The Use of Calcined Diatomite as an Additive to Geopolymeric Materials †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Samples Preparation
2.2. Research Methods
2.2.1. Phase Composition of Precursors
2.2.2. Strength Tests
2.2.3. Microstructure
3. Results and Discussion
3.1. Phase Composition of Precursors Results
3.2. Mechanical Properties
3.3. Microscopic Observations
4. Conclusions
- The phase composition of calcined and non-calcined diatomite dust differs only in the percentage of phases—the same phases are present in both cases but in different percentage ratios.
- Mechanical investigations have shown that the addition of diatomite dust can positively affect the strength properties of the geopolymer.
- In addition to the percentage addition of diatomite dust, the mechanical properties of the tested geopolymer materials were influenced by the concentration of the alkali activator used.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, N.B.; Middendorf, B. Geopolymers as an Alternative to Portland Cement: An Overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Petrus, H.T.B.M.; Olvianas, M.; Shafiyurrahman, M.F.; Pratama, I.G.A.A.N.; Jenie, S.N.A.; Astuti, W.; Nurpratama, M.I.; Ekaputri, J.J.; Anggara, F. Circular Economy of Coal Fly Ash and Silica Geothermal for Green Geopolymer: Characteristic and Kinetic Study. Gels 2022, 8, 233. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.V.; Le, V.S.; Louda, P.; Szczypiński, M.M.; Ercoli, R.; Vojtěch, R.; Łoś, P.; Prałat, K.; Plaskota, P.; Pacyniak, T.; et al. Low-Density Geopolymer Composites for the Construction Industry. Polymers 2022, 14, 304. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.A.; Habert, G.; Myers, R.J.; Harvey, J.T. Achieving Net Zero Greenhouse Gas Emissions in the Cement Industry via Value Chain Mitigation Strategies. One Earth 2021, 4, 1398–1411. [Google Scholar] [CrossRef]
- Plawecka, K.; Figiela, B.; Grela, A.; Buczkowska, K.E. Geopolymers Based on Plasma Incineration Waste as a Material for Circular Economy. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Wrocław, Poland, 23–25 June 2021; Volume 942. [Google Scholar]
- Łach, M.; Mierzwiński, D.; Korniejenko, K.; Mikuła, J.; Hebda, M. Geopolymers as a Material Suitable for Immobilization of Fly Ash from Municipal Waste Incineration Plants. J. Air Waste Manag. Assoc. 2018, 68, 1190–1197. [Google Scholar] [CrossRef]
- Pławecka, K.; Bazan, P.; Lin, W.-T.; Korniejenko, K.; Sitarz, M.; Nykiel, M. Development of Geopolymers Based on Fly Ashes from Different Combustion Processes. Polymers 2022, 14, 1954. [Google Scholar] [CrossRef]
- John, S.K.; Nadir, Y.; Girija, K. Effect of Source Materials, Additives on the Mechanical Properties and Durability of Fly Ash and Fly Ash-Slag Geopolymer Mortar: A Review. Constr. Build. Mater. 2021, 280, 122443. [Google Scholar] [CrossRef]
- Nuaklong, P.; Jongvivatsakul, P.; Pothisiri, T.; Sata, V.; Chindaprasirt, P. Influence of Rice Husk Ash on Mechanical Properties and Fire Resistance of Recycled Aggregate High-Calcium Fly Ash Geopolymer Concrete. J. Clean. Prod. 2020, 252, 119797. [Google Scholar] [CrossRef]
