Assessment of the Potential of Polymer/HDI-GO Nanocomposites for Use in Organic Solar-Cells †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of GO and HDI-GO
2.3. Deposition of HDI-GO and HDI-GO/PEDOT:PSS Films
2.4. Instrumentation
3. Results
3.1. Layer Deposition
3.2. UV-Visible Spectra Analysis
3.3. AFM Results
3.4. Thermal Evaporation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Braun, D. Semiconducting polymer LEDs. Mater. Today 2002, 5, 32–39. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684–6696. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Liu, D.; Zhang, C.; Guo, L.J. Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%. Nat. Commun. 2020, 11, 3367. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Zhao, H.; Hu, H.; Wang, S.; Baker, G.L. Synthesis and Characterization of the Hole-Conducting SIlica/Polymer Nanocomposites and Application in Solid-State Dye-Sensitized Solar Cell. ACS Appl. Mater. Interfaces 2013, 5, 4155–4161. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.L.; Jabbour, G.E. Conducting polymer and hydrogenated amorphous silicon hybrid solar cells. Appl. Phys. Lett. 2005, 87, 223504. [Google Scholar] [CrossRef]
- Kayser, L.; Lipomi, D.J. Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31, 1806133. [Google Scholar] [CrossRef]
- He, L.; Rusli; Jiang, C.; Wang, H.; Lai, D. Simple Approach of Fabricating High Efficiency Si Nanowire/Conductive Polymer Hybrid Solar Cells. IEEE Electron. Device Lett. 2011, 32, 1406–1408. [Google Scholar] [CrossRef]
- Wei, W.; Wang, H.; Hu, Y.H. A review on PEDOT-based counter lectrodes for dye-sensitized solar cells. Int. J. Energy Res. 2014, 38, 1099–1111. [Google Scholar] [CrossRef]
- Xia, J.; Chen, L.; Yanagida, S. Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. J. Mater. Chem. 2011, 21, 4644–4649. [Google Scholar] [CrossRef]
- Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L. Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. J. Am. Chem. Soc. 2009, 131, 7792–7799. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Luceño Sánchez, J.A.; Peña Capilla, R.; García Díaz, P. Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells. Polymers 2018, 10, 217. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Sun, Y.; Ren, K.; Liu, K.; Wang, Z.; Qu, S. Recent Development in ITO-free Flexible Polymer Solar Cells. Polymers 2018, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, K.; Jandas, P.J.; Mohanty, S.; Nayak, S.K. Synthesis, characterization of reduced graphene oxide nanosheets and its reinforcement effect on polymer electrolyte for dye sensitized solar cell applications. Sol. Energy 2018, 170, 442–453. [Google Scholar] [CrossRef]
- Lyu, C.-K.; Zheng, F.; Babu, B.H.; Niu, M.-S.; Feng, L.; Yang, J.-L.; Qin, W.; Hao, X.-T. Functionalized Graphene Oxide Enables a High-Performance Builk Heterojunction Organic Solar Cell with a Thick Active Layer. J. Phys. Chem. Lett. 2018, 9, 6238–6248. [Google Scholar] [CrossRef]
- Adeel, M.; Bilal, M.; Rasheed, T.; Sharma, A.; Iqbal, H.M.N. Graphene and graphene oxide: Functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective. Int. J. Biol. Macromol. 2018, 120, 1430–1440. [Google Scholar] [CrossRef]
- Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem. Rev. 2016, 119, 5464–5519. [Google Scholar] [CrossRef]
- Ossonon, B.D.; Bélanger, D. Synthesis and characterization of sulfophenyl-functionalized reduced graphene oxide sheets. RSC Adv. 2017, 7, 27224–27234. [Google Scholar] [CrossRef]
