Characterizing Hydroxyapatite Deposited from Solution onto Novel Substrates in Terms of Growth Mechanism and Physical Chemical Properties †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobbs, H.S.; Scales, J.T. Behavior of Commercially Pure Titanium and Ti-318 (Ti-6Al-4V) in Orthopedic Implants. Titan. Alloy. Surg. Implant. 1983, B10, 173–186. [Google Scholar] [CrossRef]
- Keegan, G.M.; Learmonth, I.D.; Case, C. A Systematic Comparison of the Actual, Potential, and Theoretical Health Effects of Cobalt and Chromium Exposures from Industry and Surgical Implants. Crit. Rev. Toxicol. 2008, 38, 645–674. [Google Scholar] [CrossRef] [PubMed]
- Grupp, T.M.; Weik, T.; Bloemer, W.; Knaebel, H.-P. Modular Titanium Alloy Neck Adapter Failures in Hip Replacement—Failure Mode Analysis and Influence of Implant Material. BMC Musculoskelet. Disord. 2010, 11, 3. [Google Scholar] [CrossRef]
- Siddiqi, A.; Payne, A.G.T.; Silva, R.K.D.; Duncan, W.J. Titanium Allergy: Could It Affect Dental Implant Integration? Clin. Oral Implant. Res. 2011, 22, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Swiatkowska, I.; Martin, N.; Hart, A.J. Blood Titanium Level as a Biomarker of Orthopaedic Implant Wear. J. Trace Elem. Med. Biol. 2019, 53, 120–128. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. Int. J. Biomater. 2011, 2011, 836587. [Google Scholar] [CrossRef]
- Shi, Y.D.; Wang, L.N.; Liang, S.X.; Zhou, Q.; Zheng, B. A High Zr-Containing Ti-Based Alloy with Ultralow Young’s Modulus and Ultrahigh Strength and Elastic Admissible Strain. Mater. Sci. Eng. A 2016, 674, 696–700. [Google Scholar] [CrossRef]
- Tan, M.H.C.; Baghi, A.D.; Ghomashchi, R.; Xiao, W.; Oskouei, R.H. Effect of Niobium Content on the Microstructure and Young’s Modulus of Ti-XNb-7Zr Alloys for Medical Implants. J. Mech. Behav. Biomed. Mater. 2019, 99, 78–85. [Google Scholar] [CrossRef]
- Nakai, M.; Niinomi, M.; Zhao, X.; Zhao, X. Self-Adjustment of Young’s Modulus in Biomedical Titanium Alloys during Orthopaedic Operation. Mater. Lett. 2011, 65, 688–690. [Google Scholar] [CrossRef]
- Abitha, H.; Kavitha, V.; Gomathi, B.; Ramachandran, B. A Recent Investigation on Shape Memory Alloys and Polymers Based Materials on Bio Artificial Implants-Hip and Knee Joint. Mater. Today Proc. 2020, 33, 4458–4466. [Google Scholar] [CrossRef]
- Saad, M.; Akhtar, S.; Srivastava, S. Composite Polymer in Orthopedic Implants: A Review. Mater. Today Proc. 2018, 5, 20224–20231. [Google Scholar] [CrossRef]
- Ismail, N.F.; Shuib, S.; Romli, A.Z.; Saeid, N.H. Epoxy-Coated of Bamboo Fibre Reinforced Polymer Composite for Uncemented Total Hip Replacement (THR) Application. J. Mech. Eng. 2020, 9, 167–177. [Google Scholar]
- Auclair-Daigle, C.; Bureau, M.N.; Legoux, J.-G.; Yahia, L. Bioactive Hydroxyapatite Coatings on Polymer Composites for Orthopedic Implants. J. Biomed. Mater. Res. Part A 2005, 73A, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Balasundaram, G.; Webster, T.J. An Overview of Nano-Polymers for Orthopedic Applications. Macromol. Biosci. 2007, 7, 635–642. [Google Scholar] [CrossRef]
- Andrusova, N.N.; Zhavoronok, E.S.; Legon’kova, O.A.; Goncharova, A.S.; Kedik, S.A. Polymer–Mineral Compounds for Cementless Hip Replacement. Polym. Sci. Ser. D 2020, 13, 68–72. [Google Scholar] [CrossRef]
