Ximenia americana L.: Chemical Characterization and Gastroprotective Effect
Abstract
:1. Introduction
2. Results
2.1. Acute Toxicity and Screening for the Gastroprotective Activity of EHXA
2.1.1. Non-Clinical Acute Oral Toxicity—LD50
2.1.2. Acute Gastric Injuries Induced by Acidified Ethanol
2.1.3. Absolute Ethanol-Induced Acute Gastric Injuries
2.1.4. Indomethacin-Induced Acute Gastric Lesions
2.2. The Physical Barrier Test
2.3. Involvement of Gastroprotective Signaling Pathways in the Mechanism of Action of EHXA
2.3.1. Involvement of Prostaglandins E2 (PGE2)
2.3.2. Involvement of H2 Receptors
2.3.3. Involvement of ATP-Dependent Potassium Channels
2.3.4. Involvement of Sulfhydryl Groups (-SH Groups)
2.3.5. Involvement of α2 Adrenergic Receptors
2.3.6. Involvement of the Nitric Oxide (NO) Pathway
2.3.7. Nitrate/Nitrite Quantification
2.3.8. Myeloperoxidase (MPO) Activity
2.3.9. Inhibition of Gastrointestinal Motility by EHXA and ATROPINE
3. Discussion
4. Materials and Methods
4.1. Legal Requirements: Ethical Aspects of the Research
4.2. Hydroethanolic Extract from the Bark of Ximenia americana L. (EHXA) and Chemical Profile
4.3. In Vivo Assays
Non-Clinical Acute Oral Toxicity—LD50
4.4. Screening of the Gastroprotective Assessment of EHXA
4.4.1. Acidified Ethanol-Induced Gastric Injury
4.4.2. Absolute Ethanol-Induced Gastric Injury
4.4.3. Indomethacin-Induced Gastric Injury
4.5. The Physical Barrier Test
4.6. Characterization of EHXA Gastroprotective Mechanism
4.6.1. Involvement of the Prostaglandin E2 Pathway
Determination of Gastric Mucosal Mucus
4.6.2. Involvement of H2 Histamine Receptors
4.6.3. Involvement of ATP-Dependent Potassium Channels
4.6.4. Involvement of Sulfhydryl (SH) Groups
4.6.5. Involvement of α2 Adrenergic Receptors
4.6.6. Involvement of the Nitric Oxide Pathway
Nitrate/Nitrite Quantification
4.6.7. Myeloperoxidase (MPO) Activity
4.7. Assessment of Gastrointestinal Motility
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Filippis, A.; Ullah, H.; Baldi, A.; Dacrema, M.; Esposito, C.; Garzarella, E.U.; Santarcangelo, C.; Tantipongpiradet, A.; Daglia, M. Gastrointestinal Disorders and Metabolic Syndrome: Dysbiosis as a Key Link and Common Bioactive Dietary Components Useful for Their Treatment. Int. J. Mol. Sci. 2020, 21, 4929. [Google Scholar] [CrossRef]
- Belaiche, J.; Burette, A.; De Vos, M.; Louis, E.; Huybrechts, M.; Deltenre, M. Observational Survey of NSAID-Related Upper Gastrointestinal Adverse Events in Belgium. Acta Gastroenterol. Belg. 2002, 65, 65–73. [Google Scholar]
- Zapata-Colindres, J.C.; Zepeda-Gómez, S.; Montaño-Loza, A.; Vásquez-Ballesteros, E.; de Jesús Villalobos, J.; Valdovinos-Andraca, F. The Association of Helicobacter Pylori Infection and Nonsteroidal Anti-Inflammatory Drugs in Peptic Ulcer Disease. Can. J. Gastroenterol. 2006, 20, 277–280. [Google Scholar] [CrossRef] [Green Version]