- Nuaklong, P.; Wongsa, A.; Sata, V.; Boonserm, K.; Sanjayan, J.; Chindaprasirt, P. Properties of High-Calcium and Low-Calcium Fly Ash Combination Geopolymer Mortar Containing Recycled Aggregate. Heliyon 2019, 5, e02513. [Google Scholar] [CrossRef] [Green Version]
- Dąbrowski, M. Effect of Addition of Lime Fly Ash on Microstructure and Frost Resistance of Composites with Cementitious Matrices; Institute of Fundamental Technological Research, Polish Academy of Sciences, Laboratory of Strain Fields: Warsaw, Poland, 2016. [Google Scholar]
- Ersoy, O.; Rençberoğlu, M.; Karapınar Güler, D.; Özkaya, Ö.F. A Novel Flux That Determines the Physico-Chemical Properties of Calcined Diatomite in Its Industrial Use as a Filler and Filter Aid: Thenardite (Na2SO4). Crystals 2022, 12, 503. [Google Scholar] [CrossRef]
- Łach, M.; Pławecka, K.; Marczyk, J.; Ziejewska, C.; Hebdowska-Krupa, M.; Nykiel, M.; Hebda, M.; Miernik, K.; Mierzwiński, D.; Korniejenko, K.; et al. Use of Diatomite from Polish Fields in Sustainable Development as a Sorbent for Petroleum Substances. J. Clean. Prod. 2023, 389, 136100. [Google Scholar] [CrossRef]
- Łach, M.; Grela, A.; Pławecka, K.; Guigou, M.D.; Mikuła, J.; Komar, N.; Bajda, T.; Korniejenko, K. Surface Modification of Synthetic Zeolites with Ca and HDTMA Compounds with Determination of Their Phytoavailability and Comparison of CEC and AEC Parameters. Materials 2022, 15, 4083. [Google Scholar] [CrossRef] [PubMed]
- Łach, M.; Grela, A.; Bajda, T.; Mierzwiński, D.; Komar, N.; Mikuła, J. Production of Zeolite Sorbents from Burning and Co-Burning Biomass with Coal. E3S Web Conf. 2018, 44, 00097. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.; Jiang, A.; Liang, B. Development of Eco-Efficiency Concrete Containing Diatomite and Iron Ore Tailings: Mechanical Properties and Strength Prediction Using Deep Learning. Constr. Build. Mater. 2022, 327, 126930. [Google Scholar] [CrossRef]
- Kapeluszna, E.; Szudek, W.; Wolka, P.; Zieliński, A. Implementation of Alternative Mineral Additives in Low-Emission Sustainable Cement Composites. Materials 2021, 14, 6423. [Google Scholar] [CrossRef]
- Formela, M.; Stryczek, S. Fly Ashes from the Combustion of Lignite as Additive to the Cement Slurry Used in the Work of Filling Voids in the Rock Mass. Sci. J. Inst. Miner. Energy Econ. Pol. Acad. Sci. 2017, 97, 117–134. [Google Scholar]
- Ediz, N.; Bentli, I.; Tatar, I. Improvement in Filtration Characteristics of Diatomite by Calcination. Int. J. Miner. Process. 2010, 94, 129–134. [Google Scholar] [CrossRef]
- Ren, Z.; Gao, H.; Zhang, H.; Liu, X. Effects of Fluxes on the Structure and Filtration Properties of Diatomite Filter Aids. Int. J. Miner. Process. 2014, 130, 28–33. [Google Scholar] [CrossRef]
- Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results. Chem. Mater. 2005, 17, 3075–3085. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer Technology: The Current State of the Art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Relucenti, M.; Familiari, G.; Donfrancesco, O.; Taurino, M.; Li, X.; Chen, R.; Artini, M.; Papa, R.; Selan, L. Microscopy Methods for Biofilm Imaging: Focus on SEM and VP-SEM Pros and Cons. Biology 2021, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, S.; Li, Z.; Zhang, Q.; Li, H.; Du, J.; Qi, Y. Properties of Fresh and Hardened Geopolymer-Based Grouts. Ceramics Silikaty 2019, 63, 164–173. [Google Scholar] [CrossRef]
- Alehyen, S.; Achouri, M.E.; Taibi, M. Characterization, Microstructure and Properties of Fly Ash-Based Geopolymer. J. Mater. Environ. Sci. 2017, 8, 1783–1796. [Google Scholar]
Material | D10 [µm] | D50 [µm] | D90 [µm] | Mean Size [µm] |
---|---|---|---|---|
Diatomite dust | 2.997 | 11.232 | 20.970 | 12.218 |
Fly ash from Belchatow | 3.295 | 20.411 | 37.125 | 21.413 |
Index | Base Materials (S) [Weight Ratio] | Alkaline Activator (L) | Liquid/Solid Ratio [Weight Ratio] | ||
---|---|---|---|---|---|
Fly Ash | Sand | Diatomite Dust | |||
R10 | 1 | 1 | - | 10 M NaOH + sodium water glass (weight ratio: 1:2.5) | 1:0.30 |
10MDN10% | 1 | 0.9 | 0.10 | 1:0.35 | |
10MDK10% | 1 | 0.9 | 0.10 | 1:0.35 | |
10MDN15% | 1 | 0.85 | 0.15 | 1:0.40 | |
10MDK15% | 1 | 0.85 | 0.15 | 1:0.40 | |
10MDN30% | 1 | 0.70 | 0.30 | 1:0.45 | |
10MDK30% | 1 | 0.70 | 0.30 | 1:0.45 | |
R14 | 1 | 1 | - | 14 M NaOH + sodium water glass (weight ratio: 1:2.5) | 1:0.3 |
14MDN10% | 1 | 0.9 | 0.10 | 1:0.35 | |
14MDK10% | 1 | 0.9 | 0.10 | 1:0.35 | |
14MDN15% | 1 | 0.85 | 0.15 | 1:0.40 | |
14MDK15% | 1 | 0.85 | 0.15 | 1:0.40 | |
14MDN30% | 1 | 0.70 | 0.30 | 1:0.45 | |
14MDK30% | 1 | 0.70 | 0.30 | 1:0.45 |
Identified Phase | Gehlenite | Anhydrite | Anorthite | Mullite | Hematite | Ye`elimite | Chlormayenite | Lime | Quartz |
---|---|---|---|---|---|---|---|---|---|
Chemical formula | Ca2Al2SiO7 | CaSO4 | CaAl2Si2O8 | Al6Si2O13 | Fe2O3 | Ca4Al6(SO4) | C12Al14O33 | CaO | SiO2 |
Percentage proportion [%] | 30.9 | 16.2 | 15.5 | 14.1 | 10.2 | 5.7 | 3.2 | 2.9 | 1.3 |
Non-Calcined Diatomite Dust | ||||
Identified phase | Silicon Oxide | Kaolinite—1A | Aluminum Oxide | Albite |
Chemical formula | SiO2 | Al2Si2O5(OH)4 | Al2O3 | NaAlSi3O5 |
Percentage proportion [%] | 32.5 | 49.1 | 0.5 | 17.9 |
Calcined Diatomite Dust | ||||
Identified phase | Silicon Oxide | Kaolinite—1A | Aluminum Oxide | Albite |
Chemical formula | SiO2 | Al2Si2O5(OH)4 | Al2O3 | NaAlSi3O5 |
Percentage proportion [%] | 37.8 | 31.6 | 0.2 | 30.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pławecka, K.; Bąk, A.; Hebdowska-Krupa, M.; Łach, M. The Use of Calcined Diatomite as an Additive to Geopolymeric Materials. Mater. Proc. 2023, 13, 28. https://doi.org/10.3390/materproc2023013028
Pławecka K, Bąk A, Hebdowska-Krupa M, Łach M. The Use of Calcined Diatomite as an Additive to Geopolymeric Materials. Materials Proceedings. 2023; 13(1):28. https://doi.org/10.3390/materproc2023013028
Chicago/Turabian StylePławecka, Kinga, Agnieszka Bąk, Maria Hebdowska-Krupa, and Michał Łach. 2023. "The Use of Calcined Diatomite as an Additive to Geopolymeric Materials" Materials Proceedings 13, no. 1: 28. https://doi.org/10.3390/materproc2023013028