- de Andrade, M.C.; Filgueiras, M.R.; Ogasawara, T. Nucleation and Growth of Hydroxyapatite on Titanium Pretreated in NaOH Solution: Experiments and Thermodynamic Explanation. J. Biomed. Mater. Res. 1999, 46, 441–446. [Google Scholar] [CrossRef]
- Kim, C.; Kendall, M.R.; Miller, M.A.; Long, C.L.; Larson, P.R.; Humphrey, M.B.; Madden, A.S.; Tas, A.C. Comparison of Titanium Soaked in 5 M NaOH or 5 M KOH Solutions. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 327–339. [Google Scholar] [CrossRef]
- Keller, L.; Rey-Fessler, P. Nondestructive Characterization of Hydroxylapatite Coated Dental Implants by XRD Method. In Characterization and Performance of Calcium Phosphate Coatings for Implants; Horowitz, E., Parr, J.E., Eds.; ASTM International: Miami, FL, USA, 1992. [Google Scholar]
- Ślósarczyk, A.; Paszkiewicz, Z.; Paluszkiewicz, C. FTIR and XRD Evaluation of Carbonated Hydroxyapatite Powders Synthesized by Wet Methods. J. Mol. Struct. 2005, 744–747, 657–661. [Google Scholar] [CrossRef]
- Chappard, C.; André, G.; Daudon, M.; Bazin, D. Analysis of Hydroxyapatite Crystallites in Subchondral Bone by Fourier Transform Infrared Spectroscopy and Powder Neutron Diffraction Methods. Comptes Rendus Chim. 2016, 19, 1625–1630. [Google Scholar] [CrossRef]
- Rehman, I.; Bonfield, W. Characterization of Hydroxyapatite and Carbonated Apatite by Photo Acoustic FTIR Spectroscopy. J. Mater. Sci. Mater. Med. 1997, 8, 1–4. [Google Scholar] [CrossRef]
- Ślósarczyk, A.; Paluszkiewicz, C.; Gawlicki, M.; Paszkiewicz, Z. The FTIR Spectroscopy and QXRD Studies of Calcium Phosphate Based Materials Produced from the Powder Precursors with Different Ratios. Ceram. Int. 1997, 23, 297–304. [Google Scholar] [CrossRef]
- Rujitanapanich, S.; Kumpapan, P.; Wanjanoi, P. Synthesis of Hydroxyapatite from Oyster Shell via Precipitation. Energy Procedia 2014, 56, 112–117. [Google Scholar] [CrossRef]
- Pramatarova, L.; Pecheva, E. Modified Inorganic Surfaces as a Model for Hydroxyapatite Growth; Trans Tech Publications Limited: Stafa-Zurich, Switzerland, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, B.; Baez, J.; Morris, M.A. Characterizing Hydroxyapatite Deposited from Solution onto Novel Substrates in Terms of Growth Mechanism and Physical Chemical Properties. Mater. Proc. 2023, 14, 34. https://doi.org/10.3390/IOCN2023-14491
Murphy B, Baez J, Morris MA. Characterizing Hydroxyapatite Deposited from Solution onto Novel Substrates in Terms of Growth Mechanism and Physical Chemical Properties. Materials Proceedings. 2023; 14(1):34. https://doi.org/10.3390/IOCN2023-14491
Chicago/Turabian StyleMurphy, Bríd, Jhonattan Baez, and Mick A. Morris. 2023. "Characterizing Hydroxyapatite Deposited from Solution onto Novel Substrates in Terms of Growth Mechanism and Physical Chemical Properties" Materials Proceedings 14, no. 1: 34. https://doi.org/10.3390/IOCN2023-14491
APA StyleMurphy, B., Baez, J., & Morris, M. A. (2023). Characterizing Hydroxyapatite Deposited from Solution onto Novel Substrates in Terms of Growth Mechanism and Physical Chemical Properties. Materials Proceedings, 14(1), 34. https://doi.org/10.3390/IOCN2023-14491