- da Silva, M.S.; de Almeida, A.C.A.; de Faria, F.M.; Luiz-Ferreira, A.; da Silva, M.A.; Vilegas, W.; Pellizzon, C.H.; Brito, A.R.M.S. Abarema Cochliacarpos: Gastroprotective and Ulcer-Healing Activities. J. Ethnopharmacol. 2010, 132, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Klein, L.C.; Gandolfi, R.B.; Santin, J.R.; Lemos, M.; Filho, V.C.; De Andrade, S.F. Antiulcerogenic Activity of Extract, Fractions, and Some Compounds Obtained from Polygala cyparissias St. Hillaire & Moquin (Polygalaceae). Naunyn-Schmiedeberg’s Arch. Pharmacol. 2010, 381, 121–126. [Google Scholar] [CrossRef]
- Porth, C.M.; Matfin, G. Fisiopatologia, 8th ed.; Editora Guanabara Koogan: Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Rates, S.M.K. Plants as Source of Drugs. Toxicon 2001, 39, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Chan, F.K.L.; Leung, W.K. Peptic-Ulcer Disease. Seminar 2002, 360, 933–941. [Google Scholar]
- Schmeda-Hirschmann, G.; Yesilada, E. Traditional Medicine and Gastroprotective Crude Drugs. J. Ethnopharmacol. 2005, 100, 61–66. [Google Scholar] [CrossRef]
- Falcão, H.S.; Mariath, I.R.; Diniz, M.F.F.M.; Batista, L.M.; Barbosa-Filho, J.M. Plants of the American Continent with Antiulcer Activity. Phytomedicine 2008, 15, 132–146. [Google Scholar] [CrossRef]
- Brasileiro, M.T. Padronização, Atividade Biológica e Desenvolvimento de Formas Farmacêuticas Semi-Sólidas à Base de Ximenia americana L. Z. Phytother. 2008, 29, 150–153. [Google Scholar] [CrossRef]
- Shettar, A.K.; Kotresha, K.; Kaliwal, B.B.; Vedamurthy, A.B. Evaluation of in Vitro Antioxidant and Anti-Inflammatory Activities of Ximenia americana Extracts. Asian Pac. J. Trop. Dis. 2015, 5, 918–923. [Google Scholar] [CrossRef]
- Agyigra, A.I.; Ejiofor, J.I.; Magaji, M.G.; Yakubu, Y. Evaluation of Methanol Stem-Bark Extract of Ximenia americana Linn (Olacaceae) for Phytoconstituents and Gastroprotection in Rats. Afr. J. Pharmacol. Ther. 2017, 6, 161–165. [Google Scholar]
- Aragão, T.P.; dos Prazeres, L.D.K.T.; Brito, S.A.; Neto, P.J.R.; Rolim, L.A.; da Silva Almeida, J.R.G.; Caldas, G.F.R.; Wanderley, A.G. Contribution of Secondary Metabolites to the Gastroprotective Effect of Aqueous Extract of Ximenia americana L. (Olacaceae) Stem Bark in Rats. Molecules 2018, 23, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Araújo, M.R.S.; Da Costa Assunção, J.C.; Dantas, I.N.F.; Costa-Lotufo, L.V.; Monte, F.J.Q. Chemical Constituents of Ximenia americana. Nat. Prod. Commun. 2008, 3, 857–860. [Google Scholar] [CrossRef] [Green Version]
- Sharief, T.M.; Bashier, R.S.M.; Haroon, M.I. Phytochemical Evaluation and Uses of Ximenia americana L. in Central Darfur. Int. J. Curr. Microbiol. Appl. Sci. 2022, 11, 353–360. [Google Scholar] [CrossRef]
- Le, N.H.T.; Malterud, K.E.; Diallo, D.; Paulsen, B.S.; Nergård, C.S.; Wangensteen, H. Bioactive Polyphenols in Ximenia americana and the Traditional Use among Malian Healers. J. Ethnopharmacol. 2012, 139, 858–862. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, X.; Xie, L.; Deng, M.; Chen, H.; Song, J.; Long, J.; Li, X.; Luo, J. Lupeol and Its Derivatives as Anticancer and Anti-Inflammatory Agents: Molecular Mechanisms and Therapeutic Efficacy. Pharmacol. Res. 2021, 164, 105373. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Li, H.; Zhang, S.; Lu, H.; Chen, Q.; Zhang, X.; Wang, Y. A Review on Preparation of Betulinic Acid and Its Biological Activities. Molecules 2021, 26, 5583. [Google Scholar] [CrossRef]
