Biotechnological Recycling and Recovery of Metals from Waste Printed Circuit Boards and Spent Li-Ion Batteries—Selected Results from the ERAMIN EU BaCLEM Project †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization Result
3.2. Bioleaching of Li and Co from LiBs with a Mixed Culture
3.3. Bioleaching of Cu and Ni from PCBs with Non-adapted Acidophilic Culture
3.4. Iron Removal from the PLS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, J.; Zhang, L. Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater. 2008, 158, 228–256. [Google Scholar] [CrossRef] [PubMed]
- Badawy, S.M.; Nayl, A.A.; El Khashab, R.A.; El-Khateeb, M.A. Cobalt separation from waste mobile phone batteries using selective precipitation and chelating resin. J. Mater. Cycles Waste Manag. 2014, 16, 739–746. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, S.; He, Y. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and coprecipitation processes. Waste Manag. 2017, 64, 219–227. [Google Scholar] [CrossRef] [PubMed]
- IDTechEx. The Electric Vehicle Market and Copper Demand. 2017. Available online: https://copperalliance.org/wp-content/uploads/2017/06/2017.06-E-Mobility-Factsheet-1.pdf (accessed on 29 June 2023).
- European Commission. Study on the EU’s List of Critical Raw Materials; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Mishra, D.; Kim, D.J.; Ralph, D.E.; Ahn, J.G.; Rhee, Y.H. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag. 2008, 28, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Xin, B.; Zhang, D.; Zhang, X.; Xia, Y.; Wu, F.; Chen, S.; Li, L. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour. Technol. 2009, 100, 6163–6169. [Google Scholar] [CrossRef] [PubMed]
- Işıldar, A.; van Hullebusch, E.D.; Lenz, M.; Du Laing, G.; Marra, A.; Cesaro, A.; Panda, S.; Akcil, A.; Kucuker, M.A.; Kuchta, K. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)–A review. J. Hazard. Mater. 2019, 362, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Erust, C.; Akcil, A.; Tuncuk, A.; Panda, S. Intensified acidophilic bioleaching of multi-metals from waste printed circuit boards (WPCBs) of spent mobile phones. J. Chem. Technol. Biotechnol. 2020, 95, 2272–2285. [Google Scholar] [CrossRef]
- Vardanyan, A.; Vardanyan, N.; Aâtach, M.; Malavasi, P.; Gaydardzhiev, S. Bio-Assisted Leaching of Non-Ferrous Metals from Waste Printed Circuit Boards—Importance of Process Parameters. Metals 2022, 12, 2092. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Particle size (µm) | 500 |
Pulp density (%) | 0.5 |
Initial Fe (II) (g/L) | 3–9 |
Initial pH | 1.5–2 |
Bioleaching time | 1–10 days |
Temperature (°C) | 30 |
Stirring (rpm) | 150 |
Parameters | Value |
---|---|
Size (mm) | 22 |
FeSO4 × 7H2O (g/L) | 44.2–124 |
Time (days) | 5–10 |
Stirring (rpm) | 80 |
pH | 1.8–1.9 |
Temperature (°C) | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panda, S.; Akcil, A.; Gaydardzhiev, S.; van Hullebusch, E.D.; Gönen, M.; Dembele, S. Biotechnological Recycling and Recovery of Metals from Waste Printed Circuit Boards and Spent Li-Ion Batteries—Selected Results from the ERAMIN EU BaCLEM Project. Mater. Proc. 2023, 15, 76. https://doi.org/10.3390/materproc2023015076
Panda S, Akcil A, Gaydardzhiev S, van Hullebusch ED, Gönen M, Dembele S. Biotechnological Recycling and Recovery of Metals from Waste Printed Circuit Boards and Spent Li-Ion Batteries—Selected Results from the ERAMIN EU BaCLEM Project. Materials Proceedings. 2023; 15(1):76. https://doi.org/10.3390/materproc2023015076
Chicago/Turabian StylePanda, Sandeep, Ata Akcil, Stoyan Gaydardzhiev, Eric D. van Hullebusch, Mehmet Gönen, and Seydou Dembele. 2023. "Biotechnological Recycling and Recovery of Metals from Waste Printed Circuit Boards and Spent Li-Ion Batteries—Selected Results from the ERAMIN EU BaCLEM Project" Materials Proceedings 15, no. 1: 76. https://doi.org/10.3390/materproc2023015076
APA StylePanda, S., Akcil, A., Gaydardzhiev, S., van Hullebusch, E. D., Gönen, M., & Dembele, S. (2023). Biotechnological Recycling and Recovery of Metals from Waste Printed Circuit Boards and Spent Li-Ion Batteries—Selected Results from the ERAMIN EU BaCLEM Project. Materials Proceedings, 15(1), 76. https://doi.org/10.3390/materproc2023015076