Increasing the Pozzolanic Reactivity of Recovered CDW Cement Stone by Mechanical Activation †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mechanical Activation of CDW
3.1.1. Particle Size, SSA
3.1.2. FTIR
3.2. CDW Reactivity
3.2.1. Pozzolanic Reactivity
3.2.2. Compressive Strength
3.2.3. FTIR
4. Conclusions
- The increased specific surface area due to mechanical activation improved the pozzolanic reactivity of CDW dust (50% better CaO uptake after 10 min of milling).
- The use of CDW dust as a cement substitute reduced the strength of cement-based materials.
- The use of mechanically activated CDW led to a lower strength reduction than the unactivated sample.
- As a result, cement can be replaced with mechanically activated CDW in remarkable quantities (20 or 30%); thus it can be used primarily in areas where high structural performance is not required.
- No significant changes occurred in the structure due to MA. However, the increase in intensity of the C–S–H band indicates the possible surface amorphization of the particles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akhtar, A.; Sarmah, A.K. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Cleaner Product. 2018, 186, 262–281. [Google Scholar] [CrossRef]
- Eurostat, Waste Statistic–European Commission. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation (accessed on 12 October 2022).
- Gedik, A. A review on the evaluation of the potential utilization of construction and demolition waste in hot mix asphalt pavements. Res. Con. Rec. 2020, 161, 104956. [Google Scholar] [CrossRef]
- Li, L.; Liu, Q.; Huang, T.; Peng, W. Mineralization and utilization of CO2 in construction and demolition wastes recycling for building materials: A systematic review of recycled concrete aggregate and recycled hardened cement powder. Sep. Pur. Technol. 2022, 298, 121512. [Google Scholar] [CrossRef]
- Bordoloi, S.; Afolayan, O.D.; Ng, C.W.W. Feasibility of construction demolition waste for unexplored geotechnical and geo-environmental applications—A review. Constr. Build. Mater. 2022, 356, 129230. [Google Scholar] [CrossRef]
- Tavakoli Mehrjardi, G.; Azizi, A.; Haji-Aziz, A.; Asdollafardi, G. Evaluating and improving the construction and demolition waste technical properties to use in road construction. Trans. Geotech. 2020, 23, 100349. [Google Scholar] [CrossRef]
- Mohammed, M.S.; ElKady, H.; Abdel-Gawwad, H.A. Utilization of construction and demolition waste and synthetic aggregates. J. Build. Eng. 2021, 43, 103207. [Google Scholar] [CrossRef]
- Khodaei, H.; Olson, C.; Patino, D.; Rico, J.; Jin, Q.; Boateng, A. Multi-objective utilization of wood waste recycled from construction and demolition (C&D): Products and characterization. Waste Man. 2022, 149, 228–238. [Google Scholar] [CrossRef]
- Luciano, A.; Cutaia, L.; Altamura, P.; Penalvo, E. Critical issues hindering a widespread construction and demolition waste (CDW) recycling practice in EU countries and actions to undertake: The stakeholder’s perspective. Sust. Chem. Pharm. 2022, 29, 100745. [Google Scholar] [CrossRef]
- Kumar, R. Influence of recycled coarse aggregate derived from construction and demolition waste (CDW) on abrasion resistance of pavement concrete. Constr. Build. Mater. 2017, 142, 248–255. [Google Scholar] [CrossRef]
- Thomas, C.; Setién, J.; Polanco, J.A. Structural recycled aggregate concrete made with precast wastes. Construct. Build. Mater. 2016, 114, 536–546. [Google Scholar] [CrossRef]
- López Gayarre, F.; Suárez González, J.; Blanco Viñuela, R.; López-Colina Pérez, C.; Serrano López, M.A. Use of recycled mixed aggregates in floor blocks manufacturing. J. Clean. Prod. 2017, 167, 713–722. [Google Scholar] [CrossRef]
- Plaza, P.; Sáez del Bosque, I.F.; Frías, M.; Sánchez de Rojas, M.I.; Medina, C. Use of recycled coarse and fine aggregates in structural eco-concretes. Physical and mechanical properties and CO2 emissions. Constr. Build. Mater. 2021, 285, 122926. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A review of recycled aggregate in concrete applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar] [CrossRef]
- Braga, M.; de Brito, J.; Veiga, R. Incorporation of fine concrete aggregates in mortars. Constr. Build. Mater. 2012, 36, 960–968. [Google Scholar] [CrossRef]
- Moreno-Juez, J.; Vegas, I.J.; Frías Rojas, M.; Vigil de la Villa, R.; Guede-Vázquez, E. Laboratory-scale study and semi-industrial validation of viability of inorganic CDW fine fractions as SCMs in blended cements. Constr. Build. Mater. 2021, 271, 121823. [Google Scholar] [CrossRef]