- Nattagh-Eshtivani, E.; Barghchi, H.; Pahlavani, N.; Barati, M.; Amiri, Y.; Fadel, A.; Khosravi, M.; Talebi, S.; Arzhang, P.; Ziaei, R.; et al. Biological and Pharmacological Effects and Nutritional Impact of Phytosterols: A Comprehensive Review. Phytother. Res. 2022, 36, 299–322. [Google Scholar] [CrossRef]
- Babu, S.; Jayaraman, S. An Update on β-Sitosterol: A Potential Herbal Nutraceutical for Diabetic Management. Biomed. Pharmacother. 2020, 131, 110702. [Google Scholar] [CrossRef]
- Dasiman, R.; Md Nor, N.; Eshak, Z.; Syairah, S.; Mutalip, M.; Suwandi, N.R.; Bidin, H. A Review of Procyanidin: Updates on Current Bioactivities and Potential Health Benefits. Biointerface Res. Appl. Chem. 2022, 12, 5918–5940. [Google Scholar] [CrossRef]
- Costa, A.C.F.; de Sousa, L.M.; Dos Santos Alves, J.M.; Goes, P.; Pereira, K.M.A.; Alves, A.P.N.N.; Vale, M.L.; Gondim, D.V. Anti-Inflammatory and Hepatoprotective Effects of Quercetin in an Experimental Model of Rheumatoid Arthritis. Inflammation 2021, 44, 2033–2043. [Google Scholar] [CrossRef]
- Leyva-López, N.; Gutierrez-Grijalva, E.P.; Ambriz-Perez, D.L.; Basilio Heredia, J.; Segura-Carretero, A.; Maria, A.; Caravaca, G. Flavonoids as Cytokine Modulators: A Possible Therapy for Inflammation-Related Diseases. Int. J. Mol. Sci. 2016, 17, 921. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, D.; Freitas, M.; Tomé, S.M.; Silva, A.M.; Laufer, S.; Lima, J.L.; Fernandes, E. Flavonoids Inhibit COX-1 and COX-2 Enzymes and Cytokine/Chemokine Production in Human Whole Blood. Inflammation 2014, 38, 858–870. [Google Scholar] [CrossRef]
- Da Silva, G.G.; De Souza, P.A.; De Morais, P.L.D.; Dos Santos, E.C.; Moura, R.D.; Menezes, J.B. Caracterização Do Fruto de Ameixa Silvestre (Ximenia americana L.). Rev. Bras. Frutic. 2008, 30, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.C.S.; Barros, R.F.M.; Moita Neto, J.M. Plantas Medicinais Utilizadas Em Comunidades Rurais de Oeiras, Semiárido Piauiense. Rev. Bras. Plantas Med. 2010, 12, 282–301. [Google Scholar] [CrossRef]
- Chaves, E.M.F.; Chaves, E.d.B.F.; Coelho-de-Souza, G.; Figueiredo, L.S.; de Barros, R.F.M.; Kubo, R. Um Olhar Sobre Ximenia americana L. e Suas Potencialidades. Acta Tecnol. 2014, 9, 70–77. [Google Scholar] [CrossRef]
- Queiroz Monte, F.J.; de Lemos, T.L.G.; de Arajo, M.R.S.; de Sousa Gomes, E. Ximenia americana: Chemistry, Pharmacology and Biological Properties, a Review. In Phytochemicals—A Global Perspective of Their Role in Nutrition and Health; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Ogunleye, D.S.; Ibitoye, S.F. Studies of Antimicrobial Activity and Chemical Constituents of Ximenia americana. Trop. J. Pharm. Res. 2003, 2, 239–241. [Google Scholar]