- Jebaranjitham, J.N.; Mageshwari, C.; Saravanan, R.; Mu, N. Fabrication of amine functionalized graphene oxide—AgNPs nanocomposite with improved dispersibility for reduction of 4-nitrophenol. Compos. B Eng. 2019, 171, 302–309. [Google Scholar] [CrossRef]
- Luceño-Sánchez, J.A.; Maties, G.; Gonzalez-Arellano, C.; Diez-Pascual, A.M. Synthesis and Characterization of Graphene Oxide Derivatives via Functionalization Reaction with Hexamethylene Diisocyanate. Nanomaterials 2018, 8, 870. [Google Scholar] [CrossRef]
- Luceño Sánchez, J.A.; Peña Capilla, R.; Díez-Pascual, A.M. High-Performance PEDOT:PSS/Hexamethylene Diisocyanate-Functionalized Graphene Oxide Nanocomposites: Preparation and Properties. Polymers 2018, 10, 1169. [Google Scholar] [CrossRef]
- Luceño Sánchez, J.A.; Díez-Pascual, A.M.; Peña Capilla, R.; García Díaz, P. The Effect of Hexamethylene Diisocyanate-Modified Graphene Oxide as a Nanofiller Material on the Properties of Conductive Polyaniline. Polymers 2019, 11, 1032. [Google Scholar] [CrossRef] [PubMed]
- Luceño-Sánchez, J.A.; Díez-Pascual, A.M. Grafting of Polypyrrole-3-carboxylic Acid to the Surface of Hexamethylene Diisocyanate-Functionalized Graphene Oxide. Nanomaterials 2019, 9, 1095. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.-M.; Yeo, J.-S.; Kim, J.; Jeong, H.-G.; Kim, D.-Y.; Noh, Y.-J.; Kim, S.-S.; Ku, B.-C.; Na, S.-I. Solution-Processable Reduced Graphene Oxide as a Novel Alternative to PEDOT:PSS Hole Transport Layers for highly Efficient and Stable Polymer Solar Cells. Adv. Matter. 2011, 23, 4923–4928. [Google Scholar] [CrossRef]
- Luceño-Sánchez, J.A.; Díez-Pascual, A.M.; Peña Capilla, R. Materials for Photovoltaics: State of Art and Recent Developments. Int. J. Mol. Sci. 2019, 20, 976. [Google Scholar] [CrossRef] [PubMed]
- Eigler, S.; Grimm, S.; Hof, F.; Hirsch, A. Graphene oxide: A stable carbon framework for functionalization. J. Mater. Chem. A 2013, 1, 11559–11562. [Google Scholar] [CrossRef]
Sample | With Plasma Treatment | No Plasma Treatment | Coating Speed (rpm) | Drying Speed (rpm) | Annealing Time (min) | Annealing Temperature (°C) |
---|---|---|---|---|---|---|
PEDOT:PSS | Deposition of sample | Clean the substrate surface with N2 | 1800 | 1800 | 10 | 125 |
HDI-GO5 + DMSO | 1800/1000 | 1800/1000 | 30 | 165 | ||
HDI-GO + 2-propanol | 1800/1000 | 1800/1000 | 10–15 | 150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luceño-Sánchez, J.A.; Charas, A.; Díez-Pascual, A.M. Assessment of the Potential of Polymer/HDI-GO Nanocomposites for Use in Organic Solar-Cells. Mater. Proc. 2021, 4, 11. https://doi.org/10.3390/IOCN2020-07842
Luceño-Sánchez JA, Charas A, Díez-Pascual AM. Assessment of the Potential of Polymer/HDI-GO Nanocomposites for Use in Organic Solar-Cells. Materials Proceedings. 2021; 4(1):11. https://doi.org/10.3390/IOCN2020-07842
Chicago/Turabian StyleLuceño-Sánchez, José Antonio, Ana Charas, and Ana Maria Díez-Pascual. 2021. "Assessment of the Potential of Polymer/HDI-GO Nanocomposites for Use in Organic Solar-Cells" Materials Proceedings 4, no. 1: 11. https://doi.org/10.3390/IOCN2020-07842
APA StyleLuceño-Sánchez, J. A., Charas, A., & Díez-Pascual, A. M. (2021). Assessment of the Potential of Polymer/HDI-GO Nanocomposites for Use in Organic Solar-Cells. Materials Proceedings, 4(1), 11. https://doi.org/10.3390/IOCN2020-07842