- Tan, J.; Cizer, Ö.; De Vlieger, J.; Dan, H.; Li, J. Impacts of milling duration on construction and demolition waste (CDW) based precursor and resulting geopolymer: Reactivity, geopolymerization and sustainability. Res. Con. Rec. 2022, 184, 106433. [Google Scholar] [CrossRef]
- Fediuk, R.S.; Ibragimov, R.A.; Lesovik, V.S.; Pak, A.A.; Krylov, V.V.; Poleschuk, M.M.; Stoyushko, N.Y.; Gladkova, N.A. Processing equipment for grinding of building powders. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 042029. [Google Scholar] [CrossRef]
- Li, S.; Li, Q.; Zhao, X.; Luo, J.; Gao, S.; Yue, G.; Su, D. Experimental Study on the Preparation of Recycled Admixtures by Using Construction and Demolition Waste. Materials 2019, 12, 1678. [Google Scholar] [CrossRef] [Green Version]
- Mucsi, G.; Halyag Papné, N.; Ulsen, C.; Figueiredo, P.O.; Kristály, F. Mechanical Activation of Construction and Demolition Waste in Order to Improve Its Pozzolanic Reactivity. ACS Sustain. Chem. Eng. 2021, 9, 3416–3427. [Google Scholar] [CrossRef]
- Tang, Q.; Ma, Z.; Wu, H.; Wang, W. The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: A critical review. Cement Concr. Compos. 2020, 114, 103807. [Google Scholar] [CrossRef]
- Amor, F.; Diouri, A.; Ellouzi, I.; Ouanji, F. Development of Zn-Al-Ti mixed oxides-modified cement phases for surface photocatalytic performance. Case Stud. Constr. Mater. 2018, 9, e00209. [Google Scholar] [CrossRef]
- Cho, J.; Waetzig, G.R.; Udayakantha, M.; Hong, C.Y.; Banerjee, S. Incorporation of Hydroxyethylcellulose-Functionalized Halloysite as a Means of Decreasing the Thermal Conductivity of Oilwell Cement. Sci. Rep. 2018, 8, 16149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristelo, N.; Fernández-Jiménez, A.; Vieira, C.; Miranda, T.; Palomo, Á. Stabilisation of construction and demolition waste with a high fines content using alkali activated fly ash. Constr. Build Mater. 2018, 170, 26–39. [Google Scholar] [CrossRef]
- Pešta, J.; Ženíšek, M.; Kočí, V.; Pavlů, T. Environmental perspectives of recycled concrete powder as cement replacement. In Special Concrete and Composites 2020: Proceedings of the 17th International Conference, Lísek, Czech Republic, 14–15 October 2020; AIP Publishing LLC: Melville, NY, USA, 2021; Volume 2322, p. 020028. [Google Scholar] [CrossRef]
- Lu, B.; Shi, C.; Zhang, J.; Wang, J. Effects of carbonated hardened cement paste powder on hydration and microstructure of Portland cement. Constr. Build. Mater. 2018, 186, 699–708. [Google Scholar] [CrossRef]
- Monasterio, M.; Caneda-Martínez, L.; Vegas, I.; Frías, M. Progress in the influence of recycled construction and demolition mineral-based blends on the physical–mechanical behaviour of ternary cementitious matrices. Constr. Build. Mater. 2022, 344, 128169. [Google Scholar] [CrossRef]
- Horgnies, M.; Chen, J.J.; Bouillon, C. Overview about the use of Fourier transform infrared spectroscopy to study cementitious materials. WIT Trans. Eng. Sci. 2013, 77, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Shi, C.; Hu, X.; Ou, Z. Effects of CO2 surface treatment on strength and permeability of one-day-aged cement mortar. Constr. Build. Mater. 2017, 154, 1087–1095. [Google Scholar] [CrossRef]
Phase Name | Raw CDW |
---|---|
Quartz | 54.4 |
Muscovite 2M1 | 4.0 |
Calcite | 9.7 |
Vaterite | 6.3 |
Albite | 6.1 |
Orthoclase | 3.0 |
Chlorite IIb | 0.6 |
Ettringite | 0.3 |
Portlandite | 0.2 |
Actinolite | 0.4 |
Amorphous | 15.0 |
Milling Time, min | x10, µm | x50, µm | x80, µm | SSA, cm2/cm3 |
---|---|---|---|---|
0 | 2.61 | 10.74 | 22.76 | 9500 |
1 | 2.31 | 8.27 | 23.65 | 10,961 |
3 | 2.25 | 8.23 | 24.97 | 11,096 |
5 | 2.24 | 7.38 | 20.1 | 11,715 |
10 | 2.02 | 6.99 | 19.62 | 12,601 |
SSA of CDW (cm2/cm3) | ∑Adsorbed CaO (mg/g) |
---|---|
9500 | 126.9 |
10,961 | 131.4 |
11,096 | 126.7 |
11,715 | 169.0 |
12,601 | 192.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, R.; Szűcs, M.; Ambrus, M.; Mucsi, G. Increasing the Pozzolanic Reactivity of Recovered CDW Cement Stone by Mechanical Activation. Mater. Proc. 2023, 13, 27. https://doi.org/10.3390/materproc2023013027
Szabó R, Szűcs M, Ambrus M, Mucsi G. Increasing the Pozzolanic Reactivity of Recovered CDW Cement Stone by Mechanical Activation. Materials Proceedings. 2023; 13(1):27. https://doi.org/10.3390/materproc2023013027
Chicago/Turabian StyleSzabó, Roland, Máté Szűcs, Mária Ambrus, and Gábor Mucsi. 2023. "Increasing the Pozzolanic Reactivity of Recovered CDW Cement Stone by Mechanical Activation" Materials Proceedings 13, no. 1: 27. https://doi.org/10.3390/materproc2023013027
APA StyleSzabó, R., Szűcs, M., Ambrus, M., & Mucsi, G. (2023). Increasing the Pozzolanic Reactivity of Recovered CDW Cement Stone by Mechanical Activation. Materials Proceedings, 13(1), 27. https://doi.org/10.3390/materproc2023013027