- da Silva, B.A.F.; da Costa, R.H.S.; Fernandes, C.N.; Leite, L.H.I.; Ribeiro-Filho, J.; Garcia, T.R.; Coutinho, H.D.M.; Wanderley, A.G.; de Menezes, I.R.A. HPLC Profile and Antiedematogenic Activity of Ximenia americana L. (Olacaceae) in Mice Models of Skin Inflammation. Food Chem. Toxicol. 2018, 119, 199–205. [Google Scholar] [CrossRef]
- de Menezes, I.R.A.; da Costa, R.H.S.; Augusti Boligon, A.; Rolón, M.; Coronel, C.; Vega, C.; Melo Coutinho, H.D.; da Costa, M.S.; Tintino, S.R.; Silva Pereira, R.L.; et al. Ximenia americana L. Enhances the Antibiotic Activity and Inhibits the Development of Kinetoplastid Parasites. Comp. Immunol. Microbiol. Infect. Dis. 2019, 64, 40–46. [Google Scholar] [CrossRef]
- Okhale, S.E.; Nnachor, A.C.; Bassey, U.E. Evaluation of HPLC-UV-DAD and Antiproliferative Characteristics of the Leaf Infusion of Ximenia americana Linn. MicroMedicine 2017, 5, 45–52. [Google Scholar] [CrossRef]
- Almeida, M.L.B.; Freitas, W.E.D.S.; De Morais, P.L.D.; Sarmento, J.D.A.; Alves, R.E. Bioactive Compounds and Antioxidant Potential Fruit of Ximenia americana L. Food Chem. 2016, 192, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Bazezew, A.M.; Emire, S.A.; Sisay, M.T. Bioactive Composition, Free Radical Scavenging and Fatty Acid Profile of Ximenia americana Grown in Ethiopia. Heliyon 2021, 7, e07187. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, G.; Sun, C.; Peng, F.; Yu, L.; Chen, Y.; Tan, Y.; Cao, X.; Tang, Y.; Xie, X.; et al. Chemistry, Pharmacokinetics, Pharmacological Activities, and Toxicity of Quercitrin. Phytother. Res. 2022, 36, 1545–1575. [Google Scholar] [CrossRef]
- Sánchez De Medina, F.; Vera, B.; Gálvez, J.; Zarzuelo, A. Effect of Quercitrin on the Early Stages of Hapten Induced Colonic Inflammation in the Rat. Life Sci. 2002, 70, 3097–3108. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Yang, Q.; Tian, T.; Chang, Y.; Li, Y.; Duan, L.R.; Li, H.; Wang, S.W. Gastroprotective Effect of Gallic Acid against Ethanol-Induced Gastric Ulcer in Rats: Involvement of the Nrf2/HO-1 Signaling and Anti-Apoptosis Role. Biomed. Pharmacother. 2020, 126, 110075. [Google Scholar] [CrossRef]
- Zhu, L.; Gu, P.; Shen, H. Gallic Acid Improved Inflammation via NF-κB Pathway in TNBS-Induced Ulcerative Colitis. Int. Immunopharmacol. 2019, 67, 129–137. [Google Scholar] [CrossRef]
- Matejczyk, M.; Świsłocka, R.; Golonko, A.; Lewandowski, W.; Hawrylik, E. Cytotoxic, Genotoxic and Antimicrobial Activity of Caffeic and Rosmarinic Acids and Their Lithium, Sodium and Potassium Salts as Potential Anticancer Compounds. Adv. Med. Sci. 2018, 63, 14–21. [Google Scholar] [CrossRef]
- Amorati, R.; Pedulli, G.F.; Cabrini, L.; Zambonin, L.; Landi, L. Solvent and PH Effects on the Antioxidant Activity of Caffeic and Other Phenolic Acids. J. Agric. Food Chem. 2006, 54, 2932–2937. [Google Scholar] [CrossRef] [PubMed]
