9–0.12 ppb | |
Water | Metals | Nanomaterials combined with alternative solvent system | MSPE/D-μ-SPE | 0.11–1.1 × 10−3 ppb | |
Water | Pesticides | Graphene-based nanosorbents | MSPE/SPE/DSPE | - | |
Water | Fungicides | Graphene-based nanosorbents | MSPE/SPE/DSPE | - | |
Water | Herbicides | Graphene-based nanosorbents | MSPE/SPE/DSPE | - | |
Environmental | Pesticides | Carbon nanomaterials | Enzyme-based | 99–2.5 × 10−5 ppb | [41] |
Antibody-based | 8 ppb | ||||
Aptamer-based | 1.1–4.0 × 10−5 ppb | ||||
MIP-based | 470–4.2 × 10−3 ppb | ||||
General | 905–6.5 × 10−4 ppb | ||||
Water | Glimepiride | LAY-FOMM 60 | SPE sorbent 3D-printed | - | [42] |
Water | As, Se | BV-007 resin and TiO2 NPs | Column holders 3D-printed | - | [43] |
Water | Fe | Clear photoactive resin | Disk-based SPE 3D-printed | - | [44] |
Groundwater and leachate | 14 trace metals | Clear photoactive resin | Extraction disks 3D-printed | 1.3–0.03 ppb | [45] |
Water | Organophosphate pesticides | ILs | [C4MIm][NTf2] | 5–16 × 10−3 ppb | [46] |
Water | 4-n-nonylphenol 4-Tert-octylphenol Bisphenol A Phenol | ILs | DDAC | 3 × 103 ppb | [47] |
Water | Metals | ILs | [OPy]+[BF4]− | 0.1 ppb | [48] |
Wastewater | Fluoxetine and Citalopram | MSPE | Fe3O4 @PPy-GO | 1.6 ppb | [49] |
Water | Pirimicarb and Fenitrothion | FPSE | PCL-PDMS-PCL | 3 ppb | [50] |
Water | Propoxur and Fenitrothion | MSPE | Decanoic Acid Modified | 1.4 ppb | [51] |
Water | 4-Cyanophenol and 3-Nitrophenol | SPE | MWCN | 0.1 μg | [52] |
Soil | Epoxiconazole, Fluroxypyr Metribuzin Oxyfluorfen | ILs | (VBHDIM-NTf2) [ViC10OHIM][Nf2T]) | 0.4 ppb | [53] |
Matrix | Analyte/S | Instrument Configuration | Sensitivity | Ref. |
---|---|---|---|---|
Water | Organophosphate pesticides | GC–MS | 5–16 × 10−3 ppb | [46] |
Water | 4-n-nonylphenol 4-Tert-octylphenol Bisphenol A Phenol | UV/Vis spectroscopy | 3 × 103 ppb | [47] |
Water | Metals | ICP–MS or AFS | 0.1 ppb | [48] |
Wastewater | Fluoxetine and Citalopram | HPLC–PDA | 1.6 ppb | [49] |
Water | Pirimicarb and Fenitrothion | HPLC–PDA | 3 ppb | [50] |
Water | Propoxur and Fenitrothion | HPLC-PDA | 1.4 ppb | [51] |
Water | 4-Cyanophenol and 3-Nitrophenol | CE | 0.1 μg | [52] |
Soil | Epoxiconazole, Fluroxypyr Metribuzin Oxyfluorfen | GC–MS | 0.4 ppb | [53] |
Water | Metformin | CE | 104 ppb | [89] |
Water | Heavy metals | Portable sensing–optical | 0.5 ppb | [90] |
Water | Heavy metals | Portable sensing–colorimetric | 3 ppb | [91] |
Water | Heavy metals | Portable sensing–electrochemical | 0.15 ppb | [92] |
Water | Heavy metals | SWASV | 0.0096 μM | [93] |
River water | Methyl parathion | DPV | 0.015 μM | [94] |
Water | Nitrite | Amperometry | 0.03 μM | [95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosato, E.; Merone, G.M.; Locatelli, M.; D’Ovidio, C.; Bonelli, M.; de Grazia, U.; Santavenere, F.; Rossi, S.; Ali, I.; Ulusoy, H.I.; et al. Analytical Chemistry: Tasks, Resolutions and Future Standpoints of the Quantitative Analyses of Environmental Complex Sample Matrices. Analytica 2022, 3, 312-324. https://doi.org/10.3390/analytica3030022
Rosato E, Merone GM, Locatelli M, D’Ovidio C, Bonelli M, de Grazia U, Santavenere F, Rossi S, Ali I, Ulusoy HI, et al. Analytical Chemistry: Tasks, Resolutions and Future Standpoints of the Quantitative Analyses of Environmental Complex Sample Matrices. Analytica. 2022; 3(3):312-324. https://doi.org/10.3390/analytica3030022
Chicago/Turabian StyleRosato, Enrica, Giuseppe Maria Merone, Marcello Locatelli, Cristian D’Ovidio, Martina Bonelli, Ugo de Grazia, Francesco Santavenere, Sandra Rossi, Imran Ali, Halil Ibrahim Ulusoy, and et al. 2022. "Analytical Chemistry: Tasks, Resolutions and Future Standpoints of the Quantitative Analyses of Environmental Complex Sample Matrices" Analytica 3, no. 3: 312-324. https://doi.org/10.3390/analytica3030022
APA StyleRosato, E., Merone, G. M., Locatelli, M., D’Ovidio, C., Bonelli, M., de Grazia, U., Santavenere, F., Rossi, S., Ali, I., Ulusoy, H. I., Kabir, A., & Savini, F. (2022). Analytical Chemistry: Tasks, Resolutions and Future Standpoints of the Quantitative Analyses of Environmental Complex Sample Matrices. Analytica, 3(3), 312-324. https://doi.org/10.3390/analytica3030022