- Gamaro, G.D.; Suyenaga, E.; Borsoi, M.; Lermen, J.; Pereira, P.; Ardenghi, P. Effect of Rosmarinic and Caffeic Acids on Inflammatory and Nociception Process in Rats. ISRN Pharmacol. 2011, 2011, 451682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romana-Souza, B.; dos Santos, J.S.; Monte-Alto-Costa, A. Caffeic Acid Phenethyl Ester Promotes Wound Healing of Mice Pressure Ulcers Affecting NF-ΚB, NOS2 and NRF2 Expression. Life Sci. 2018, 207, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Kolgazi, M.; Cilingir, S.; Yilmaz, O.; Gemici, M.; Yazar, H.; Ozer, S.; Acikel-Elmas, M.; Arbak, S.; Suyen, G.G. Caffeic Acid Attenuates Gastric Mucosal Damage Induced by Ethanol in Rats via Nitric Oxide Modulation. Chem. Biol. Interact. 2021, 334, 109351. [Google Scholar] [CrossRef] [PubMed]
- Rozza, A.L.; Hiruma-Lima, C.A.; Tanimoto, A.; Pellizzon, C.H. Morphologic and Pharmacological Investigations in the Epicatechin Gastroprotective Effect. Evid.-Based Complement. Altern. Med. 2012, 2012, 708156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeyemi, O.O.; Yemitan, O.K.; Taiwo, A.E. Neurosedative and Muscle-Relaxant Activities of Ethyl Acetate Extract of Baphia nitida AFZEL. J. Ethnopharmacol. 2006, 106, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Repetto, M.G.; Llesuy, S.F. Antioxidant Properties of Natural Compounds Used in Popular Medicine for Gastric Ulcers. Braz. J. Med. Biol. Res. 2002, 35, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.R.S.; Diniz, P.B.F.; Pinheiro, M.S.; Albuquerque-Júnior, R.L.C.; Thomazzi, S.M. Gastroprotective Effects of Thymol on Acute and Chronic Ulcers in Rats: The Role of Prostaglandins, ATP-Sensitive K+ Channels, and Gastric Mucus Secretion. Chem. Biol. Interact. 2016, 244, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Guslandi, M. Effects of Ethanol on the Gastric Mucosa. Dig. Dis. 1987, 5, 21–32. [Google Scholar] [CrossRef]
- Lee, J.S.; Oh, T.Y.; Kim, Y.K.; Baik, J.H.; So, S.; Hahm, K.B.; Surh, Y.J. Protective Effects of Green Tea Polyphenol Extracts against Ethanol-Induced Gastric Mucosal Damages in Rats: Stress-Responsive Transcription Factors and MAP Kinases as Potential Targets. Mutat. Res.—Fundam. Mol. Mech. Mutagen. 2005, 579, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Szabo, S.; Trier, J.S.; Brown, A.; Schnoor, J. Early Vascular Injury and Increased Vascular Permeability in Gastric Mucosal Injury Caused by Ethanol in the Rat. Gastroenterology 1985, 88, 228–236. [Google Scholar] [CrossRef]
- Yadav, S.K.; Adhikary, B.; Maity, B.; Bandyopadhyay, S.K.; Chattopadhyay, S. The Gastric Ulcer-Healing Action of Allylpyrocatechol Is Mediated by Modulation of Arginase Metabolism and Shift of Cytokine Balance. Eur. J. Pharmacol. 2009, 614, 106–113. [Google Scholar] [CrossRef] [PubMed]
- DeFoneska, A.; Kaunitz, J.D. Gastroduodenal Mucosal Defense. Curr. Opin. Gastroenterol. 2010, 26, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Atay, S.; Tarnawski, A.S.; Dubois, A. Eicosanoids and the Stomach. Prostaglandins Other Lipid Mediat. 2000, 61, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.L. Prostaglandins, NSAIDs, and Gastric Mucosal Protection: Why Doesn’t the Stomach Digest Itself? Physiol. Rev. 2008, 88, 1547–1565. [Google Scholar] [CrossRef]
- Aoi, M.; Aihara, E.; Nakashima, M.; Takeuchi, K. Participation of Prostaglandin E Receptor EP4 Subtype in Duodenal Bicarbonate Secretion in Rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, 96–103. [Google Scholar] [CrossRef]
- Nakashima, M.; Aoi, M.; Aihara, E.; Takeuchi, K. No Role for Prostacyclin IP Receptors in Duodenal HCO3-secretion Induced by Mucosal Acidification in Mice—Comparison with Capsaicin-Induced Response. Digestion 2004, 70, 16–25. [Google Scholar] [CrossRef]
- Mizui, T.; Sato, H.; Hirose, F.; Doteuchi, M. Effect of Antiperoxidative Drugs on Gastric Damage Induced by Ethanol in Rats. Life Sci. 1987, 41, 755–763. [Google Scholar] [CrossRef]
- Ignatowicz, E.; Wozniak, A.; Kulza, M.; Señczuk-Przybylowska, M.; Cimino, F.; Piekoszewski, W.; Chuchracki, M.; Florek, E. Exposure to Alcohol and Tobacco Smoke Causes Oxidative Stress in Rats. Pharmacol. Rep. 2013, 65, 906–913. [Google Scholar] [CrossRef] [Green Version]
- Uchôa, V.T.; Sousa, C.M.M.; Carvalho, A.A.; Sant’Ana, A.E.G.; Chaves, M.H. Free Radical Scavenging Ability of Ximenia americana L. Stem Bark and Leaf Extracts. J. Appl. Pharm. Sci. 2016, 6, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Mizui, T.; Doteuchi, M. Effect of Polyamines on Acidified Ethanol-Induced Gastric Lesions in Rats. Jpn. J. Pharmacol. 1983, 33, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Avila, J.R.; Alarcón De La Lastra, C.; Martín, M.J.; Motilva, V.; Luque, I.; Delgado, D.; Esteban, J.; Herrerias, J. Role of Endogenous Sulphydryls and Neutrophil Infiltration in the Pathogenesis of Gastric Mucosal Injury Induced by Piroxicam in Rats. Inflamm. Res. 1996, 45, 83–88. [Google Scholar] [CrossRef]
- Allen, A.; Flemström, G. Gastroduodenal Mucus Bicarbonate Barrier: Protection against Acid and Pepsin. Am. J. Physiol. Cell Physiol. 2005, 288, C1–C19. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Liao, H.; Liu, Y.; Zheng, Y.; Wu, X.; Su, Z.; Zhang, X.; Lai, Z.; Lai, X.; Lin, Z.X.; et al. Protective Effects of Pogostone from Pogostemonis Herba against Ethanol-Induced Gastric Ulcer in Rats. Fitoterapia 2015, 100, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Jordão, A.A., Jr.; Chiarello, P.G.; Bernardes, M.S.M.; Vannucchi, H. Peroxidação Lipídica e Etanol: Papel da Glutationa Reduzida e da Vitamina e Lipid Peroxidation and Ethanol: Role of Vitamin-E and Glutathione. Med. Ribeirão Preto 1998, 31, 434–449. [Google Scholar] [CrossRef] [Green Version]
- Yokotani, K.; Okuma, Y.; Nakamura, K.; Osumi, Y. Release of Endogenous Acetylcholine from a Vascularly Perfused Rat Stomach in Vitro; Inhibition by M3 Muscarinic Autoreceptors and Alpha-2 Adrenoceptors. J. Pharmacol. Exp. Ther. 1993, 266, 1190–1195. [Google Scholar] [CrossRef]
- Cho, C.H. Current Roles of Nitric Oxide in Gastrointestinal Disorders. J. Physiol. Paris 2001, 95, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.O.; Lucetti, L.T.; Wong, D.V.T.; Aragão, K.S.; Junior, E.M.A.; Soares, P.M.G.; Barbosa, A.L.R.; Ribeiro, R.A.; Souza, M.H.L.P.; Medeiros, J.V.R. Alendronate Induces Gastric Damage by Reducing Nitric Oxide Synthase Expression and NO/CGMP/KATP Signaling Pathway. Nitric Oxide 2014, 40, 22–30. [Google Scholar] [CrossRef]
- Bayir, H. Reactive Oxygen Species. Crit. Care Med. 2005, 33, S498–S501. [Google Scholar] [CrossRef]
- da Silva Pantoja, P.; Assreuy, A.M.S.; Silva, R.O.; Damasceno, S.R.B.; Mendonça, V.A.; Mendes, T.S.; Morais, J.A.V.; de Almeida, S.L.; Teixeira, A.É.E.A.; de Souza, M.H.L.P.; et al. The Polysaccharide-Rich Tea of Ximenia americana Barks Prevents Indomethacin-Induced Gastrointestinal Damage via Neutrophil Inhibition. J. Ethnopharmacol. 2018, 224, 195–201. [Google Scholar] [CrossRef]
- Hansen, M.B. Neurohumoral Control of Gastrointestinal Motility. Physiol. Res. 2003, 52, 1–30. [Google Scholar]
- de Alencar Silva, A.; Pereira-de-Morais, L.; Rodrigues da Silva, R.E.; de Menezes Dantas, D.; Brito Milfont, C.G.; Gomes, M.F.; Araújo, I.M.; Kerntopf, M.R.; Alencar de Menezes, I.R.; Barbosa, R. Pharmacological Screening of the Phenolic Compound Caffeic Acid Using Rat Aorta, Uterus and Ileum Smooth Muscle. Chem. Biol. Interact. 2020, 332, 109269. [Google Scholar] [CrossRef]
- de Lacerda Neto, L.J.; Ramos, A.G.B.; Santos Sales, V.; de Souza, S.D.G.; dos Santos, A.T.L.; de Oliveira, L.R.; Kerntopf, M.R.; de Albuquerque, T.R.; Coutinho, H.D.M.; Quintans-Júnior, L.J.; et al. Gastroprotective and Ulcer Healing Effects of Hydroethanolic Extract of Leaves of Caryocar coriaceum: Mechanisms Involved in the Gastroprotective Activity. Chem. Biol. Interact. 2017, 261, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Vidal, C.S.; Oliveira Brito Pereira Bezerra Martins, A.; de Alencar Silva, A.; de Oliveira, M.R.C.; Ribeiro-Filho, J.; de Albuquerque, T.R.; Coutinho, H.D.M.; da Silva Almeida, J.R.G.; Quintans, L.J.; de Menezes, I.R.A. Gastroprotective Effect and Mechanism of Action of Croton rhamnifolioides Essential Oil in Mice. Biomed. Pharmacother. 2017, 89, 47–55. [Google Scholar] [CrossRef]
- Brito, S.A.; Barbosa, I.S.; de Almeida, C.L.F.; de Medeiros, J.W.; Silva Neto, J.C.; Rolim, L.A.; da Silva, T.G.; Ximenes, R.M.; de Menezes, I.R.A.; Caldas, G.F.R.; et al. Evaluation of Gastroprotective and Ulcer Healing Activities of Yellow Mombin Juice from Spondias mombin L. PLoS ONE 2018, 13, e0201561. [Google Scholar] [CrossRef]
- Brito, S.M.O.; Martins, A.O.B.P.B.; de Oliveira, M.R.C.; Vidal, C.S.; de Lacerda Neto, L.J.; Ramos, A.G.B.; da Cruz, L.P.; Nascimento, E.A.; da Costa, J.G.M.; Coutinho, H.D.M.; et al. Gastroprotective and Cicatrizing Activity of the Ziziphus joazeiro Mart. Leaf Hydroalcoholic Extract. J. Physiol. Pharmacol. 2020, 71, 429–436. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development (OECD). Guidelines for Testing of Chemicals, Acute Oral Toxicity-Fixed Dose Procedure; Organisation for Economic Co-Operation and Development (OECD): Paris, France, 2001.
- Malone, M.H.; Robichaud, R.C. A Hippocratic Screen for Pure or Crude Drug Materials. Lloydia 1962, 25, 320–332. [Google Scholar]
- Morimoto, Y.; Shimohara, K.; Oshima, S.; Sukamoto, T. Effects of the New Anti-Ulcer Agent KB-5492 on Experimental Gastric Mucosal Lesions and Gastric Mucosal Defensive Factors, as Compared to Those of Teprenone and Cimetidine. Jpn. J. Pharmacol. 1991, 57, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Rahgozar, M.; Pazokitoroudi, H.; Bakhtiarian, A.; Djahanguiri, B. Diazoxide, a KATP Opener, Accelerates Restitution of Ethanol or Indomethacin-Induced Gastric Ulceration in Rats Independent of Polyamines. J. Gastroenterol. Hepatol. 2001, 16, 290–296. [Google Scholar] [CrossRef]
- Zinkievich, J.M.; George, S.; Jha, S.; Nandi, J.; Levine, R.A. Gastric Acid Is the Key Modulator in the Pathogenesis of Non-Steroidal Anti-Inflammatory Drug-Induced Ulceration in Rats. Clin. Exp. Pharmacol. Physiol. 2010, 37, 654–661. [Google Scholar] [CrossRef]
- Matsuda, H.; Li, Y.; Yoshikawa, M. Roles of Capsaicin-Sensitive Sensory Nerves, Endogenous Nitric Oxide, Sulfhydryls, and Prostaglandins in Gastroprotection by Momordin Ic, an Oleanolic Acid Oligoglycoside, on Ethanol-Induced Gastric Mucosal Lesions in Rats. Life Sci. 1999, 65, PL27–PL32. [Google Scholar] [CrossRef]
- Rafatullah, S.; Tariq, M.; Al-Yahya, M.A.; Mossa, J.S.; Ageel, A.M. Evaluation of Turmeric (Curcuma longa) for Gastric and Duodenal Antiulcer Activity in Rats. J. Ethnopharmacol. 1990, 29, 25–34. [Google Scholar] [CrossRef]
- Alphin, R.S.; Ward, J.W. An Investigation of Antihistaminic Activity and Gastric Ulceration. Eur. J. Pharmacol. 1969, 6, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Bodhankar, S.; Jain, B.; Ahire, B.; Daude, R.; Shitole, P. The Effect of Rabeprazole and Its Isomers on Aspirin and Histamine-Induced Ulcers in Rats. Indian J. Pharmacol. 2006, 38, 357. [Google Scholar] [CrossRef]
- Green, L.C.; Tannenbaum, S.R.; Goldman, P. Nitrate Synthesis in the Germfree and Conventional Rat. Science 1981, 212, 56–58. [Google Scholar] [CrossRef]
- Bradley, P.P.; Christensen, R.D.; Rothstein, G. Cellular and Extracellular Myeloperoxidase in Pyogenic Inflammation. Blood 1982, 60, 618–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stickney, J.C.; Northup, D.W. Effect of Gastric Emptying upon Propulsive Motility of Small Intestine of Rats. Exp. Biol. Med. 1959, 101, 582–583. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessoa, R.T.; Alcântara, I.S.; da Silva, L.Y.S.; da Costa, R.H.S.; Silva, T.M.; de Morais Oliveira-Tintino, C.D.; Ramos, A.G.B.; de Oliveira, M.R.C.; Martins, A.O.B.P.B.; de Lacerda, B.C.G.V.; et al. Ximenia americana L.: Chemical Characterization and Gastroprotective Effect. Analytica 2023, 4, 141-158. https://doi.org/10.3390/analytica4020012
Pessoa RT, Alcântara IS, da Silva LYS, da Costa RHS, Silva TM, de Morais Oliveira-Tintino CD, Ramos AGB, de Oliveira MRC, Martins AOBPB, de Lacerda BCGV, et al. Ximenia americana L.: Chemical Characterization and Gastroprotective Effect. Analytica. 2023; 4(2):141-158. https://doi.org/10.3390/analytica4020012
Chicago/Turabian StylePessoa, Renata Torres, Isabel Sousa Alcântara, Lucas Yure Santos da Silva, Roger Henrique Souza da Costa, Tarcísio Mendes Silva, Cícera Datiane de Morais Oliveira-Tintino, Andreza Guedes Barbosa Ramos, Maria Rayane Correia de Oliveira, Anita Oliveira Brito Pereira Bezerra Martins, Bruna Caroline Gonçalves Vasconcelos de Lacerda, and et al. 2023. "Ximenia americana L.: Chemical Characterization and Gastroprotective Effect" Analytica 4, no. 2: 141-158. https://doi.org/10.3390/analytica4020012
APA StylePessoa, R. T., Alcântara, I. S., da Silva, L. Y. S., da Costa, R. H. S., Silva, T. M., de Morais Oliveira-Tintino, C. D., Ramos, A. G. B., de Oliveira, M. R. C., Martins, A. O. B. P. B., de Lacerda, B. C. G. V., de Andrade, E. M., Ribeiro-Filho, J., Gonçalves Lima, C. M., Coutinho, H. D. M., & de Menezes, I. R. A. (2023). Ximenia americana L.: Chemical Characterization and Gastroprotective Effect. Analytica, 4(2), 141-158. https://doi.org/10.3390/analytica4020012